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Abstract. A novel family of parametric language-independent kernel functions
defined for individuals within ontologies is presented. They are easily integrated
with efficient statistical learning methods for inducing linear classifiers that offer
an alternative way to perform classification w.r.t. deductive reasoning. A method
for adapting the parameters of the kernel to the knowledge base through stochastic
optimization is also proposed. This enables the exploitation of statistical learning
in a variety of tasks where an inductive approach may bridge the gaps of the stan-
dard methods due the inherent incompleteness of the knowledge bases. In this
work, a system integrating the kernels has been tested in experiments on approx-
imate query answering with real ontologies collected from standard repositories.

1 Ontology Mining: Learning from Metadata

In the context of the Semantic Web (henceforth SW) many applications require the
accomplishment of data-intensive tasks that can effectively exploit machine learning
methods [1]. However, while a growing amount of metadata is being produced, most of
the research effort addresses the problem of learning for the SW (mostly from structured
or unstructured text [2]). Less attention was devoted to the advantages (and problems)
of learning from SW data and metadata expressed in Description Logics (DLs) [3].

Classification is a central task for many applications. However, classifying through
logic reasoning may be both too demanding because of its complexity and also too weak
because of inconsistency or (inherent) incompleteness in the knowledge bases [4]. So
far, for the sake of tractability, only simple DL languages have been considered in the
development of logic-based learning methods [5, 6]. On the other end, efficient machine
learning methods, that were originally developed for simple data, can be effectively
upgraded to work with richer structured representations [7]. These methods have been
shown to effectively solve unsupervised and supervised learning problems in DLs [8, 9],
particularly those based on classification, clustering and ranking of individuals.

Although the inductive methods that will be presented are general and could in
principle be exploited in various scenarios, we will focus on methods for inducing effi-
cient classifiers from examples and use them to carry out forms of approximate query
answering (and concept retrieval). This task is normally performed by recurring to stan-
dard deductive reasoning procedures [3]. Hence it may turn out to be ineffective when
(inconsistent or) incomplete knowledge is available, which is not infrequent with het-
erogeneous and distributed data sources.



As discussed in previous works [9], besides of approximated retrieval and query
answering, alternative classification methods can be as effective as deductive reason-
ing, even suggesting new knowledge (membership assertions) that was not previously
logically derivable. As an example, considering the well-known WINE ontology, a sta-
tistical classifier induced by machine learning methods presented in the following, is
able to infer assertions that cannot be logically derived by a reasoner such as that
KathrynKennedyLateral, which is known as a Meritage, is a CaliforniaWine and an
AmericanWine as well as that CotturiZinfandel, which is only known as a Zinfandel, is
not a CabernetSauvignon (a non-disjoint sibling class). This feature of inductive clas-
sifiers can be exploited during the time-consuming ontology completion task [10] since
the knowledge engineer has only to validate such assertions.

Among the other learning methods, kernel methods [11] represent a family of very
efficient algorithms, that ultimately solve linear separation problems (finding an opti-
mal hyperplane in between positive and negative instances) in high-dimensional feature
spaces whereto a kernel function implicitly maps the original feature space of the con-
sidered dataset (kernel trick). Ad hoc kernel functions allow for learning classifiers even
when the instances are represented in rich languages.

In this work, we demonstrate the exploitation of a kernel method for inducing clas-
sifiers for individuals in OWL ontologies. Indeed, kernel functions have been recently
proposed for languages of average expressiveness, such as the family of kernels for
ALC [12, 13]. However, the scope of their applicability was limited because of two
factors: the definition in terms of a normal form for concept descriptions and the em-
ployment of the notion of (approximations of) most specific concepts [3] in order to lift
instances to the concept-level where the kernels actually work.

In order to overcome such limitations, we propose a novel parametric family of
kernel functions for DL representations which is inspired to a semantic pseudo-metric
for DLs [8]. These functions encode a notion of similarity between individuals, by
exploiting only semantic aspects of the reference representation. Their definition is also
related to other simple kernels that were recently proposed [14]. Yet, while each of these
kernels acts separately on a different level of similarity [15], based on the concepts
and properties of the ontology, ours may integrate these aspects being parametrized on
a set of features (concept descriptions). Furthermore, these features are not fixed but
may be induced enforcing the discernibility of different instances. Similarly to metric-
learning procedures based on stochastic search [8], a method for optimizing the choice
of the feature sets is also proposed. This procedure, based on genetic programming,
can be exploited in case the concepts in the ontologies would turn out to be weak for
discriminative purposes.

The basics of kernel methods are presented in the next section jointly with related
works about kernels for complex representations. In Sect. 3 the new family of kernels
is proposed together with an algorithm for optimizing the choice of its parameters.
Then, the query answering problem and its solution through our inductive method are
formally defined in Sect. 4 and experimentally evaluated in Sect. 5. Conclusions and
further applications of ontology mining methods are finally outlined in Sect. 6.



2 Inducing Classifiers with Kernel Methods

Given the learning task of inducing classifiers from examples, kernel methods are par-
ticularly well suited from an engineering point of view because the learning algorithm
(inductive bias) and the choice of the kernel function (language bias) are almost com-
pletely independent [1]. While the former encapsulates the learning task and the way in
which a solution is sought, the latter encodes the hypothesis language, i.e. the represen-
tation for the target classes. Different kernel functions implement different hypothesis
spaces (representations). Hence, the same kernel machine can be applied to different
representations, provided that suitable kernel functions are available. Thus, an efficient
algorithm may be adapted to work on structured spaces [7] (e.g. trees, graphs) by merely
replacing the kernel function with a suitable one. Positive and negative examples of the
target concept are to be provided to the machine that processes them, through a specific
kernel function, in order to produce a definition for the target concept in the form of a
decision function based on weights.

2.1 Learning Linear Classifiers with Kernel Methods

Most machine learning algorithms work on simple representations where a training
example is a vector of boolean features x extended with an additional one y indicating
the membership w.r.t. a target class: (x, y) ∈ {0, 1}n × {−1,+1}. Essentially these
algorithms aim at finding a vector of coefficients w ∈ IRn which is employed by a
linear function (i.e. a hyperplane equation) to make a decision on the y label for an
unclassified instance (x, ·):

class(x) = sign(w · x)

if w · x ≥ 0 then predict x to be positive (+1) else it is classified as negative (−1).
As an example, the PERCEPTRON is a well-known simple algorithm to learn such

weights [1]. In the training phase, for each incoming training instance, the algorithm
predicts a label according to mentioned decision function and compares the outcome
with the correct label. On erroneous predictions, the weights w are revised depending
on the set of examples that provoked the mistake (denoted by M ): w =

∑
v∈M l(v)v,

where function l returns the label of the input example. Then, the resulting decision
function can be written w · x =

∑
v∈M l(v)(v · x). The dot product in these linear

functions is the common feature of these methods.
Separating positive from negative instances with a linear boundary may be infeasi-

ble as it depends on the complexity of the target concept [1]. The kernel trick consists
in mapping the examples onto a suitable different space (likely one with many more
dimensions), allowing for the linear separation between positive and negative examples
(embedding space, see Fig. 1). For example, the decision function for the perceptron be-
comes:

∑
v∈M l(v)(φ(v) · φ(x)), where φ denotes the transformation. Actually, such

a mapping is never explicitly performed; a valid (i.e. definite positive) kernel function,
corresponding to the inner product of the transformed vectors in the new space, en-
sures that an embedding exists [11]: k(v,x) = φ(v) · φ(x). For instance, the decision
function above becomes (kernel perceptron):

∑
v∈M l(v)k(v,x).



Fig. 1. The idea of the kernel trick.

Any algorithm for learning linear classifiers which is ultimately based on a decision
function that involves an inner product could in principle be adapted to work on non-
linearly separable cases by resorting to valid kernel functions which implicitly encode
the transformation into the embedding space. Even more so, often many hyperplanes
can separate the examples. Among the other kernel methods, the support vector ma-
chines (SVMs) aim at finding the hyperplane that maximizes the margin, that is the
distance from the areas containing positive and negative training examples. The classi-
fier is computed according to the closest instances w.r.t. the boundary (support vectors).

These algorithms are very efficient (polynomial complexity) since they solve the
problem through quadratic programming techniques once the kernel matrix is pro-
duced [11]. The choice of kernel functions is very important as their computation should
be efficient enough for controlling the complexity of the overall learning process.

2.2 Kernels for Structured Representations

When examples and background knowledge are expressed through structured (logical)
representations, a further level of complexity is added. One way to solve the prob-
lem may involve the transformation of statistical classifiers into logical ones. However,
while the opposite mapping has been shown as possible (e.g. from DL knowledge bases
to artificial neural networks [16]), direct solutions to the learning problem are still to be
investigated.

An appealing quality of the class of valid kernel functions is its closure w.r.t. many
operations. In particular this class is closed w.r.t. the convolution [17]:

kconv(x, y) =
∑

x ∈ R−1(x)

y ∈ R−1(y)

D∏
i=1

ki(xi, yi)



where R is a composition relationship building a single compound out of D simpler
objects, each from a space that is already endowed with a valid kernel. Note that the
choice of R is a non-trivial task which may depend on the particular application.

Then new kernels can be defined for complex structures based on simpler kernels
defined for their parts using the closure property w.r.t. this operation. Many definitions
have exploited this property, introducing kernels for strings, trees, graphs and other
discrete structures. In particular, [7] provide a principled framework for defining new
kernels based on type construction where types are defined in a declarative way.

While these kernels were defined as depending on specific structures, a more flex-
ible method is building kernels as parametrized on concepts described with another
representation. Such kernel functions allow for the employment of algorithms, such as
the SVMs, that can simulate feature generation. These functions transform the initial
representation of the instances into the related active features, thus allowing for learn-
ing the classifier directly from structured data. As an example, Cumby & Roth propose
kernels based on a simple DL representation, the Feature Description Language [18].

Kernels for richer DL representations have been proposed in [12]. Such functions
are actually defined for comparing ALC concepts based on the structural similarity of
the AND-OR trees corresponding to a normal form of the input concept descriptions.
However these kernels are not only structural since they ultimately rely on the semantic
similarity of the primitive concepts (on the leaves) assessed by comparing their exten-
sions through a set kernel. Although this proposal was criticized for possible counterin-
tuitive outcomes, as it might seem that semantic similarity between two input concepts
were not fully coped with, the kernels are actually applied to couples of individuals,
after having lifted them to the concept level by means of (approximations of) their most
specific concept [3]. Since these concepts are constructed on the grounds of the same
ABox and TBox, it is likely that structural and semantic similarity tend to coincide.

A more recent definition of kernel functions for individuals in the context of the
standard SW representations is reported in [14]. The authors define a set of kernels for
individuals and for the various types of assertions in the ABox (on concepts, datatype
properties, object properties). However, it is not clear how to integrate such functions
which cope with different aspects of the individuals; the preliminary evaluation on spe-
cific classification problems regarded single kernels or simple additive combinations.

3 A Family of Kernels for Individuals in DLs

In the following we report the basic DL terminology utilized for this paper (see [3] for
a thorough and precise reference).

Ontologies are built on a triple 〈NC , NR, NI〉 made up by a set of concept names
NC , a set of role names NR and a set of individual names NI , respectively. An inter-
pretation I = (∆I , ·I) maps (via ·I) such names to the corresponding element subsets,
binary relations, and objects of the domain ∆I . A DL language provides specific con-
structors and rules for building complex concept descriptions based on these building
blocks and for deriving their interpretation. The Open World Assumption (OWA) is
made in the underlying semantics, which is convenient for the SW context.



A knowledge base K = 〈T ,A〉 contains a TBox T and an ABox A. T is the set of
terminological axioms of concept descriptions C v D, meaning CI ⊆ DI , where C
is the concept name and D is its description. A contains assertions on the world state,
e.g. C(a) and R(a, b), meaning that aI ∈ CI and (aI , bI) ∈ RI .

Subsumption w.r.t. the models of the knowledge base is the most important infer-
ence service. Yet in our case we will exploit instance checking, that amounts to decide
whether an individual is an instance of a concept [3].

The inherent incompleteness of the knowledge base under open-world semantics
may cause reasoners not to be able to assess the target class-membership. Moreover
this can be a computationally expensive reasoning service. Hence we aim at learning
efficient alternative classifiers that can help answering these queries effectively.

3.1 Kernel Definition

The main limitations of the kernels proposed in [12] for the space of ALC descriptions
are represented by the dependency on the DL language and by the approximation of the
most specific concept which may be computationally expensive. The use of a normal
form has been also criticized since this is more a structural (syntactic) criterion that
contrasts notion of semantic similarity.

In order to overcome these limitations, we propose a different set of kernels, based
on ideas that inspired a family of inductive distance measures [8, 9], which can be
applied directly to individuals:

Definition 3.1 (DL-kernels). Let K = 〈T ,A〉 be a knowledge base. Given a set of
concept descriptions F = {F1, F2, . . . , Fm}, a family of kernel functions kF

p : Ind(A)×
Ind(A) 7→ [0, 1] is defined as follows:

∀a, b ∈ Ind(A) kF
p(a, b) :=

[
m∑

i=1

∣∣∣∣κi(a, b)
m

∣∣∣∣p
]1/p

where p > 0 and ∀i ∈ {1, . . . ,m} the simple concept kernel function κi is defined:
∀a, b ∈ Ind(A)

κi(a, b) =

 1 (Fi(a) ∈ A ∧ Fi(b) ∈ A) ∨ (¬Fi(a) ∈ A ∧ ¬Fi(b) ∈ A)
0 (Fi(a) ∈ A ∧ ¬Fi(b) ∈ A) ∨ (¬Fi(a) ∈ A ∧ Fi(b) ∈ A)
1
2 otherwise

or, model-theoretically:

κi(a, b) =

 1 (K |= Fi(a) ∧ K |= Fi(b)) ∨ (K |= ¬Fi(a) ∧ K |= ¬Fi(b))
0 (K |= ¬Fi(a) ∧ K |= Fi(b)) ∨ (K |= Fi(a) ∧ K |= ¬Fi(b))
1
2 otherwise

The rationale for these kernels is that similarity between individuals is determined by
their similarity w.r.t. each concept in a given committee of features. Two individuals are
maximally similar w.r.t. a given concept Fi if they exhibit the same behavior, i.e. both
are instances of the concept or of its negation. Conversely, the minimal similarity holds



when they belong to opposite concepts. Because of the OWA, sometimes a reasoner
cannot assess the concept-membership, hence, since both possibilities are open, we
assign an intermediate value to reflect such uncertainty.

As mentioned, instance-checking is to be employed for assessing the value of the
simple similarity functions. Yet this is known to be computationally expensive (also de-
pending on the specific DL language of choice). Alternatively, especially for ontologies
that are rich of explicit class-membership information (assertions), a simple look-up
may be sufficient, as suggested by the first definition of the κi functions.

The parameter p was borrowed from the form of the Minkowski’s measures [19].
Once the feature set is fixed, the possible values for the kernel function are determined,
hence p has an impact on the granularity of the measure.

3.2 Discussion

The most important property of a kernel function is its validity (it must correspond to a
dot product in a certain embedding space).

Proposition 3.1 (validity). Given an integer p > 0 and a committee of features F, the
function kF

p is a valid kernel.

This result can be assessed by proving the function kF
p definite-positive. Alterna-

tively it is easier to prove the property by showing that the function can be obtained by
composing simpler valid kernels through operations that guarantee the closure w.r.t. this
property [17]. Specifically, since the simple kernel functions κi (i = 1, . . . , n) actually
correspond to matching kernels [7], the property follows from the closure w.r.t. sum,
multiplication by a constant and kernel multiplication [17].

One may note that such functions extend (and integrate) the kernels defined in [14].
For instance, the common class kernels may constitute a simplified version of the DL-
kernels. They are essentially based on the intersection of the sets of common classes,
considering only those occurring in the ontology. The new kernels, in principle, can
be parametrized on any set of complex concept descriptions, including negated con-
cepts. Moreover, they take also into account uncertain membership cases. As regards
the data-property and object-property kernels, again the similarity is assessed by com-
paring (restrictions of) domains and ranges of defined relations related to the assertions
on the input individuals. These may be encoded by further concepts to be added to the
committee, especially when they can determine the separation of different individuals.

Furthermore, the uniform choice of the weights assigned to the various features in
the sum (1/mp) may be replaced by assigning different weights reflecting the impor-
tance of a certain feature in discerning the various instances. A good choice may be
based on the amount of entropy related to each feature (then the weight vector has only
to be normalized) [9].

It is worthwhile to note that this is indeed a family of kernels parametrized on
the choice of features. Preliminary experiments regarding instance-based classification,
demonstrated the effectiveness of the kernel using the very set of both primitive and de-
fined concepts found in the knowledge bases. However, the choice of the concepts to be
included in the committee F is crucial and may be the object of a preliminary learning
problem to be solved (feature selection).



3.3 Optimizing the Feature Set

As for the pseudo-metric that inspired the kernel definition [8], a preliminary phase may
concern finding an optimal choice of features. This may be carried out by means of ran-
domized optimization procedures, similar to the one developed for the pseudo-distance.
However, the integration of the algorithm in suitable kernel machines guarantees that
the feature construction job is performed automatically by the learning algorithm (the
features correspond to the dimensions of the embedding space).

The underlying idea in the kernel definition is that similar individuals should exhibit
the same behavior w.r.t. the concepts in F. Here, one may make the assumption that the
feature-set F represents a sufficient number of (possibly redundant) features that are
able to discriminate different individuals (in terms of a discernibility measure).

Namely, since the function is strictly dependent on the committee of features F, two
immediate heuristics arise:

– the number of concepts of the committee,
– their discriminating power in terms of a discernibility factor, i.e. a measure of the

amount of difference between individuals.

Finding optimal sets of discriminating features, should also profit by their composition,
employing the specific constructors made available by the representation language.

These objectives can be accomplished by means of randomized optimization tech-
niques, especially when knowledge bases with large sets of individuals are available.
For instance in [8] we have proposed a metric optimization procedures based on stochas-
tic search. Namely, part of the entire data can be drawn in order to learn optimal feature
sets, in advance with respect to the successive usage for all other purposes.

A specific optimization algorithm founded in genetic programming has been de-
vised to find optimal choices of discriminating concept committees. The resulting algo-
rithm is shown in Fig. 2. Essentially, it searches the space of all possible feature commit-
tees, starting from an initial guess (determined by the call to the MAKEINITIALFS() pro-
cedure) based on the concepts (both primitive and defined) currently referenced in the
knowledge baseK, starting with a committee of a given cardinality (INIT CARD). This
initial cardinality may be determined as a function of dlog3(N)e, where N = |Ind(A)|,
as each feature projection can categorize the individuals in three sets.

The outer loop gradually augments the cardinality of the candidate committees until
the threshold fitness is reached or the algorithm detects some fixpoint: employing larger
feature committees would not yield a better feature set w.r.t. the best fitness recorded
in the previous iteration (with fewer features). Otherwise, the EXTENDFS() procedure
extends the current committee by including a newly generated random concept.

The inner while-loop is repeated for a number of generations until a stop criterion
is met, based on the maximal number of generations maxGenerations or, alternatively,
when a minimal fitness threshold fitnessThr is crossed by some feature set in the pop-
ulation, which can be returned.

As regards the BESTFITNESS() routine, it computes the best fitness of the feature
sets in the input vector. Fitness can be determined as the discernibility factor yielded by
the feature set, as computed on the whole set of individuals or on a smaller sample. For



GPOPTIMIZATION(K, maxGenerations, fitnessThr, FeatureSet)
input K: current knowledge base

maxGenerations: maximal number of generations
fitnessThr: minimal required fitness threshold

output FeatureSet: set of concept descriptions
static currentFSs, formerFSs: arrays of feature sets

currentBestFitness, formerBestFitness = 0: arrays of fitness values
offsprings: array of generated feature sets
fitnessImproved: improvement flag
generationNo = 0: number of current generation

begin
currentFSs = MAKEINITIALFS(K,INIT CARD)
formerFSs = currentFSs
repeat

fitnessImproved = false
currentBestFitness = BESTFITNESS(currentFSs)
while (currentBestFitness < fitnessThr) and (generationNo < maxGenerations) do

begin
offsprings = GENERATEOFFSPRINGS(currentFSs)
currentFSs = SELECTFROMPOPULATION(offsprings)
currentBestFitness = BESTFITNESS(currentFSs)
++generationNo
end

if (currentBestFitness > formerBestFitness) and (currentBestFitness < fitnessThr) then
begin
formerFSs = currentFSs
formerBestFitness = currentBestFitness
currentFSs = EXTENDFS(currentFSs)
end

else
fitnessImproved = true

end
until not fitnessImproved
return SELECTBEST(formerFSs)
end

Fig. 2. Feature set optimization algorithm based on genetic programming.

instance, given the fixed set of individuals IS ⊆ Ind(A) the fitness function may be:

DISCERNIBILITY(F) := ν
∑

(a,b)∈IS2

|F|∑
i=1

| 1− κi(a, b) |

where ν is a normalizing factor that depends on the overall number of couples involved.
As concerns finding candidate sets of concepts to replace the current committee (the

GENERATEOFFSPRINGS() routine), the function was implemented by recurring to some
transformations of the current best feature sets:

– choose F ∈ currentFSs;
– randomly select Fi ∈ F;
• replace Fi with F ′i ∈ RANDOMMUTATION(Fi) randomly generated, or
• replace Fi with one of its refinements F ′i ∈ REF(Fi)

The possible refinements of concept description are language-specific. E.g. for the case
of ALC logic, refinement operators have been proposed in [6, 5].



This is iterated till a number of offsprings is generated (another parameter which
determines the speed of the search process). Then these offspring feature sets are evalu-
ated and the best ones are included in the new version of the currentFSs array; the best
fitness value for these feature sets is also computed.

When the while-loop is over, the current best fitness is compared with the best one
recorded for the former feature set length; if an improvement is detected then the outer
repeat-loop is continued, otherwise (one of) the former best feature set(s) is selected
and returned as the result of the algorithm.

4 Approximate Classification and Retrieval

SVMs based on kernel functions can efficiently induce classifiers that work by mapping
the instances into an embedding feature space, where they can be discriminated by
means of a linear classifier.

Given the kernel function for DLs defined in the previous section, we intend to use
an SVM to induce a linear classifier which can be efficiently employed to solve the
following problem:

Definition 4.1 (classification problem). Let K = 〈T ,A〉 be a knowledge base, let
Ind(A) be the set of all individuals occurring inA and let C = {C1, . . . , Cs} be the set
of (both primitive and defined) concepts in K.
The classification problem can be defined as follows:
given an individual a ∈ Ind(A),
determine {C1, . . . , Ct} ⊆ C such that: K |= Ci(a) ∀i ∈ {1, . . . , t}.

In the general setting of the kernel algorithms, the target classes for the classification
problem are normally considered as disjoint. This is unlikely to hold in the SW context,
where an individual can be an instance of more than one concept. Then, a different
setting has to be considered. The multi-class classification problem is decomposed into
smaller binary classification problems (one per class). Therefore, a simple binary value
set (V = {−1,+1}) may be employed, where +1 indicates that an individual xi is
instance of the considered concept Cj and −1 indicates that xi is not instance of Cj .

This multi-class learning setting is valid when an implicit Closed World Assumption
(CWA) is made. Conversely, in a SW context, where the OWA is adopted, this is not
sufficient because of the uncertainty brought by the different semantics. To deal with
this peculiarity, the absence of information on whether a certain instance xi belongs to
the extension of the concept Cj should not be interpreted negatively; rather, it should
count as neutral information. Thus, a larger valued set has to be considered, namely
V = {+1,−1, 0}, where the three values denote, respectively, class-membership, non-
membership and uncertain assignment. Hence, given a query instance xq , for every
concept Cj ∈ C, the classifier will return +1 if xq is an instance of Cj , −1 if xq is an
instance of ¬Cj , and 0 otherwise.

The classification is performed on the grounds of the linear models built from a set
of training examples whose correct labels are provided by an expert (or a reasoner). For
each concept, classifiers for membership and non-membership have to be learned.



Table 1. Facts about the ontologies employed in the experiments.

ONTOLOGY DL lang. #concepts #obj. prop. #data prop. #individuals

NEWSPAPER ALCF(D) 29 28 25 72
S.W.M. ALCOF(D) 19 9 1 115
WINES ALCIO(D) 112 9 10 149

SCIENCE ALCIF(D) 74 70 40 331
N.T.N. SHIF(D) 47 27 8 676

BIOPAX ALCIF(D) 74 70 40 323
LUBM ALR+HI(D) 43 7 25 118
SWSD SHIF(D) 47 27 8 732

FINANCIAL ALCIO(D) 112 9 10 1000

Dually, statistical classifiers can be used to perform an approximate retrieval ser-
vice. Considered a knowledge base K and a query concept Q, a learning problem can
be solved providing a limited set of individuals that are (examples) and are not (coun-
terexamples) in the concept extension. The learning algorithm will produce a classifier
for deciding the class-membership of other individuals; then all other individuals in A
can be classified w.r.t. Q, thus solving the concept retrieval problem inductively.

The classifier is generally very efficient (simple mathematical computation is car-
ried out). As regards the effectiveness (see also the next section), its performance on
query answering or retrieval tasks may be compared to that of a logic reasoner. More-
over, the classifier may be able, in some cases, to answer queries when the reasoner
cannot; that is the classifier may be able to induce knowledge that is likely to hold but
that is not logically derivable. One may also consider using binary classifiers only, in
order to force the answer to belong to {+1,−1}, or provide a measure of likelihood for
this answer [9], yet this goes beyond the scope of this work.

5 Experimental Evaluation

The new kernel functions were implemented and integrated with the support vector
machines in the LIBSVM library1. They can be easily integrated also in the SVMlight

extension2 proposed in [14]. The experimental session was designed in order to evaluate
the learning method on a series of query answering problems.

5.1 Setup

A number of different OWL ontologies were selected from the Protégé library3: NEWS-
PAPER, WINES, SURFACE-WATER-MODEL (S.W.M.), SCIENCE, and NEW TESTA-
MENT NAMES (N.T.N.). Details about them are reported in Tab. 1 (upper part).

For each ontology, all concepts in their turn were considered as queries. A ten-
fold cross validation design4 was adopted in order to overcome the variability in the

1 http://www.csie.ntu.edu.tw/~cjlin/libsvm
2 http://www.aifb.uni-karlsruhe.de/WBS/sbl/software/jnikernel/
3 http://protege.stanford.edu/plugins/owl/owl-library
4 The set of examples is randomly divided into ten parts then, in each fold, one part is used to

validate the classifier induced using the instances in the other parts as training examples [1].



composition of the training and test sets of examples. Examples were labeled according
to the reasoner response; the classifier was then induced by the SVM exploiting the
kernel matrix computed by the use of the DL-Kernel5, for the subset of the training
examples selected in each run of the experiment. The classifier was then tested on the
remaining individuals assessing its performance with respect to the correct theoretical
classification provided by the reasoner.

A different setting has been considered in [14] with a simplified version of the
GALEN ontology. There, the ontology was randomly populated and only seven se-
lected concepts have been considered while no roles have been taken into account. We
considered only populated ontologies with their genuine composition, with no change
on their population. Differently from the mentioned experiments, the population was
not randomly generated in order to avoid that the classifier resulting from the learning
process were influenced by the specific generating algorithm.

The performance of the classifier was evaluated by comparing its responses on test
instances to those returned by a standard reasoner6 used as baseline. As mentioned, the
experiment has been performed by adopting the ten-fold cross validation procedure.
The results (percentages) presented in the following tables are averaged over the folds
and over all the concepts occurring in each ontology. Particularly, for each concept in
the ontology, the following parameters have been measured for the evaluation [9]:

– match rate: number of cases of individuals that got exactly the same classification
by both classifiers with respect to the overall number of individuals;

– omission error rate: amount of unlabeled individuals while they actually were to
be classified as instances or as counterexamples for the concept;

– commission error rate: amount of individuals labeled as instances of a concept,
while they (logically) belong to the negation of that concept or vice-versa;

– induction rate: amount of individuals that were found to belong to a concept or its
negation, while this information is not logically derivable by the reasoner.

The experiment is aimed at showing that statistical classification is comparably ef-
fective w.r.t. logic classification. Meanwhile it is very efficient (because of the simple
linear function it is based on) and is also able to suggest (by analogy) assertions that are
not logically derivable from the ontologies.

5.2 Outcomes

The outcomes of the experiments regarding the classification of all the concepts occur-
ring in each ontology are reported in Tab. 2. By looking at the table, it is important to
note that, for every ontology, the commission error was null. This means that the clas-
sifier did not make critical mistakes, i.e. cases when an individual is deemed to be an
instance of a concept while it really is an instance of another disjoint concept. At the
same time it is important to note that very high match rates were registered for each
ontology. Particularly, it is interesting to observe that the match rate increases with the

5 The feature set for the DL-kernel was made by all concepts in the ontology and parameter p
was set to 1 for simplicity and efficiency purposes.

6 PELLET 1.5.1: http://pellet.owldl.com



Table 2. Results (average rates ± standard deviation) of the experiments on classification using
the SVM with the DL-kernel.

ONTOLOGY match induction omission commission

NEWSPAPER 90.3± 8.3 0.0± 0.0 9.7± 8.3 0.0± 0.0
S.W.M. 95.9± 4.1 0.0± 0.0 4.1± 4.1 0.0± 0.0
WINES 95.2± 8.8 0.6± 5.2 4.2± 7.5 0.0± 0.0

SCIENCE 97.1± 2.0 1.8± 2.5 1.1± 1.6 0.0± 0.0
N.T.N. 98.2± 1.7 0.2± 0.9 1.6± 1.6 0.0± 0.0

increase of the number of individuals in the considered ontology. This is because the
performance of statistical methods is likely to improve with the availability of large
numbers of training examples, which means that there is more information for better
separating the example space.

A conservative behavior has been also observed, indeed the omission error rate was
not null (although it was very low). This was probably due to a high number of training
examples classified as unknown w.r.t. certain concepts. To decrease the tendency to a
conservative behavior of the method, a threshold could be introduced for the consider-
ation of the training examples with an unknown classification.

In almost all cases, the classifier was able to induce class-membership assertions
that were not logically derivable. For example, in the NTN ontology JesusChrist was
found to be an instance of the concepts Man and Woman, while this could not be deter-
mined by deductive reasoning (it is known to be an instance of SonOfGod). However,
the assessment of the quality of the induced knowledge is not possible because the cor-
rect answer to the inferred membership assertions is known by the experts that built and
populated the ontologies.

The experiment has been repeated on the same ontologies, applying classifier in-
duced using the SVM jointly with the ALC kernel [12, 13]. Since the languages of the
ontologies are generally more complex than ALC, we considered the individuals to be
represented by approximations of the most specific concepts of such individuals w.r.t.
the ABox [3]. Note that a separate random new ten-fold experiment was generated,
hence the training / test subsets were different w.r.t. the previous run.

The outcomes of the experiments are reported in Tab. 3. By comparing the out-
comes reported in the two tables, it is possible to note that the classifiers induced by
the SVM with the new DL-kernel generally improve both match rate and omission rate
with respect to theALC kernel (in the cases where they do not improve the difference is
not large). The observed induction rates are generally in favor of the classifiers induced
with the ALC kernel. This can be explained with the higher precision of the classifiers
induced by the DL-kernels, which increased the match rate in many cases when the
reasoner was not able to give a certain classification. The commission rate for the ex-
periments with the ALC kernel is null like in the experiments with the DL-kernel (but
for one case). Finally, one may also observe that the outcomes of the classifiers induced
by adopting the new kernel showed a more stable behavior as testified by the limited
deviations reported in the tables (with some exceptions where the difference is limited).



Table 3. Results (average rates ± standard deviations) of the experiments on classification using
the SVM with the ALC kernel (λ = 1).

ONTOLOGY match induction omission commission

NEWSPAPER 90.3± 8.3 0.0± 0.0 9.7± 8.3 0.0± 0.0
S.W.M. 87.1± 15.8 6.7± 16.0 6.2± 9.1 0.0± 0.0
WINES 95.6± 7.8 0.4± 3.4 4.0± 7.3 0.0± 0.0

SCIENCE 94.2± 7.8 0.7± 7.8 5.1± 7.8 0.0± 7.8
N.T.N. 92.5± 24.7 2.6± 8.4 0.1± 3.9 4.7± 11.3

5.3 Experiments on Query Answering

Another experimental session has been designed for evaluating the performance of the
classifiers induced with the new kernels on solving query answering problems with
randomly generated concepts.

Further larger ontologies were selected (see Tab. 1, lower part): the BioPax glycol-
ysis ontology7 (BioPax), an ontology generated by the Lehigh University Benchmark
(LUBM), the Semantic Web Service Discovery dataset8 (SWSD) and FINANCIAL on-
tology9 employed as a testbed for PELLET. This was to increase the diversity of the
domain (as well as source and population) of the ontologies and to provide learning
problems with many classified training instances (yet this also depends on the general-
ity of query concepts).

Preliminarily, a number of individuals (30% of the entire number) was uniformly
sampled; then the method for generating optimal feature sets was run for each ontology
to better define the final kernel function (pwas set again to 1). Random queries were also
preliminarily generated for each ontology combining (2 through 8) atomic concepts or
universal and existential restrictions (maximal depth 3), using the union and intersection
operators. In order to be able to induce the classifier, the generated queries were required
also to represent satisfiable concepts and that some individuals could be recognized as
their examples and counterexamples.

The outcomes are reported in Tab. 4, from which it is possible to observe that the
behavior of the classifier on these concepts is not very dissimilar with respect to the
outcomes of the previous experiments. These queries were expected to be harder than
the previous ones which correspond to the very primitive or defined concepts for the
various ontologies. Specifically, the commission error rate was low for all but two on-
tologies (BIOPAX and LUBM) for which some very difficult queries were randomly
generated which raised this rate beyond 10% and consequently also the standard de-
viation values. The difficulty arose from the very limited number of training classified
instances available for the target random concept (many unclassified training instances).

As for all methods that learn from examples, the number of positive and negative
instances has an impact on the quality of the classifier, which is likely shown when their
quality is assessed against the test set.

7 http://www.biopax.org/Downloads/Level1v1.4/
8 https://www.uni-koblenz.de/FB4/Institutes/IFI/AGStaab/Projects/xmedia/

dl-tree.htm
9 http://www.cs.put.poznan.pl/alawrynowicz/financial.owl



Table 4. Results (average rates ± standard deviation) of the experiments on random query an-
swering.

ONTOLOGY match induction omission commission

S.W.M. 82.31± 21.47 9.11± 16.49 8.57± 8.47 0.00± 0.00
SCIENCE 99.16± 4.35 0.44± 3.42 0.39± 2.76 0.00± 0.00

N.T.N. 80.38± 17.04 8.22± 16.87 9.98± 10.08 1.42± 2.91
BIOPAX 84.04± 14.55 0.00± 0.00 0.00± 0.00 15.96± 14.55
LUBM 76.75± 19.69 5.75± 5.91 0.00± 0.00 17.50± 20.87

FINANCIAL 97.85± 3.41 0.42± 0.23 0.02± 0.07 1.73± 3.43
SWSD 97.92± 3.79 0.00± 0.00 2.09± 3.79 0.00± 0.00

6 Conclusions and Future Work

Inspired from previous works on dissimilarity measures in DLs, a novel family of se-
mantic kernel functions for individuals has been defined based on their behavior w.r.t.
a number of features (concepts). The kernels are language-independent being based on
instance-checking (or ABox look-up) and can be easily integrated with a kernel machine
(a SVM in our case) for performing a broad spectrum of activities related to ontologies.

In this paper we focused on the application of statistical methods for inducing clas-
sifiers based on the individuals in an ontology. The resulting classifiers can be used
to perform alternative classification and query answering in a more efficient yet effec-
tive way, compared with the standard deductive procedures. It has been experimentally
shown that its performance is not only comparable to the one of a standard reasoner,
but the classifier is also able to induce new knowledge, which is not logically deriv-
able (e.g. by using a DL reasoner). Particularly, an increase in predictive accuracy was
observed when the instances are homogeneously spread, as expected from statistical
methods. The induced classifiers can be exploited for predicting / suggesting missing
information about individuals, thus completing large ontologies. Specifically, it can be
used to semi-automatize the population of an ABox. Indeed, the new assertions can be
suggested to the knowledge engineer that has only to validate their acquisition.

This constitutes a new approach in the SW context, since the efficiency of the
statistical-numerical approaches and the effectiveness of a symbolic representation have
been combined [16]. As a next step, a more extensive experimentation of the proposed
method has to be performed besides of a comparison with similar existing methods [9].

Further ontology mining methods can be based on kernels such as conceptual clus-
tering which allows the discovery of interesting subgroups of individuals which may re-
quire the definition of a new concept or to track the drift of existing concepts over time
(with the acquisition of new individuals) or even to detect new emerging concepts [8].
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