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Abstract. We tackle the problem of statistical learning in the stan-
dard knowledge base representations for the Semantic Web which are
ultimately expressed in description Logics. Specifically, in our method
a kernel functions for the ALCN logic integrates with a support vector
machine which enables the usage of statistical learning with reference
representations. Experiments where performed in which kernel classifi-
cation is applied to the tasks of resource retrieval and query answering
on OWL ontologies.

1 Learning from Ontologies

The Semantic Web (SW) represents an emerging applicative domain where
knowledge intensive automated manipulations on complex relational descriptions
are foreseen. Although machine learning techniques may have a great potential
in this field, so far research has focused mainly on methods for knowledge acqui-
sition from text (ontology learning) [4]. Yet machine learning methods can be
transposed from ILP to be applied to ontologies described with formal concept
representations employed to model knowledge bases in the SW.

Description Logics (DLs) [1] is a family of languages that has been adopted
as the core technology for representing ontologies. Such languages are endowed
with an open-world semantics which makes them particularly fit for the SW
applications where, differently from classical DB contexts, knowledge bases are
considered inherently incomplete, since new resources may continuously made
available across the Web. Thus, few methods have been proposed for learning
these representations (e.g. see [5, 13, 8, 14]).

While classic ILP techniques have been adapted to work with DLs repre-
sentations, purely logic approaches often fall short in terms of efficiency and
noise-tolerance. Learning with logic-based methods is inherently intractable in
multi-relational settings. Moreover, for the sake of tractability, only very simple
DL languages have been considered so far [6]. Recently, it has been shown that
kernel methods may be effectively applied to structured representations [10] and
also to ontology languages [9, 2].

In this work, a family of kernel functions is defined for DLs representations.
Specifically, the ALCN logic [1] is adopted as a tradeoff between efficiency and
expressiveness. The kernel functions are defined encoding a notion of similarity
between objects expressed in this representation, which is based on structural



and semantic aspects of the reference language, namely a normal form for the
concept descriptions and the extension of concepts approximated through the
objects that are (directly or provably) known to belong to them.

By coupling the kernel functions with support vector machines (SVMs) many
tasks can be tackled. Particularly, we demonstrate how to perform important in-
ference services based on inductive classification, namely concept retrieval and
approximate query answering [1], that may turn out to be hard for logic meth-
ods, especially with knowledge bases built from heterogeneous sources. These
tasks are generally grounded on merely deductive procedures which easily fail in
case of (partially) inconsistent or incomplete knowledge. We show how inductive
methods perform comparably well w.r.t. a standard deductive reasoner, allow-
ing the suggestion of new knowledge that is not logically derivable similarly to
abductive conclusions.

An experimentation on both artificial and real ontologies available in stan-
dard repositories proves the effectiveness of inductive classification using the
kernel function integrated with a SVM.

The paper is organized as follows. After recalling the basics of the DLs repre-
sentation (Sect. 2), we introduce relational kernels for the ALCN logic in Sect. 3.
The application of kernel-based classification for inductive resource retrieval is
presented in Sect. 4 and an experimental evaluation of the method is reported
in Sect. 5. Finally, Sect. 6 concludes and outlines further applications and ex-
tensions of this work.

2 Reference Representation

The basics of the ALCN logic will be recalled (see [1] for a thorough reference).
Such a logic is endowed with the basic constructors employed by the standard
ontology languages adopted in the SW (such as OWL).

2.1 Knowledge Bases in Description Logics

Concept descriptions are inductively defined starting with a set No = {C, D, ...}
of primitive concept names, a set Np = {R, Q, ...} of primitive roles and a set of
names for the individuals (objects, resources) Ny = {a,b,...}. Complex descrip-
tions are built using primitive concepts and roles and the language constructors.
The set-theoretic semantics of these descriptions is defined by an interpretation
T = (A%, 1), where AT is a non-empty set, the domain of the interpretation,
and - is the interpretation function that maps each A € N¢ to a set AT C A
and each R € Ni to RT C AT x AZ,

Complex descriptions can be built in ALCN using the language constructors
listed in Table 1, along with their semantics derived from the interpretation of
atomic concepts and roles [1]. Note that the open-world assumption (OWA) is
made.



Table 1. Syntax and semantics of concepts in the ALCN logic.

Name Syntax Semantics
top T AT
bottom L 1]
full negation -C AT\ T
c. conjunction  C7 M Ce C’ll N CQI
c. disjunction  CLUC, Cruct
existential r. IR.C {z € AT | Iy € AT((x,y) € RT Ay € CT)}
universal r. VR.C {z € AT |Vy € A% ((z,y) € RT -y e CT)}
at least r. >nR {z e AT |{y e AT : (z,y) € RT|} > n}
at most r. <nR {zc AT | {y e AT : (2,9) € RT|} <n}

A knowledge base K = (T, A) contains a TBox T and an ABox A. 7 is the
set of definitions’ C' = D, meaning C7 = D?, where C is the concept name
and D is its description. A contains assertions on the world state concerning the
individuals, e.g. C(a) and R(a,b), meaning that a € C% and (a%,b?) € R~.

Ezample 2.1 (Royal Family). This example shows a knowledge base modeling
concepts and roles related to the British royal family?:

7 = { Male = —Female,
Woman = Human 1M Female,
Man = Human 1 Male,
Mother = Woman M JhasChild.—Human,
Father = Man M JhasChild.~Human,
Parent = Father U Mother,
Grandmother = Woman M JhasChild.—Parent,
Mother-w/o-daughter = Mother M YhasChild.—Female,
Super-mother = Mother M > 3.hasChild }

A = { Woman(elisabeth), Woman(diana), Man(charles), Man(edward),
Man(andrew), Mother-w/o-daughter(diana),
hasChild(elisabeth, charles), hasChild(elisabeth,edward),
hasChild(elisabeth, andrew), hasChild(diana, william),
hasChild(charles, william) }

2.2 Inference Services

Many inference services are supported by a growing number of DL resoners. The
principal inference service amounts to assessing whether a concept subsumes
another concept according to their semantics:

! More general definitions of concepts by means of inclusion axioms (C' C D) may also
be considered.
2 From Franconi’s DLs course: http://www.inf .unibz.it/~franconi/d1/course



Definition 2.1 (subsumption). Given two descriptions C and D, C sub-
sumes D, denoted by C 3 D, iff for every interpretation I it holds that C* D DZ.
When C J D and D 3 C then they are equivalent, denoted with C = D.

Normally subsumption is computed w.r.t. the interpretations satisfying the knowl-
edge base. More expressive languages allo for the construction or role-hierarchies
based on subsumption.

Another important inference, since we aim at inductive methods that ma-
nipulate single resources, is tnstance checking, that amounts to deciding whether
an individual belongs to the extension of a given concept [1]. Another related
inference is retrieval which consists in finding the extension of a given concept:

Definition 2.2 (retrieval). Given an knowledge base K and a concept C, find
all individuals a such that K = C(a).

Conversely, it may be necessary to find the concepts which an individual
belongs to (realization problem), especially the most specific one:

Definition 2.3 (most specific concept). Given an ABoz A and an individual
a, the most specific concept of a w.r.t. A is the concept C, denoted MSC 4(a),
such that A |= C(a) and for any other concept D such that A |= D(a), it holds
that C C D.

For some languages, the MSC may not be expressed by a finite description [1], yet
it may be approximated by a more general concept. Generally approximations up
to a certain depth k of nested levels are considered, denoted MSC*. A maximal
depth approximation will be generically indicated with MSC*.

2.3 Normal Form

Many semantically equivalent (yet syntactically different) descriptions can be
given for the same concept. Equivalent concepts can be reduced to a normal
form by means of rewriting rules that preserve their equivalence [1]. We will
adopt a normal form derived from [3].

Some notation is necessary for naming the various parts of a description:

— prim(C) is the set of all the primitive concepts (or their negations) at the
top-level of C;

— valg(C) = CyM---MC, if there exists a value restriction VR.(Cy M---MCy)
at the top-level of C, otherwise valgr(C) = T;

— exg(C) is the set of the descriptions C’ appearing in existential restrictions
JR.C’ at the top-level conjunction of C.

— ming(C) =max{n e N|CC (>n.R)} (always a finite number);

— maxg(C) =min{n e N | C C (<n.R)} (if unlimited then maxr(C) = 00).

A normal form may be recursively defined as follows:



Definition 2.4 (ALCN normal form). A concept description C is in ALCN
normal form ¢ff C =1L orC=T orif C=C1U---UC, with

Ci= [] P[] [VRvalgr(C)N[]3REN>mERN<MIR
Peprim(C;) RENR Ecexr(C;)

where, for alli =1,...,n, mI* =ming(C;), MF = maxg(C;), C; Z L and, for
all R € Ng, valgr(C;) and every sub-description in exg(C;) are, in their turn, in
ALCN normal form.

This normal form can be obtained by means of a repeated application of equiv-
alence preserving operations, namely replacing defined concepts with their def-
inition as in the TBox and pushing the negation in the nested level (negation
normal form).

Ezample 2.2 (normal form). The concept description

C = (ﬁAl M AQ) [ (HRlBl HVRQ(HRg(ﬁAg I Bg)))

is in normal form, whereas the following is not:

D = A1 L B2 [ _\(A3 1 E'Rng) UVRQ.B3 HVRQ.(Al 1 B3)

where A;’s and B;’s are primitive concept names and the Ry’s are role names.

3 Defining Kernels for ALCN

A family of valid kernels for the space X of ALCN descriptions can be proposed,
based on the family defined for ALC [9]. The definition is based on the AND-
OR tree structure of the descriptions in normal form, like for the standard tree
kernels [10] where similarity between trees depends on the number of similar
subtrees (or paths unraveled from such trees). Yet this would end in a merely
syntactic measure which does not fully capture the semantic nature of expressive
DLs languages such as ALCN.

Normal form descriptions can be decomposed level-wise into sub-descriptions.
There are three possibilities for each level: the upper level is dominated by the
disjunction of concepts that, in turn, are made up of a conjunction of com-
plex or primitive concepts. In the following the definition of the ALCN kernels
(parametrized on the decaying factor \) is reported.

Definition 3.1 (ALCN kernels). Given an interpretation T of K, the ALCN
kernel based on I is the function k7 : X X X — R structurally defined as follows:
given two disjunctive descriptions Dy = | [;_, O} and Dy = | |2, CF in ALCN
normal form:

disjunctive descriptions:

n m

kz(D1,Da) =AY Y kz(CF,CP)

i=1 j=1

with A €]0,1]



conjunctive descriptions:

kr(CL0%) = [T k(P Po) - T ke((méa, ME), (mEa, ME)) -
Py € prim(C*') ReNg
Py € prim(C?)

I1 kz(valr(Ch),valr(C?)- ] > k(G0

ReNg ReNRr O} ¢ exg(Ch)
C3 € expr(C?)

where m&, = ming(C?) and ME, = maxp(C*), i =1,2.

numeric restrictions:

min(M¢, Mp) — max(mg, mp) + 1

kz((me, Mc), (mp, Mp)) = max(Mc¢, Mp) — min(mec, mp) + 1

if min(M¢, Mp) > max(me,mp) and kz((me, Me), (mp, Mp)) = 0 otherwise.

primitive concepts:
kI(PlaPZ) :kset(Plzy-PQI) = |PlIﬂP21|

where kgey 15 the kernel for set structures defined in [10]. This case includes also
the negation of primitive concepts using: (—P)T = AT\ P

This kernel computes the similarity between disjunctive as the sum of the
cross-similarities between any couple of disjuncts from either description. The
rationale for this kernel is that similarity between disjunctive descriptions is
treated by taking the sum of the cross-similarities between any couple of disjuncts
from either description. The term X is employed to downweight the similarity of
the sub-descriptions on the grounds of the level where they occur.

Following the normal form, the conjunctive kernel computes the similarity
between two input descriptions distinguishing for factors corresponding to prim-
itive concepts, universal, existential and numeric restrictions, respectively. These
values are multiplied reflecting the fact that all the restrictions have to be satis-
fied at a conjunctive level. Not that the values computed for value and existential
restrictions involve recursive calls to the kernel functions on less complex struc-
tures.

The similarity of the numeric restrictions is simply computed as a measure
of the overlap between the two intervals. Namely it is the ratio of the amounts of
individuals in the overlapping interval and those the larger one, whose extremes
are minimum and maximum. Note that some intervals may be unlimited above:
max = o0o. In this case we may approximate with an upper limit N greater than
|AT] + 1.

Finally, the similarity between primitive concepts is measured in terms of
the intersection of their extension. Making the unique names assumption on the
names of the individual occurring in the ABox A, one can consider the canonical



interpretation [1] Z, using Ind(A) as its domain (A := Ind(A)). Therefore, the
kernel can be specialized as follows: since the kernel for primitive concepts is
essentially a set kernel we can set the constant A\, to 1 /AT so that the cardinality
of he intersection is weighted by the number of individuals occurring in the
overall ABox. Alternatively, another choice could be Ap = 1/|PE U PZ| which
would weight the rate of similarity (the extension intersection) measured by
the kernel with the size of the concepts measured in terms of the individuals
belonging to their extensions.

Being partially based on the concept structure and only ultimately on the
extensions of the concepts at the leaves, it may be objected that this kernel
function can roughly grasp the concept similarity based on their semantics. This
may be well revealed by the case of input concepts that are semantically almost
equivalent yet structurally different. However, it must be pointed out that the
process of rewriting for putting the concepts in normal form tends to eliminate
these differences. More importantly, the ultimate goal for defining a kernel will
be comparing individuals rather than concepts. This will be performed recurring
to the most specific concepts of the individuals w.r.t. the same ABox. Hence, it
was observed that semantically similar individuals will tend to share the same
structures as elicited from the same source.

3.1 Discussion

The validity of a kernel depends on the fact that the function is positive definite.
Positive definiteness can be also proved exploiting some closure properties of the
class of positive definite kernel functions [11]. Namely, multiplying a kernel by
a constant, adding or multiplying two kernels yields another valid kernel. We
can demonstrate that the function introduced above is indeed a valid kernel for
our space of hypotheses. Observe that the core function is the one on primitive
concept extensions. It is essentially a set kernel [10]. The versions for top-level
conjunctive and disjunctive descriptions are also positive definite being essen-
tially based on the primitive kernel. Descending through the levels there is an
interleaving of the employment of these function up the the basic case of the
function for primitive descriptions.
Exploiting these closure properties it could be pr oven® that:

Proposition 3.1. Given an interpretation I, the function kz is a valid kernel
for the space X of ALCN descriptions in normal form.

As regards efficiency, it is possible to show that the kernel function can be
computed in time O(|Ny||Na|) where |N;|, i = 1,2, is the number of nodes of the
concept AND-OR trees. It can computed by means of dynamic programming.
Knowledge Base Management Systems, especially those dedicated to storing in-
stances, generally maintain information regarding concepts and instances which
may further speed-up the computation.

3 Proof omitted for brevity.



The kernel can be extended to the case of individuals a,b € Ind(A) simply
by taking into account the approximations of their MSCs:

kz(a,b) = kz(MSC*(a), MSC* (b))

In this way, we move from a graph representation like the ABox portion
containing an individual to an intensional tree-structured representation.

Observe that the kernel function could be specialized to take into account
the similarity between different relationships. This would amount to considering
each couple of existential and value restriction with one element from each de-
scription (or equivalently from each related AND-OR tree) and the computing
the convolution of the sub-descriptions in the restriction. As previous suggested
for A, this should be weighted by a measure of similarity between the roles
measured on the grounds of the available semantics. We propose therefore the
following weight: given two roles R, S € Ng: Ags = |RT N ST|/|AT x AZ|.

As suggested before, the intersection could be measured on the grounds of
the relative role extensions with respect to the whole domain of individuals, as
follows: Ags = |RT N ST|/|RT U SZ|. Tt is also worthwhile to recall that some DLs
knowledge bases support also the so called R-boz [1] with assertions concerning
the roles, thus we might know beforehand that for instance R C S and compute
heir similarity consequently.

The extension of the kernel function to more expressive DL is not trivial.
DLs allowing normal form concept definitions can only be considered. Moreover,
for each constructor not included in the ALCN logic, a kernel definition has to
be provided.

Related distance measures can also be derived from kernel functions which
essentially encode a notion of similarity between concepts and between individ-
uals. This can enable the definition of various distance-based methods for these
complex representations spanning from clustering to instance-based methods.

4 Inductive Classification and Retrieval

In this paper, a kernel method is used to solve the following classification prob-
lem:

Definition 4.1 (classification problem). Given a knowledge base K = (T, A),
the set of individuals Ind and a set of concepts DC = {C4,...,Cs} defined on the
grounds of those in KC, the primal problem to solve is: considered an individual
a € Ind determine the subset of concepts {C1,...,Ci} C DC to which a belongs
to.

This classification problem can be also be regarded as a retrieval problem
with the following dual definition:

Definition 4.2 (retrieval problem). Given a knowledge base K = (T, A), a
query concept Q defined on the grounds of those in IC and the set of individuals
in the ABoz Ind(A), the dual problem to solve is: find all b € Ind(A) such that

K E Q).



In the general learning setting, the target classes are disjoint. This is not
generally verified in the SW context, where an individual can be instance of
more than one concept in the hierarchy. To solve this problem, a new answer-
ing procedure is proposed. It is based on the decomposition of the multi-class
problem into smaller binary classification problems (one per class). Therefore,
a simple binary value set (V = {—1,4+1}) can be employed, where (+1) indi-
cates that an example x; occurs in the ABox w.r.t. the considered concept C;
(namely Cj(x;) € A); (—1) indicates the absence of the assertion in the ABox.
As an alternative, it can be considered +1 when Cj(x;) can be inferred from the
knowledge base, and —1 otherwise.

Another issue has to be considered. In the general classification setting an im-
plicit assumption of Closed World is made. On the contrary, in the SW context
the Open World Assumption is generally made. To deal with the OWA, the ab-
sence of information on whether a certain instance z; belongs to the extension of
concept C; should not be interpreted negatively, as seen before, rather, it should
count as neutral information. Thus, another value set has to be considered,
namely V = {41, —1,0}, where the three values denote, respectively, assertion
occurrence (Cj(z;) € A), occurrence of the opposite assertion (—C;(z) € A) and
assertion absence in A.

Occurrences can be easily computed with a lookup in the ABox. Moreover, as
in the previous case, a more complex procedure may be devised by substituting
the notion of occurrence (absence) of assertions in (from) the ABox with the one
of derivability from the whole KB, i.e. K+ Cj(z;), Kt/ Cj(x;), Kt/ Cj(x;) and
Kt =Cj(z;), respectively.

Although this may improve the precision of inductive reasoning, it is also
more computationally expensive, since the simple lookup in the ABox must be
replaced with instance checking. Hence, considered the query instance x4, for
every concept C; € C the classifier will return +1 if 2, is an instance of C;, —1
if x4 is an instance of —C);, and 0 otherwise. The classification is performed on
the ground of a set of training examples from which such information can be
derived.

These results can be used to improve concept retrieval service. By classifying
the individuals in the Abox w.r.t. all concepts, concept retrieval is performed
exploiting an inductive approach. As will be experimentally shown in the fol-
lowing, the classifier, besides of having a comparable behavior w.r.t. a standard
reasoner, is also able to induce new knowledge that is not logically derivable.
Moreover it can be employed for the query answering task by determining, as
illustrated above, the extension of a new query concept built from concepts and
roles in the considered ontology.

Note that instance-checking, as performed by a reasoner is P-SPACE com-
plete for the reference DL language [1]. Conversely, the inductive classification
procedure is very efficient once the SVM has been trained. Most of the training
time is actually devoted to the construction of the kernel matrix which gains a
lot of speed-up exploiting statistics on concept extensions normally maintained



by knowledge base management systems [12]. Moreover ad hoc data structures
can be employed to make this process even more efficient.

5 Experimental Evaluation

The ALCN kernel function has implemented in Java and integrated with a
support vector machine from the LIBSVM library?.

In order to assess the value of the kernel integrated in a SVM at solving the
retrieval problem, experiments have been carried out on a number of simple and
more complex ontologies.

It is difficult to find in the literature similar methods for a comparison of
the outcomes. A recent approach using simple kernels with SVM" 9" has been
qualitatively evaluated [2]; unfortunately the data (drawn from two ontologies)
are not publicly available. Namely the authors artificially populated a knowledge
base and then assess the quality of the induced models for a selected number of
concepts.

We preferred to carry out more extensive experiments on available knowl-
edge bases with no random population involving all concepts and individuals
of the ontology. As such experiments are more easily repeatable. The details of
experimental settings and the outcomes are reported in the following.

5.1 Experimental Setup

The experiments have been performed on nine different ontologies (w.r.t. the
domain and size) represented in OWL.

Namely, the FAMILY and UNIVERSITY ontologies were developed in our lab®
and populated with real data; the FSM, SURFACE-WATER-MODEL, NEWTES-
TAMENTNAMES, SCIENCE, PEOPLE, NEWSPAPER and WINES ontologies were
selected from the Protégé library®. Details about such ontologies are reported in
Table 2. The number of individuals spans from 50 to 1000. However ontologies
are normally measured in terms of triples; in the experiment we have ontologies
whose size goes from hundreds up to ten thousands of triples.

These ontologies are represented in languages that are generally more com-
plex than ALCN . Hence, in order to apply the kernel function, constructs that
are not allowed by ALCN were discarded during the computation of the MSCs
of the individuals.

The inductive classification method was applied to each ontology; namely,
the individuals were checked to assess if they were instances of the concepts
in the ontology using the classifier induced by the SVM adopting the ALCN
kernel function (initially A was set to 1). The performance of the classifier was

4 http://www.csie.ntu.edu.tw/~cjlin/libsvm
® http://lacam.di.uniba.it:8000/~nico/research/ontologymining.html
S http://protege.stanford.edu



Table 2. Ontologies employed in the experiments.

| ONTOLOGY[ DL lang.  #concepts #object prop. #datatype prop.

PEOPLE|ALCHIN (D) 60 14 1
UNIVERSITY ALC 13 4 0
FSM| SOF(D) 20 10 7
FAMILY ALCF 14 5 0
NEWSPAPER| ALCF(D) 29 28 25
WINES| ALCZO(D) 112 9 10
SCIENCE| ALCIF(D) 74 70 40
S.-W.-M.| ALCOF (D) 19 9 1
NTN| SHIF(D) a7 27

evaluated comparing its responses to those returned by a standard reasoner”

used as baseline.

Specifically, for each individual in the ontology the MSC was computed and
enlisted in the set of training or test examples (individuals). For each concept, a
model was built training the SVM with the kernel on the proper set of examples.
Each test example was then classified applying the induced classifier. The exper-
iment has been repeated for each concept adopting a ten-fold cross-validation
procedure. Actually there were two sessions: in the first we tested the system on
primitive and defined concepts in the ontology while in the second more com-
plex random concepts were randomly built on the grounds of these concepts for
testing the system.

For the evaluation, initially the standard measures of precision, recall, F-
measure were considered. Yet in a setting complying with an open-world seman-
tics cases when the resulting answer was unknown had to be considered more
carefully, since they still might possibly imply a classification of an instance as
relevant. Then we decided to measure a sort of alignment between the response
given by the deductive reasoner and the one returned by our inductive classifier.

The running time (on a Core2Duo 2Ghz Linux box with 2GB RAM) goes
from minutes to 1.2 hours for a run of 10-fold cross-validation procedure on the
individuals belonging to a single ontology w.r.t. each test concept. That includes
the time elapsed for getting the correct classification from the reasoner for the
comparison.

Hence, for each concept in the ontology, the following parameters have been
measured for the evaluation [7]:

— match rate: cases of individuals that got the same classification by both
classifiers;

— induction rate: individuals that the classifier found to belong to the target
concept or its negation, while this was not logically deducible;

— omission error rate: cases of individuals for which the inductive classifier
omitted to determine whether they were instances (or not) of the target
concept while this could be logically ascertained by the reasoner;

" PELLET ver. 1.5.1: http://pellet.owldl.com



Table 3. Outcomes of the concept classification experiments (A = 1): average percent-
ages and standard deviations.

l ONTOLOGY[ match rate induction rate om. error rate  com. error rate‘
PEOPLE| 86.61 (+ 10.37) 5.40 (£ 12.44) 7.99 (£ 6.44) 0.0 (£ 0.0)
UNIVERSITY| 78.94 (£ 9.78) 11.40 (£8.65) 1.76 (£6.09)  7.90 (+ 7.26)
FSM| 91.72 (+9.32) 0.72 (£ 2.79) 0.0 (£ 0.0) 7.56 (+ 9.53)
FaMmILy| 61.95 (£ 20.36) 3.15 (£ 11.37) 34.89 (£ 22.88) 0.0 (£ 0.0)
NEwSPAPER| 90.33 (£ 8.29) 0.0 (£ 0.0) 9.67 (£ 8.29) 0.0 (£ 0.0)
WINES| 95.58 (£ 7.85) 0.43 (+ 3.44) 3.99 (£ 7.30) 0.0 (£ 0.0)
SCIENCE| 94.20 (£ 7.91) 0.72 (£ 1.61) 5.08 (£ 8.31) 0.0 (£ 0.0)
S.-W.-M.| 87.09 (£ 15.83) 6.73 (£ 15.96) 6.18 (£ 9.14) 0.0 (£ 0.0)
N.T.N.| 92.52 (+ 24.71) 2.58 (+ 8.44) 0.15 (£ 3.90) 4.75 (+ 11.28)

— commission error rate: amount of individuals labeled as instances of a given
concept, while they (logically) do not belong to that concept or vice-versa.

Further experimental sessions, reported in the following section, were per-
formed by varying the parameter . Besides, another experiment has regarded
testing the performance of the classifier on random query concepts generated by
composition of (primitive and defined) concepts in the knowledge base.

5.2 Outcomes

Classification with Concepts in the Knowledge Base. Table 3 reports
the outcomes of this first experiment. The average rates obtained over all the
concepts in each ontology are reported, jointly with their range.

It is important to note that, for every ontology, the commission error was
quite low. This means that the classifier did not make critical mistakes, i.e. cases
when an individual is deemed as an instance of a concept while it really is an
instance of another disjoint concept. Particularly, the commission error rate is
not null in case of UNIVERSITY and FSM ontologies and consequently also the
match rate is the lowest. It is worthwhile to note that these ontologies have also
a limited number of individuals. Specifically, the number of concepts is almost
similar to the number of individuals, which represents a difficult situation in
which there is not enough information for separating the feature space and then
produce correct classifications. However, also in these conditions, the commission
error was quite low, the matching rate is considerably high and the classifier was
even able to induce new knowledge.

Interestingly, it was noticed that the match rate increased with the increase
of the number of individuals in the considered ontology with a consequent strong
decrease of the commission error rate that tends to 0 in for the most populated
ontologies. For almost all ontologies the SVM classifier is also able to induce
new knowledge, i.e. to assign an individual to a concept when this could not be
decided by the deductive reasoner due to the open-world semantics.



Table 4. Outcomes of the concept classification experiments (A =

centages and standard deviations.

.5): average per-

l ONTOLOGY[ match rate induction rate om. error rate  com. error rate‘
PEOPLE| 86.61 (+ 10.37) 5.4 (£ 12.44) 7.99 (£ 6.44) 0 (£ 0.0)

UNIVERSITY| 71.06 (£ 13.36) 11.40 (+ 8.65) 4.38 (£ 15.18) 13.16 (£ 8.56)

FSM| 91.72 (+9.32) 0.72 (£ 2.79) 0.0 (£ 0.0) 7.56 (+ 9.53)
FaMILY| 61.55 (4 20.47) 3.55 (£ 12.81) 34.89 (£ 22.88) 0.0 (£ 0.0)
NEWSPAPER| 90.38 (£ 8.15) 0.0 (£ 0.0) 9.62 (£ 8.15) 0.0 (£ 0.0)
WINES| 95.15 (£ 8.81)  0.65 (+ 5.19) 4.21 (£ 7.50) 0.0 (£ 0.0)
SCIENCE| 87.68 (£ 12.71) 6.52 (+ 12.61) 5.80 (& 9.85) 0.0 (£ 0.0)
S.-W.-M.| 86.18 (£ 17.86) 8.01 (+ 16.36) 5.81 (& 7.74) 0.0 (£ 0.0)

NTN| 90.52 (£ 25.10) 4.27 (£ 10.03) 4.90 (£ 11.73) 0.31 (£ 5.22)

For some ontologies some rates exhibit high standard deviations. In a careful
insight of such cases, we found that this was due to cases of concepts with very
few positive (negative) examples. This problem is made harder by the particu-
lar DL setting that allows many individuals to have an unknown classification
w.r.t. some concepts because of the OWA. This is particularly true for the ontolo-
gies FAMILY and UNIVERSITY that were intentionally built as sparse knowledge
bases (lots of class-membership assertions for the various individuals cannot be
logically derived from the knowledge base).

Besides a stable behavior was also observed as regards the omission error
rate which is very often non-null, yet very limited. This is due to a high number
of training examples classified as unknown w.r.t. a certain class. To decrease the
tendency to a conservative behavior of the classifier, a threshold could be intro-
duced for the consideration of the training examples labeled with 0 (?unknown”
classification).

The experiment has been repeated by setting the parameter A\ of the kernel
function to smaller values. For example, the average results when A = 0.5 are
reported in Table 4 (we omit the other results for sake of brevity). From this
table, where the average rates w.r.t. the various ontologies are reported, we can
note that the classification results are comparable with those of the previous
experiment. Again it is possible to note that halving of the A value does not
generally influence the classification results.

Particularly, for ontologies with the lowest numbers of individuals (e.g. UNI-
VERSITY, FSM) the match rate sometimes also decreases w.r.t. the classification
performed using A = 1.

Random Query Concepts. Another experiment has been carried out, to test
the kernel classifier as a means for performing inductive concept retrieval w.r.t.
new query concepts built from the considered ontology. The method has been
applied to solve a number of retrieval problems using A = 1 for the kernel
function. To this purpose, 15 queries were randomly generated by means of



Table 5. Outcomes of the experiments with random query concepts (A = 1): average
percentages and standard deviations.

l ONTOLOGY[ match rate induction rate om. error rate com. error rate ‘
PEOPLE| 88.56 (£ 9.30) 4.05 (£ 10.50) 7.4 (£ 6.26) 0 (£ 0.0)
UNIVERSITY| 71.99 (+ 12.15) 15.98 (£ 8.18) 0. 94 (£4.97) 11.10 (£ 11.22)
FSM| 87.80 (£ 10.83) 0.86 (£ 2.39) 0 (£ 0.0) 11. 34 (+ 10.80)
FAMILY| 66.33 (£ 16.79) 4.53 (£ 10.93) 29. 14 (£ 20.87) 0 (£ 0.0)
NEWSPAPER| 77.91 (+ 10.06) 0 0 (£ 0.0) 22.09 (£ 10.06) 0 (£ 0.0)
WINES| 94.33 (£ 9.12) 0 (£ 0.0) 5.67 (£ 9.12) 0 (£ 0.0)
SCIENCE| 97.86 (+ 1.61) 0. 51 (£ 1.36) 1.63 (£ 1.64) 0 (£ 0.0)
S.-W.-M.| 80.39 (£ 16.26) 13.40 (£ 18.93) 6.21 (£ 7.28) 0 (£ 0.0)
NTN| 90.58 (£ 25.23) 2.18 (£ 11.0) 7.19 (+ 14.36) 0.40 (+ 7.39)
Table 6. Outcomes of the experiments with random query concepts (A = .5): average

percentages and standard deviations.

| ONTOLOGY[ match rate induction rate om. error rate com. error rate ‘
PEOPLE| 86.71 (£ 8.97) 3.97 (£ 10.75) 9.33 (£ 6.49) 0.0 (£ 0.0)
UNIVERSITY| 63.95 (+ 18.56) 17.16 (+ 10.08) 2.14 (£ 11.14) 16.76 (& 13.06)
FSM| 84.25 (+ 12.40) 0.90 (£ 3.05) 0 (x00) 14. 85 (£ 12.84)
FAMILY| 66.38 (£ 11.87) 7.86 (+ 16.71) 28.77 (% 18.12) 0 (£ 0.0)
NEWSPAPER| 81.81 (+ 14.11) 0.92 (+ 4.58) 17.28 (4 12.39) 0 (£ 0.0)
WINES| 89.46 (£ 15.41) 5.20 (£ 14.21)  1.95 (£ 1.48) 0 (£ 0.0)
SCIENCE| 97.15 (£ 0.87)  0.90 (+ 1.80)  1.63 (£ 1.64) 0 (£ 0.0)
S.-W.-M.| 84.86 (£ 15.94) 8.6 (£ 15.42) 6.88 (+ 6.42) 0 (£ 0.0)
NTN| 89.11 (£ 25.91) 5.17 (+ 12.59) 5.35 (&£ 14.19) 0. 37 (£ 9.48)

conjunctions / disjunctions of (3 thru 8) primitive and/or defined concepts of
each ontology.

As for the previous experiment, a ten fold cross-validation setting was applied
with the same nine ontologies. The individuals have been assigned to each of the
three classes and the classifier induced by the SVM has been used to decide on the
membership to the query class of the test individuals. The outcomes are reported
in Table 5, from which it is possible to observe that the behavior of the classifier
generally remains unvaried w.r.t. the previous experiment whose outcomes are
reported in Table 3. As in the other experiments, they were repeated for different
values of A. Table 6, reports the outcomes of such experiments for the case when
A=.5.

Summarizing, the ALCN kernel function can be effectively used, jointly with
a SVM, to perform inductive concept retrieval, guaranteeing almost null com-
mission error and, interestingly, the ability to induce new knowledge. The per-
formance of the classifier increases with the increase of the number of individuals
populating the considered ontology and the homogeneity of their spread across
the concepts in the ontology.



These results are comparable to those obtained on an overlapping pool of
datasets with a nearest neighbor classification method based on a semantic dis-
tance [7].

6 Conclusions and Future Work

We investigated multi-relational learning techniques in the SW peculiar context.
Specifically, a kernel function has been defined for ALCN descriptions which
was integrated with a SVM for inducing a statistical classifier working with this
complex representation. The resulting classifier was tested on inductive retrieval
and classification problems. Experimentally, it was shown that its performance
is not only comparable to a standard deductive reasoner, but it is also able to in-
duce new knowledge, which is not logically derivable. Particularly, an increase in
prediction accuracy was observed when the instances are homogeneously spread.

The induced classifier can be exploited for predicting or suggesting missing
information about individuals, thus completing large ontologies. Specifically, it
can be used to semi-automatize the population of an ABox. Indeed, the new
assertions can be suggested to the knowledge engineer that has only to validate
their inclusion. This constitutes a new approach in the SW context, since the
efficiency of the statistical and numerical approaches and the effectiveness of a
symbolic representation have been combined.

The main weakness of the approach is on its scalability towards more complex
DLs. While computing MSC approximations might be feasible, it may be more
difficult focusing on a normal form when comparing descriptions. Indeed, as long
as the expressiveness increases, the gap between syntactic structure semantics
of the descriptions becomes more evident. As a next step, we can foresee the
investigation of defining kernels for more expressive languages w.r.t. ALCN, e.g.
languages enriched with (qualified) number restrictions and inverse roles [1].

The derivation of distance measures from the kernel function may enable a
series of further distance-based data mining techniques such as clustering and
instance-based classification. Conversely, new kernel functions can be defined
transforming newly proposed distance functions for these representations, which
are not language dependent and allow the related data mining methods to better
scale w.r.t. the number of individuals in the ABox.
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