p—

Jniversita degli Studi di Bari
Facolta di Scienze
Dipartimento di Informatica

Similarity-based Learning Methods
for the Semantic Web

Claudia d’Amato

Supervisor: Coordinator:
Prof. Floriana Esposito Prof. Annamaria Fanelli

Acknowledgement

At the end of the time spent for reaching this PhD I would like to thanks many
persons that have had important roles in this experience. First of all I would thank
God for gave me the strength of leaving a most sure way that was my work in the
company and start this very uncertain and unstable way, that is the research, at
least in Italy, but also for gave me the strength to arrive here and overcome all the
difficulties found. Tank you God, for all the times that you take my hand and make
my difficulties less hard.

I like to Domenico, for having accepted and shared my decision of starting the
way of research, even if it makes very hard our life together. Thank you for your
patience and for your capacity to share everything with me, thank you because you
put me and my happiness first of all, also first of you. I hope that I am able to do
at least sometimes the same.

I want to tank my parents. I know very well that you did not agree with my
choice of starting this PhD, that you imagined for me a different life. Anyway, with
your silence you shared this time with me and perhaps today you are also just a
little bit proud of this little results.

Thank you to my supervisor, Floriana Esposito, that made possible to change
the direction of my life with this PhD, that grant me all the opportunities for growing
in this time and also, I hope, for believing in me.

Thank you to Nicola Fanizzi, the person that, most of any other one, has
taught me the basis of this work, has shared every idea with me and have made
possible to arrive here.

I like to thank Steffen Staab for gave me the possibility to spend some moths
of my PhD in his Laboratory. This time had been very precious for me. I learnt a
lot, not only for the work but also for my life. Thank you for the possibility to share
my little knowledge with you, thank you for had treated me as one of your group,
thank you for had felt me at home. Thank you also to all the guys of the ISWeb
group for the way in which you welcome me, I cannot forget every time spent with
you.

ii

I like to remember here also the persons with which I spent most of nice time,
even if not for work. I like to remember Annalisa, we spent together our breakfast
every morning, changing the color of every day life. I like to remember Mara, Nico,
Stefano and Geni that besides of Nicola have been the friends of the lunch. I like to
remember Luigi, Ignazio and Mimmo friends of the laboratory with which had been
possible to laugh also when the right thing to do was cry.

In the last, I cannot forget the friends that shared with me all my life: Claudia,
Giusy, Luciana, Mariangela, Rossella (strictly lexicographic order) and also the most
recent friend but very very important for me: Roberto and Mariangela.

To all this person I say THANKS, this goal would not have been possible
without YOU.

Preface

Ontological knowledge plays a key role for the interoperability in the Semantic Web
perspective. Nowadays, standard ontology markup languages are supported by well-
founded semantics of Description Logics (DLs) together with a series of available
automated reasoning services. However, several tasks in an ontology life-cycle, such
as their construction and/or integration are still almost entirely delegated to knowl-
edge engineers.

Most of the research in the Semantic Web field focuses on methods based on
deductive reasoning. Inductive reasoning and knowledge discovery have received
less attention. Nevertheless, inductive reasoning may assist several important tasks
that are likely to be supported by knowledge-based systems, such as clustering,
classification, revision, mapping and alignment. Even retrieval may be regarded
from both a deductive perspective and from an opposite one, through approximate
reasoning. Similarity measures play an important role in these tasks as well as in
information integration. Moreover, in the Semantic Web context, the construction
of the knowledge bases and their population should be supported by automated
inductive inference services.

The induction of structural knowledge is not new in machine learning, es-
pecially in the context of concept formation, where clusters of similar objects are
aggregated in hierarchies according to heuristic criteria or similarity measures. Al-
most all of these methods apply to zero-order representations while, ontologies are
expressed by means of fragments of first-order logic. Yet, the problem of the induc-
tion of structural knowledge turns out to be hard in first-order logic or equivalent
representations. So far, the automated induction of knowledge bases expressed in
DLs representations has not been investigated in depth. While, really, knowledge-
intensive methods could be of great help for the Semantic Web.

In this perspective, this thesis introduces a set of novel (dis-)similarity mea-
sures applied to expressive DLs knowledge representations. They are able to assess
(dis-)similarity value between (complex) concepts, individuals and between (com-
plex) concept and individual asserted in an ontology. Measures applicable to on-
tological knowledge need to be founded on the underlying semantics of the con-

111

v

sidered elements, rather than on their syntactic structure. Differently from the
previous works that are mainly syntactic-driven, the measures defined in this the-
sis are semantic-based and so are able to exploit the semantics of the considered
element.

This thesis also focuses on the definition and application of inductive infer-
ence learning methods to the Semantic Web context. Specifically, instance-based
learning methods applicable to ontological knowledge are presented with the goal
of improving many different tasks such as: concept retrieval and query answering,
ontology-population and completion, service discovery and ranking. Specifically, by
combining an instance-based (analogical) approach with a notion of semantic (dis-
)similarity measure, the completion of ontologies as well as the ontology population
could be performed through the inductive reasoning. In turn, this may trigger other
related services such as learning and/or revision of faulty knowledge bases. Further-
more, based on the same principles, concept retrieval and query answering could
also be performed. Moreover, by the use of (conceptual) clustering methods based
on (dis-)similarity measures, the efficiency of the service discovery process can be
improved by matching a request against the intensional cluster descriptions rather
than against to all available services. Hence, the services returned by this process
could be ranked on the ground of their similarity with respect to the request.

The results of this research constitute a new approach to the Semantic Web
issues. I hope that they will be the starting point of a wide line of research in the
future.

Bari, January 2007
Claudia d’Amato

Contents

[Prefacel

(1 _Introduction|

[1.3 Inductive Learning for the Semantic Web|

[1.3.1 Instance Based Learning Methods|

[1.3.2 Cluster Analysisl.
1.4 Objectives of the Dissertation| .

(1.5 Chapter Summaries|

[2

Description Logics|

2.1 Knowledge Representation in DL

[2.2 Syntax and Semantics|

[2.3.1 'TBox Reasoning]
[2.3.2 ABox Reasoningl

iii

11
11
14
18
20
23
29
31

CONTENTS

[2.4.2 'T'he Realization Problem and the Most Specific Concept| . . .

[2.4.3 Computing Unification and Matching of Concept Descriptions|

[2.4.4 Concept Rewriting and Approximation across DLs[.

[3 Similarity and Dissimilarity Measures: Related Work|

[3.1 Defining Similarity and Dissimilarity Measures|

[3.2 Similarity and Dissimilarity Measures in the Propositional Setting| . .

[3.3 Similarity and Dissimilarity Measures in Relational Settingf

[4 Similarity and Dissimilarity Measures for Description Logics|

[4.1 A Semantic Similarity Measure for ALC|

[4.1.1 Derived Similarity Measure Involving Individuals|

[4.1.2 Computational Complexity |

[4.2 A Semantic and Structure driven Dissimilarity measure for ALC| . . .

[4.2.1 Overlap Function|

[4.2.2 Defining the Dissimilarity Measure]

[4.2.3 Computational Complexityf.

[4.2.4 A Weighted Dissimilarity Measure for ACC|.
4.3 An Information Content based Dissimilarity Measure for ALC|

[4.3.1 Measuring the /C Gap between Concepts|.

95
60

71

CONTENTS vii

[4.3.2 Information Content based Dissimilarity Measurel 122
[4.3.3 Computational Complexityf. 124
[4.4 A Semantic and Structure driven Similarity Measure for ALN| 125
M41 Measure Definitionl oL 125
M42 Discussionlo 128
4.5 A Relational Kernel Function for ALCI 130
4.5.1 Kernel Function Definitionl 131
Mb.2 Discussionlo 136
453 A Distance Induced from the Kernel Functionl 138
[4.6 A Semantic Semi-Distance for Individuals in Any DLs Knowledge Base|139
M.6.1 Measure Definitionl L 139
M.6.2 Discussion] 141

[> Applying the Measures: Classification and Clustering in the Se- |

L__mantic Web Domainl 143
[>.1 Analogy Reasoning to Improve Concept Retrieval and Induce New [

[Knowledge|. 146
[>.1.1 Relational K-Nearest Neighbor| 147

[5.1.2 Concept Retrieval by means of Kernel Methods| 158

[5.2 Improving the Service Discovery and Ranking Processes|. 165

[b.2.1 Modeling DLs-based Service Descriptions by the use of Con- |
[straint Hardness. 166

[5.2.2 Efficient Service Discovery by means of Clustering Methods|. . 171

[5.2.3 Effective Service Ranking based on DLs measures and Con- [

[straint Hardness. L. 180
6 Conclusions| 187
[6.1 Summary of the Thesis 187
6.2 Further Worklo 191

(Bibliography| 193

viii CONTENTS

[A The K-Nearest Neighbor Algorithm)| 211

(B The Single and the Complete-Link Algorithms| 213

List of Figures

(I.1 The Semantic Web Stackl 0. 8
(1.2 Web service usage scenario| 12
(L3 _Semantic Web Services infrastructure dimensions. 15
[I.4 Classification of a query instance z, by means of the 5-NEAREST |
| NEIGHBOR algorithm. It assigns the classa toz,. | 21
[1.5 A taxonomy of clustering approaches| 23
[1.6 The dendrogram obtained using the single-link algorithm| 25
(1.7 An example of Conceptual Clustering| 27
2.1 ALE-description trees| 52

[3.1 Illustration of the overfitting dilemma: Given only a small sample
(left) either, the solid or the dashed hypothesis might be true, the
dashed one being more complex, but also having a smaller training
error. Only with a large sample it is possible to be able to see which
decision reflects the true distribution more closely. If the dashed
hypothesis is correct the solid would underfit (middle); if the solid
were correct the dashed hypothesis would overfit (right).| 74

(3.2 Two-dimensional classification example. (a) Function separation in
| the original space of features. (b) Linear function separation in the
| mapped feature space.|o 75

[3.3 Graphical representation of the relation between two feature sets| . . 79

[3.4 Fragment of the Wordnet taxonomy. Solid lines represent is-a links; |
[dashed lines indicate that some intervening nodes were omitted to |
[SAVE SPACE.| o e e e e e 85

1X

LIST OF FIGURES

[4.1 Geometrical interpretation of similarity between concepts C' and D. |
Similarity will be high because D is almost near to be subsumed by C'.[102
[4.2 Geometrical interpretation of similarity between concepts C' and D. |

Similarity will be not so high because they are differentiated by many

"features” (namely individuals not shared as concept instances). . . . 102
4.3 The (compacted) tree representation for the descriptions used in FEx- |
ample[4.5.20 | 133
[>.1 Average results varying the number of hypotheses in the set F.|. . . . 158
(.2 Theidea of SVMsl 159
[>.3 Means of the outcomes of the classification rates with respect to all |
considered ontologies. Classification has been performed by the a [
SVM jointly with the ALC kernel function with A =1 and A =0.5. . 164
(5.4 Tree (dendrogram) returned by a hierarchical clustering method ap-
plied to the services A, B, C, and D. For computation of the Ics, which
1s performed in ALE, they are mapped from ALC to ALE leading to |
A7B,Coand D’ 175
[>.5 Means of the overall clusters similarity computed for every ontology |
with respect to the used clustering algorithm. 181
[>.6 Common instances between requested service and provided services |
for their rankingl.o o 185
[B.1 Clustering process performed by the single-link algorithm. Cluster |
distances are given by the minimum distance among their elements.| . 214
[B.2 Clustering process pertormed by the complete-link algorithm. Cluster |
distances are given by the maximum distance among their elements.| . 214
[B.3 A single-link clustering of a pattern set containing two classes (1 and |
2) connected by a chain of noisy patterns (indicated by ”*”)| 215
B.4 A complete-link clustering of a pattern set containing two classes (1 |
and 2) connected by a chain of noisy patterns (indicated by ”*”)| . . 215
[B.5_Two concentric clustersl 215

List of Tables

[2.1 AL constructors and their meaning.|. 37
2.2 DL Constructors semanticslo 39
2.3 Some AL-languages|. Lo 39
[5.1 Results (averagetstd-dev.) of the experiments with the method em- |
| ploying the measure based on overlap.| 152
[5.2 Outcomes of the trials with the FAMILY ontology employing the mea- |
| sure based on overlap.| Lo 153
[>.3 Results (average &+ std-dev.) of the experiments with the method |
[employing the measure based on information content.| 154
[>.4 Ontologies employed in the experiments.| 155
[5.5 Results (averagetstd-dev.) of the experiments with the method em- |
[ploying the semi-distance semantic measure.| 156
[>.6 Average results varying the number of hypotheses in the set F.| 157
[5.7 Ontologies employed in the experiments.| 161
[5.8 Results (average and range) of the experiments with the SVM em- |
| ploying the ALC kernel function with A\ =1] 162
.9 Results (average) of the experiments employing the SVM jointly with |
| the ALC kernel function with A= 0.0 163
[5.10 Results (average) of the experiments,| 164
[5.11 Omntologies employed in the experiments.| 179
[5.12 Average overall clusters similarity for each considered ontology and |
| with respect to the employed clustering algorithm. 180

Chapter 1

Introduction

This dissertation focuses on the definition of new similarity and dissimilarity mea-
sures applicable to a relational setting, particularly ontological knowledge. Hence it
is shown how it is possible to set up methods that, using such measures, perform
supervised and unsupervised learning on ontological knowledge. Specifically, known
instance based and clustering methods and algorithms are extended in this field in
order to cope with the expressiveness of ontological representation.

The proposed measures and methods are used to solve some typical problems
such as completions of an incomplete knowledge base by the use of Analogy Reason-
ing, improvement of the efficiency of the resources discovery task (with particular
attention to the service discovery process) by the use of clustering methods, and
improvement of the effectiveness of the ranking process of the retrieved resources.
All these aspects, together with practical motivation and implications of the choices
will be explained throughout this work.

1.1 Semantic Web

Semantic Web is the new vision of the Web whose main goal is to make Web contents
not only human readable but also machine readable and processable. In the most
famous paper introducing the Semantic Web (SW), Tim Berners-Lee and his co-
authors explain this goal: "Most of the Web content today is designed for humans
to read, not for computer programs to manipulate meaningfully. Computers can
adeptly parse Web pages for layout and routine processing here a header, there a
link to another page but in general, computers have no reliable way to process the
semantics: this is the home page of the Hartman and Strauss Physio Clinic, this
link goes to Dr. Hartman’s curriculum vitae.” [23].

3

The Semantic Web is not a separate Web but an extension of the current
one, in which information is given well-defined meaning, better enabling computers
and people to work in cooperation. The essential property of the World Wide Web
is its universality. The power of a hypertext link is that ”anything can link to
anything.” Web technology, therefore, must not discriminate among different types
of information. On the contrary, information varies along many axes. One of these
is the difference between information produced primarily for human consumption
and that produced mainly for machines.

The Semantic Web brings structure to the meaningful content of Web pages,
creating an environment where software agents, roaming from page to page, can
readily carry out sophisticated tasks for users. So, for example, such an agent
coming to the Web page of the Department of Computer Science will know not
only that the page has keywords such as ”"Department, courses, students, library”
but also that Dr. Smith works at this Department on Mondays, Wednesdays and
Fridays and that the script takes a date range in yyyy-mm-dd format and returns
appointment times. These semantics were encoded into the Web page using off-the-
shelf software for writing Semantic Web pages along with resources listed on the
University’s site.

Like the Internet, the Semantic Web has to be as decentralized as possible.
Decentralization requires compromises: the Web had to throw away the ideal of
total consistency of all of its interconnections, ushering in the infamous message
"Error 404: Not Found” but allowing unchecked exponential growth. Traditional
knowledge-representation systems typically have been centralized, requiring every-
one to share exactly the same definition of common concepts such as ”parent” or
"vehicle.” But central control is stifling, and increasing the size and scope of such a
system rapidly becomes unmanageable. On the contrary, in Semantic Web context,
paradoxes and unanswerable questions are accepted as the price that must be paid
to achieve versatility.

However decentralization raises an important issue: different identifiers could
be used for the same concept, consequently it is necessary to have a way to know
that different identifiers mean or refer to the same thing. For example, considered
two databases that refer to car and automobile respectively, a program that wants
to compare or combine information across the two DBs has to know that these two
terms are being used to mean the same thing. Ideally, the programs must have a
way to discover such common meanings for whatever DBs it encounters. A solution
to this problem is provided by the use of collections of information called ontologies.
In philosophy, an ontology is a theory about the nature of existence, of what types of
things exist; Ontology as a discipline studies such theories. Artificial-intelligence and
Web researchers have co-opted the term for their own jargon. For them an ontology
is a formal definition of the semantics of the resources and their relationships.

1.1.1 Ontology: Meaning, Usage and Representation

Ontologies have shown to be the right answer to the Semantic Web vision, by provid-
ing a formal conceptualization of a domain that is shared and reused across domains,
tasks and group of people [87]. Their role is to make semantics explicit. Particularly,
ontologies describe domain theories for the explicit representation of the semantics
of the data. The semantic structuring achieved by ontologies differs from the super-
ficial composition and formatting of information (as data) offered by relational and
XMIE] databases. Within a database context, virtually, all of the semantic content
has to be captured in the application logic. On the contrary, ontologies are able to
provide an objective specification of domain information, by representing a consen-
sual agreement on the concepts and relationships characterizing the way knowledge
in that domain is expressed. The result is a common domain of discourse avail-
able on the Web, that can be interpreted further by inference rules and application
logic. Note that ontologies put no constraints on publishing (possibly contradictory)
information on the web, only on its (possible) interpretations.

Ontologies may vary not only in their content, but also in their structure and
implementation. Building an ontology means different things to different practition-
ers. Indeed an ontology could be used for describing simple lexicons or controlled
vocabularies to categorically organized thesauri and taxonomies where terms are
given distinguishing properties, to full-blown ontologies where these properties can
define new concepts and where concepts have named relationships. Ontologies also
differ with respect to the scope and purpose of their content. The most prominent
distinction is between the domain ontologies describing specific fields of endeavor
like medicine, and upper level ontologies describing the basic concepts and relation-
ships invoked when information about any domain is expressed in natural language.
The synergy among ontologies (exploitable by a vertical application) springs from
the cross-referencing between upper level ontologies and various domain ontologies.

Building an ontology means to distinguish between two different structural
components: the Terminological component and the Assertional component. The
terminological component is roughly analogous to what it is known as the schema
for a relational database or XML document. It defines the terms and structure of
the ontology’s area of interest. The assertional component populates the ontology
further with instances or individuals that manifest that terminological definition. To
build an ontology, a number of possible language could be used, including general
logic programming languages like Prolog?l However in the last few years, the Web
Ontology Languageﬂ (OWL) has become the de-facto standard for the knowledge

leXtensible Mark-up Language (XML). See http://www.w3.org/XML/
2PROLOG (PROgramming in LOGic) is a programming language based on logic paradigm.
3http://www.w3.org/2004/OWL/

representation in the SW. It is based on a logic thought to be especially computable,
known as Description Logics (DLs) [§]. It is a fragment of First Order Logic.

OWL is a language for defining and instantiating Web Ontologies. An OWL
ontology may include descriptions of Classes (that are mainly concepts of the an-
alyzed domain), properties (that are relations among defined concepts) and their
instances. Given such an ontology, the OWL formal semantics (based on DLs) spec-
ifies how to derive its logical consequences, i.e. facts not literally reported in the
ontology, but entailed from it. For this reason a number of reasoners have been im-
plemented, based on such semantics. Some examples are FaCT [104], RACER[96],
PELLET|184].

The OWL language provides three increasingly expressive sublanguages;

e OWL Lite supports the classification hierarchy inference and simple constraint
features, i.e. cardinality constraints on properties where only cardinality values
of 0 and 1 are permitted.

e OWL DL supports maximum expressiveness without provoking the losing of
computational completeness (all entailments are guaranteed to be computed)
and decidability (all computation will finish in finite time) of the related infer-
ence services. OWL DL includes all OWL language constructs with restrictions
such as type separation (a class can not also be an individual or a property, a
property can not also be an individual or a class). OWL DL is so called due
to its correspondence with Description Logics.

e OWL Full is meant for having maximum expressiveness and syntactic freedom
(of RDP@ with no computational guarantees. For instance, in OWL Full a
class can be treated simultaneously as a collection of individuals and as an
individual in its own right. OWL Full allows an ontology to augment the
meaning of the pre-defined (RDF or OWL) vocabulary. Nevertheless, it is
unlikely that reasoner will be able to support every feature of OWL Full.

Each of these sublanguages is an extension of its simpler predecessor, both in what
can be legally expressed and in what can be validly concluded. So:

e Every legal OWL Lite ontology is a legal OWL DL ontology
e Every legal OWL DL ontology is a legal OWL Full ontology
e Every valid OWL Lite conclusion is a valid OWL DL ontology
e Every valid OWL DL conclusion is a valid OWL Full ontology

“http://www.w3.org/RDF/

Reasoners for OWL Lite have desirable computational properties. Reasoners for
OWL DL, while dealing with a decidable sublanguage, are subject to higher worst-
case complexity.

The effective use of ontologies requires not only a well-defined and designed
ontology language, but also support from efficient reasoning tools. Reasoning is
important both to ensure the quality of an ontology, and to exploit the rich structure
of ontologies. Specifically, reasoning can be employed in different phases of the
ontology life-cycle. During the ontology design, it can be used to test whether
concepts are non-contradictory and to derive implied relations. It may be used when
an ontology is deployed. As well as, exploiting the pre-computed concept hierarchy
(linked by a is-a relation), reasoning can be used to determine the consistency of facts
stated in annotations, or to infer relationships between annotations and ontology
classes. Moreover, when searching web pages annotated with terms from an ontology;,
it may be useful to consider not only exact matches, but also matches with respect
to more general or more specific terms - where the latter choice depends on the
context. In the deployment phase, the requirements on the efficiency of reasoning
are much more stronger than in the design phase.

All the presented tasks are solved by the use of deductive reasoning. However
there is a number of open problems that could be solve or at least partially solved
by the use of inductive reasoningﬂ Specifically, all the tasks that require certain and
correct results need to employ deductive reasoning. Some examples are: computing
class hierarchy, checking ontology consistency. Moreover these tasks do not require
greater generality of the conclusions w.r.t. the premises. On the contrary tasks
such as: ontology learning, ontology population by assertions, ontology evaluation,
ontology mapping and alignment require inductive inferences as they need of higher
general conclusion with respect to the premises and can be obtained as inference
result from a set of available existing examples. Indeed, by the use of inductive
learning, and specifically learning from example, it could be possible to achieve new
and more general knowledge than such examples represent. However nowadays,
most of these tasks are are manually made. So it is necessary to have tools able
to execute these tasks at least in a semi-automatic way. Unfortunately not many
efforts have been invested in the direction of inductive and uncertain reasoning.
On the contrary, I believe that inductive reasoning applied on top of deductive
reasoning could be the right direction in order to have new methods able to make
human-centered time consuming tasks less heavy. In Sec. basics about inductive
reasoning are presented, while in Chapt. 5], definitions and applications of inductive
learning methods to the semantic web domain are shown.

5See Sect. for more details about inductive and deductive reasoning.

7

Rules Trust Trust and Proof
Data Praaf ; Layer
: ™)

Data Lagic & Logic Layer
Self- s

descl Ontology vocabulary | & Ontology Layer
1]

o RDF + rdfschema S Metadata Layer

Syntaclic Layer

Figure 1.1: The Semantic Web Stack

1.1.2 The Semantic Web Architecture

The Semantic Web goal: ”a shared understanding of the meaning of descriptions
of digital content, both by the human and by machine to machine”, as proposed by
Tim Berners-Lee was not presented simply as an abstract idea. It was presented
jointly with a concrete solution schema for reaching such goal. Indeed in [22] the
SW Architecture (see Fig was shown. It consists of several layers arranged as
the level /protocols stack in computer networks (namely ISO/OSI stack protocols).
Every layer presents a set of duties and a set of technologies for coping with them.
Since the overall objective is to share information at a higher level than in the
current Web, every technology, in its layer, will have a representational duty (in the
sense of Knowledge Representation - KR) and technologies that are underlining the
KR scope. In the following, each layer is presented, starting from the lowest level of
representational capabilities towards the highest one.

e Syntactic Layer: the Web is based on the philosophy of a navigable space, by
the use of a mapping from resource ids (URI)H to resources. This layer has the
task of representing documents as the abstraction of a unity of information
that can contain subunits in a hierarchical fashion. A document is represented
by a tree rooted in the documents itself, whose children are the subparts of
the document (and, recursively, each part can has children that are subtrees).
The main technology of this layer is the XML that proposes a textual portable
representation of documents in order to grant syntactic interoperability.

6Uniform Resource Identifier (URI): a standard means of addressing resources on the Web. See
http://www.w3.org/Addressing/ for how to assign URIs to resources for preserving uniqueness.

e Metadata Layer: in order to make the current Web machine processable, pre-
existing Web content has been enriched with meta-information representing
their meaning. The Metadata layer is responsible of such representation. This
layer has as its main entity the meta-datum, that is some information about
some information. Here comes the first actual step beyond usual Web. Meta-
data can be about Web pages, abstract resources, namely about everything
that can be identified by a URI. The main technology used in this layer is
Resource Description Framework (RDF), a formalism for writing metadata,
namely for the description of resources and their types. It allows for reifica-
tion and it can be seen as a first order language with only unary and binary
predicates, existential quantifier and conjunction. RDF relies on the syntactic
portability of the Syntactic Layer because it can be (among the other solu-
tions) serialized into XML to be exchanged across the Web.

e Ontology Layer: the layers analyzed so far guarantee that Web resources are
uniquely identified, are endowed with a portable representation and are ma-
chine processable, but they are not able to add semantics to them. On the
contrary, one of the main goal of the SW is to make resources machine process-
able and ”"understandable”. As seen, the right answer to this need is given by
the use of ontologies. The function of the ontology layer is to add a shareable
and common semantics to the existing meta-data, without conveying any infor-
mation about how to use concepts and relationships (defined in the ontologies).
Indeed, recalling Gruber’s definition "ontologies are formal specification of a
shared conceptualization” [94], ontologies represent the necessary framework
for granting a common understanding among applications. Ontologies play
the role of metadata vocabularies where annotators can draw and reuse exist-
ing metadata terminologies, add new ones, and where applications consuming
metadata can find a reference for the intended meanings.

e Logic Layer: this is the point at which assertions from around the Web can be
used to derive new knowledge. One of the challenges of the SW is to provide
a language that expresses both data and rules for reasoning about the data
and that allows rules from any existing KR system to be exported onto the
web. For data representation, OWL has been defined, whose theoretical coun-
terpart is DLs that have reasoning operators making possible to reason about
the data. However, some problems remain for the definition of a language for
rule definition. Currently the Semantic Web Rule Languagd’| (SWRL) initia-
tive is exploring the possibility of integrating rules and ontologies. The idea
is to extend the set of OWL axioms to include rules (expressed as Horn-like
clauses). This enables rules to be combined with an OWL knowledge base.

"W3C Member Submission http://www.w3.org/Submission/ 2004/SUBM-SWRL-20040521/

Unfortunately, there are some negative results [103] concerning the undecid-
ability of consistency check (see Sect. in full fledged SWRL. This layer
nowadays represents the frontier in the SW field.

o Trust and Proof Layer: In his vision, Berners-Lee highlights the importance of
digital signatures. Although public key cryptography has been around for some
time, it has not really taken off. Berners-Lee observed that one contributing
factor to this, was that it was too coarsely-grained, with the choice of either
trusted or not trusted. An infrastructure must be in place where a party can
be trusted within a particular domain. Once such granularity is possible, dig-
ital signatures can be used to establish the provenance not only of data but
of ontologies and of deductions. Nevertheless other important aspects of the
Web have to be considered, particularly its heterogeneity and decentraliza-
tion. These are the main strengths of the Web, but they are also responsible
for one of its main issue which is the availability of contradictory informa-
tion. For the same reason such contradictions could be a problem also in SW.
Moreover, SW relies (since DLs do) on Open World Assumption that, roughly
speaking, says that if something is missing then everything about the default
part can be assumed. Therefore, it is very likely that SW application will
find themselves reasoning in presence of inconsistent knowledge bases. Such
applications should, then, make decisions on which of the contrasting parts
they should privilege in order to get rid of the inconsistencies. So, considering
the proofs that each party provides for its conclusion and in accordance with
Berners-Lee’s vision: ”Systems would digitally sign and export these proofs
for other systems to use and possibly incorporate into the Semantic Web”, one
strategy could be the examination of the proofs and consequently the strongest
proofs will be considered as the mean for choosing the most reliable sources of
information.

The presented brief summary gives an idea of the complexity of the Semantic
Web and of the large number of open problems that need to be solved. Every
layer of the presented architecture presents something that needs of improvement.
My choice concern the ontology layer. Particularly ontology learning and ontology
population are nowadays crucial issues in order to automatize (or semi-automatize)
tasks that today require a costly and human massive intervention. Omne of the
problems investigated in this thesis, and not previously analyzed in the literature, is
how to enrich and populate (with individuals) existing ontology in a semi-automatic
way as well as how to improve the retrieva]lﬂ of a known concept and/or of a new
query concept built from the considered ontology, by the use of inductive learning
methods. Details about this will be illustrated in Sect. 5.1.1]

8See Sect. for the notion of retrieval.

10

1.2 Semantic Web Services

In the last few years the Web encountered two revolutionary changes which aim to
transform it from a static document collection to an intelligent and dynamic data
integration environment, where resources are shared and information is generated on
demand. The first is the Semantic Web vision and technology (see Sect. . The
second one is the Web service technologyf’, mainly characterized by allowing uniform
access via Web standards to software components residing on various distributed
platforms and written in different programming languages. As a result, software
components providing a variety of functionalities (ranging from currency conversion
to flight booking or book buying) are now accessible via a set of Web standards and
protocols.

1.2.1 From Web Services to Semantic Web Services

A Web service can be defined as any piece of software that makes itself available
over the Internet and uses a standardized XML messaging system. Web services are
emerging as a popular standard characterized by being platform-independent, self-
describing, reusable and finalized to sharing data and functionality among loosely-
coupled, heterogeneous systems. They also allow to build complex applications
faster and with less programming effort. The term ”service” is often used in different
ways [2, 161]. It sometimes refers to an abstract business interaction between two
parties, and other times it refers to a computational entity with a Web service
interface. Here it is used in the second sense.

A Web service is identified by a URI and it can be accessed through the
Internet by means of its exposed interface. The interface of a Web service describes
the operations the service performs, the type of messages to be exchanged during
the interaction with the service and the physical location of ports where information
will be exchanged. The Web service model includes three component roles: the
service requesters which invoke services, the service providers which offer services
and respond to the requests, and the registries where services can be published. The
common usage scenario for Web services consists of three phases: publishing, finding
and binding services (see Fig.. A service provider publishes the description of
the service it offers to a service registry. Such description, or advertisement, contains
information about the service provider (e.g., company name, address and contact
information), about the service itself (e.g., name and category) and the URL of its
interface definition. When a service requester needs for a service, he finds the desired
service either by expressing a query, or directly browsing the registry. Next, the

Swww.w3.org/2002/ws/

11

SERVICE
f:’ DESCRETICN
i '-\.\

/' SERVICE
' REGISTRY

/ * Eind Iy
S SERMCE & & Sy SERVICE
%, REQUESTER / % PROVIDER
% K ‘." i
) Iy ,

Figure 1.2: Web service usage scenario

service requester (i.e., the developer who is building a new application) interprets
the meaning of the interface description of the discovered service (by exploiting
variables names, comments and additional documentation) and he binds such service
within the application he is developing. When a service requester binds a service,
he includes an invocation of such service within the application he is deploying. The
requester invokes the discovered service by means of the Web service communication
protocol.

In this scenario, crucial issues and tasks are:

e modeling service description
e service discovery

e service composition and/or orchestration

Modeling service descriptions is an important task, indeed it is the only way in
order to "understand” whether a certain service is adequate with respect to a certain
need or not. The current standard XML-based language for describing Web services
is WSDIH (Web Service Description Language). A WSDL description details the
operations that the service offers in terms of input and output messages, specification
about how to invoke the service and one or more network locations or connection
points where a service can be accessed. So, mainly it provides a syntactic-level
description of service functionalities, without specifying any formal definitions of
their meaning.

Ohttp: / /www.w3.org/TR/wsdl

12

Linked to modeling service descriptions are the service discovery task and the
service composition task. Web service discovery (also known as matchmaking) is
the process of (searching and) localizing available services that are able to satisfy
client requirements. Web service composition is the process of providing value-added
services through the composition of basic Web services (possibly offered by different
providers). These tasks, in the first time manually made by humans, nowadays
result to be time consuming, due to the increasing amount of available Web services.
Indeed the main reason of the attention to modeling service descriptions is the need
of automating such processes.

The current infrastructure for Web service discovery is typically human-oriented,
in the style of yellow-pages. It features syntax-based searches which take into ac-
count keywords and taxonomies. Therefore, given one or more keywords, descrip-
tions containing the input keywords are returned as searched results. This kind
of search can often give poor performance, because it can fail to retrieve services
described by synonyms (as well as singular/plural) of the searched string. Conse-
quently, the requester must select the service which satisfies his requirements by
manually filtering the returned services. Moreover, the syntax-based search severely
affects the process of dynamically composing Web services, that involves: automat-
ically discovering (and selecting) services, ensuring semantic and data-type compat-
ibility and automatically invoking services.

The automation of the Web Service discovery would require service descriptions
including machine-interpretable semantic information. The automation of service
invocation would require service descriptions exposing service behavior, specifying
the invocation order of the service operations. Unfortunately, available WSDL inter-
faces provide neither semantics information to describe the service functionality nor
behavioral information to describe the service interaction behavior. They provide
only descriptions at syntactic-level, making it difficult for requester and provider
to interpret or represent non-trivial statement such as the meaning of inputs and
outputs or applicable constraints. Therefore, the current standards for Web service
is not really able to support neither automated service discovery nor (static and
dynamic) service composition. This limitation may be overcome by providing a rich
set of semantic annotations that augment the service descriptions. Indeed this is
the direction on which researchers are focussing their efforts.

Particularly, two main problems there are currently analyzing: 1) how to model
complex service interactions and 2) how to enrich service descriptions with semantic
information. To address the problem of modeling complex service interactions, var-
ious choreography and orchestration languages have been proposed, such as BPEL
[B], WSCI [5] and WS-CDL [I17]. Such languages rely on standard WSDL and
describe a service as a workflow of operations. They allow to specify the execution
order of the operations, the operations that may be executed concurrently as well

13

as the alternative execution path (if the workflow language provides conditional op-
erators). Hence, by means of choreography/orchestration languages, simple (and
complex) services can be composed together in order to model a new complex ser-
vice. Particularly, such languages address the problem of statically composing Web
services, but they do not solve the problem of automatic (or dynamic) Web service
composition issue. Indeed, the selection of services that have to be orchestrated and
their composition have to be manually performed by a computer-expert user.

To address the problem of how to enrich service descriptions with semantic
information about their functionalities and meaning, researchers have augmented
Web service with a semantic description of the functionality [140, [160], according to
the SW vision (see Sect.[L.1)). The result of the combination of the SW and Web ser-
vices research domains for service description has been Semantic Web Services
(SWS). A SWS includes a machine-understandable description of its capabilities,
defined by referring shared knowledge contained in one or more ontologies. A SWS
is defined though a service ontology, which enables machine interoperability of its
capabilities and integration with domain knowledge. The availability of machine-
understandable semantic descriptions of Web services is a must for automatizing
their discovery, composition and execution across heterogeneous users and domains.

With SWSs, semantics information (i.e. concepts contextualizing the domain
of the functionality that a service describes) are added to the provided service de-
scriptions. The same could be done in the case of a service request, so the discovery
process, rather then use a keyword-based search, could assess all the functionality
connected to the semantic information specified with the request and hence search
among the provided functionality that better satisfy the needs of the request.

1.2.2 The Semantic Web Services Infrastructure

Semantic Web Service infrastructure can be characterized along three orthogonal
dimensions (see Fig. : usage activities, architecture and service ontology [38].
These dimensions relate to the requirements for SWS at business, physical and con-
ceptual levels. Usage activities define the functional requirements that a framework
for SWSs ought to support. The architecture of SWS defines the components needed
for accomplishing these activities. The service ontology aggregates all concept mod-
els related to the description of a SWS, and constitutes the knowledge-level model
of the information describing and supporting the usage of the service.

From the usage activities perspective, SWSs are seen as objects within an
execution scenario of a business application. The activities required for running an
application using SWS include: publishing, discovery, selection, composition, invo-
cation, deployment and ontology management. They are described in the following.

14

SWS

Figure 1.3: Semantic Web Services infrastructure dimensions.

Publishing and advertising SWSs will allow agents or applications to discover
services based on its goals and capabilities. A semantic registry is used for register-
ing instances of the service ontology for individual services. The service ontology
distinguishes between information used for the matching during discovery and infor-
mation used during the service invocation. In addition, domain knowledge should
also be published or linked to the service ontology.

Service discovery consists of semantic matching between the description of
a service request and the one of a published service. Queries involving the service
name, input, output, preconditions and other attributes can be constructed and used
for searching in the semantic registry. The matching can also be done at the level
of tasks or goals to be achieved, followed by a selection of services which solve the
task. The degree of match is based on some criteria, an example is the inheritance
relationship of types. For instance, an input of type Professor of a provided service
can be said to match an input of type Academic of a requested service.

A selection of services is required if there is more than one service matching the
request. Non-functional attributes such as cost or quality can be used for choosing
one service. In a more specialized or agent-based type of interaction, a negotiation
process can be started between a requester and a provider. In general, a broker would
check that the preconditions of tasks and services are satisfied and proves that the
services postconditions and effects imply goal accomplishment. An explanation of
the decision making process should also be provided.

15

Composition and choreography allow SWSs to be defined in terms of other
simpler services. A workflow expressing the composition of atomic services can be
defined in terms of the service ontology, by using appropriate control constructs.
This description would be grounded on a syntactic description like BEPL4WS [3].
Dynamic composition is also being considered as an approach, during service request,
in which the atomic services required to answer a request are located and composed
on the fly. This requires an invoker which matches the output of atomic services
against the input of the requested service.

The invocation of SWSs involves a number of steps, once the required inputs
have been provided by the service requester. First, the service and domain ontologies
associated with the service must be instantiated. Second, the inputs must be vali-
dated against the ontology types. Finally the service can be invoked or a workflow
executed through the grounding provided.

The deployment of a Web service by a provider is independent of the publishing
of its semantic description, since the same Web service can serve multiple purposes.
But, the SWS infrastructure can provide a facility for the instant deployment of
code for a given semantic description.

The management of service ontologies is fundamental for the SWS. It guaran-
tees that semantic descriptions are created, accessed and reused within the SW.

From the architecture perspective (Fig. , SWSs are defined by a set of
components realizing the activities illustrated above jointly with underlying security
and trust mechanisms. The components include: a register, a reasoner, a match-
maker, a decomposer and an invoker. The reasoner is used during all activities
and provides the reasoning support for interpreting the semantic descriptions and
queries. The register provides the mechanisms for publishing and locating services
in a semantic registry as well as functionalities for creating and editing service de-
scriptions. The matchmaker mediates between the requester and the register, during
the discovery and selection of services. The decomposer executes the composition
model of composed services. The invoker mediates between requester and provider
or between decomposer and provider when invoking services.

The service ontology is another dimension under which it is possible to define
SWSs (Fig. . It represents the capabilities of a service and the restrictions
applied to its use. The service ontology integrates, at the knowledge-level, the
information which has been defined by Web services standards with related domain
knowledge. This include: functional capabilities such as input, output, pre and
post-conditions; non-functional capabilities such as category, cost and quality of
service; provider related information, such as company name and address; task or
goal-related information; and domain knowledge, defining, for instance, the type
of the input of the service. This information can be divided in several ontologies.

16

Anyway, the service ontology used for describing SWSs will rely on the expressivity
and inference power of the underlying ontology language supported by the SW.

Currently, there are three main approaches for semantically describing ser-
vices. The first approach aims at adding semantics to WSDL. In this direction there
are different initiatives and projects, one of the most important is WSDL-S] a
language designed to augment the expressiveness of WSDL. The second approach
aims at the development of new solutions to the problem of augmenting semantics
to Web Services. It uses ontologies (and languages) specifically developed to de-
scribe services. Research efforts that belong to this approach include initiatives as
OWL-S [1], WSMO [61] and SWSO [60]. They propose new standards to com-
pile service descriptions exposing semantic information. OWL-S, for instance, is an
agent oriented approach to SWSs, providing an ontology for describing Web Service
capabilities. Moreover, they provide formalisms to specify the behavior of services
and offer control constructs, in the style of the common programming languages, to
model arbitrarily complex internal service workflows. The third approach is based
on DLs as formal languages for expressing rich service descriptions. Efforts in this
direction have been done in [129, 88, 195, 159, 196, O3]. The main reason of the
attention to such an approach is that DLs are closely connected to OWL, hence, the
use of DLs ensures compatibility with existing ontology standards. Furthermore,
the formal semantics of DLs allows precise definition of the semantics of service
descriptions. Moreover, discovery algorithms can be formally defined in terms of
well-known DL inferences.

One of the aspects treated in this thesis focuses on the third approach. By
the use of DLs for describing semantic services, the notion of Constraint Hardness
is introduced. Such constraints allow to define optional and mandatory aspects of
a service request that can be usefully exploited, during the matching process, for
better satisfying a request. Moreover, a ranking procedure for matched services is
proposed. It ranks services w.r.t. their similarity to the request and their capability
to satisfy both optional and mandatory aspects of the request. This part of the
work will be presented in detail in Sect. [5.2.3] Furthermore, clustering algorithms
to cluster DL-based service descriptions are set up. They are exploited to improve
the efficiency of the service discovery task. Details about clustering methods will

be presented in the next section while the usage of such methods for improving the
service discovery will be present in Sect.

Uhttp://www.w3.org/Submission/WSDL-S/

17

1.3 Inductive Learning for the Semantic Web

The availability of inference services in the Semantic Web context is fundamental for
performing several tasks such as the consistency check of an ontology, the construc-
tion of a concept taxonomy, the concept retrieval etc. (see Sect. and Chapt.
for more details).

Currently, the main approach used for performing inferences is deductive rea-
soning. In traditional Aristotelian logic, deductive reasoning is defined as the in-
ference in which the (logically derived) conclusion is of no greater generality than
the premises. Other logic theories define deductive reasoning as the inference in
which the conclusion is just as certain as the premises. The conclusion of a deduc-
tive inference is necessitated by the premises: the premises cannot be true while
the conclusion is false. Such characteristics of deductive reasoning are the reason
of its usage in the SW. Indeed computing class hierarchy as well as checking ontol-
ogy consistency require certain and correct results and do not need of high general
conclusions with respect to the premises.

Conversely, tasks such as ontology learning, ontology population by assertions,
ontology evaluation, ontology mapping and alignment require inferences that are
able to return higher general conclusions with respect to the premises. To this
end, inductive learning methods, based on inductive reasoning, could be effectively
used. Indeed, inductive reasoning generates conclusions that are of greater generality
than the premises, even if, differently from the deductive reasoning, such conclusions
have less certainty than the premises. Specifically, in contrast to the deduction, the
starting premises of the induction are specific (typically facts or examples) rather
than general axioms. The goal of the inference is to formulate plausible general
assertions explaining the given facts and that are able to predict new facts. Namely,
inductive reasoning attempt to derive a complete and correct description of a given
phenomenon or part of "%}

The application of inductive learning methods in the SW context has re-
ceived less attention. Some initial results in this direction have been proposed in
[119, [43], [73], where the task of learning knowledge bases from examples is mainly
focussed. This thesis shows that inductive learning methods and uncertain reason-
ing can be effectively used to outperform several tasks such as: ontology population,
concept retrieval and query answering, resource retrieval and ranking. Indeed, most
of this tasks are currently manually made (i.e. ontology population) or are not very
efficient with the growth of available resources (resource retrieval and ranking). The

I2Note that, of the two aspects of inductive inference: the generation of plausible hypothesis and
their validation (the establishment of their truth status), only the first one is of primary interest
to inductive learning research, because it is assumed that the generated hypothesis are judged by
human experts and tested by known methods of deductive inference and statistics.

18

application of inductive reasoning on top of deductive reasoning results could be
the right direction for having new and most efficient methods able to also make
human-centered time consuming tasks less heavy.

Inductive learning methods are part of a most large discipline that is Machine
Learning (ML), whose goal is to construct computer programs able to learn, namely
able to improve their performance (w.r.t. a performance measure) in executing a
task, on the ground of a certain experience. The learning process in ML is generally
reduced to learn a target function able to perform the chosen task.

Inductive learning methods are made up of two different approaches, distin-
guished on the ground of the amount of inference they perform:

Learning from examples: (also called supervised learning) is a special case of
inductive learning. Given a set of examples and counterexamples of a concept,
the learner induces a general concept description that describes all of positive
examples and none of the counterexamples.

Learning from observation: (also called unsupervised learning) is a very
general form of inductive learning that includes discovery systems, theory-
formation tasks, creation of classification criteria to form taxonomic hierar-
chies, without benefit of an external teacher. The learner is not provided with
a set of instances of a particular concept, nor it is given access to an oracle that
can classify internally-generated instances as positive or negative instances of
any given concept. Furthermore, rather than focus on a single concept at a
time, the observation may span several concepts that need to be acquired.

In learning from example, the observational statements are characterizations
of some objects pre-classified by a teacher into one or more classes (concepts). The
induced hypothesis can be viewed as a concept recognition rule (rather the target
function) such that if an object satisfies this rule then it represents the given concept.
Mainly, learning from example is used to solve classification problems.

In unsupervised learning the goal is to determine a general description char-
acterizing a collection of observations. Thus, in contrast to learning from example
that produces descriptions for classifying objects into classes on the basis of the
object properties, unsupervised learning produces descriptions specifying properties
of objects belonging to a certain class.

In the following these two different kinds of learning will be analyzed in more
details. Moreover their extension for applying them to the SW context will be briefly
illustrated.

19

1.3.1 Instance Based Learning Methods

Learning by example (or supervised learning) is supported by two different kinds of
methods [1]:

e learning methods that construct a general, explicit description of the target
function when training examples are provided. Algorithms that implement
this learning method are called eager learning algorithms because they compile
inputs into an intensional concept description (e.g. represented by a rule set,
decision tree, neural networ@. Responses to the information requests are
given using this a priori induced description that is retained for future requests;

e instance-based learning methods that simply store the training examples. The
generalization beyond these examples is postponed until a new instance must
be classified. Each time a new query instance is encountered, its relationship
to the previously stored examples is examined in order to assign a target
function value for the new instance. Algorithms that implement this learning
method are called lazy learning algorithms. They exhibit three characteristics
that distinguish them from the previous ones: 1) they defer processing of their
inputs until an information request is received; 2) they simply store inputs
for future use; replies to the information requests are given by combining
stored (e.g. training) data. 3) they discard the constructed answer and any
intermediate results. This type of learning algorithms are also referred to as
memory-based learning algorithms.

Lazy learning algorithms have the option of selecting a different hypothesis or
local approximation for the target function for each of query instance. On the con-
trary, eager learning algorithms, building a generalized hypothesis at training time,
must commit to a single hypothesis, that covers the entire training instance space,
the classification of any new query instance. This makes such last methods more
limited and make possible supposing that lazy learning algorithms could result more
accurate. Anyway this reliability is payed with an increase of the computational cost
at classification time with respect to eager learning algorithms.

Instance-based learning includes nearest neighbor algorithms and locally weighted
regression algorithms (see [I50] for more details) that often assume instances to be
represented as points in an Euclidean space, and case-based reasoning algorithms
[150] that use more complex, symbolic representations for instances. This thesis
focus on nearest neighbor algorithms. The most important algorithm falling in this
category is the k- NEAREST NEIGHBOR algorithm [47, [70l [I50] that is a classifier
that inputs a query instance x, and outputs a prediction for its class.

13See [150, [143] for more details about the different kinds of representations.

20

N
query 1nstance

Figure 1.4: Classification of a query instance z, by means of the 5-NEAREST
NEIGHBOR algorithm. It assigns the class a to ;.

In the classical setting, the k-NEAREST NEIGHBOR algorithm assumes each
training instance x = {x1, 22, ..., 2p } defined by a feature set F' and corresponding
to a point in multidimensional space. Each training instance is known to belong to a
class ¢;, member of a set of classes C. The learning phase consists in simply storing
the training data. When a new query instance z, is encountered, its classification is
performed. Firstly, a set (namely k) of nearest neighbors training examples to z, is
retrieved from the memory by the use of a distance/dissimilarity function (typically
the Euclidean distance is used). Once that the neighbors have been selected, the
algorithm assigns to x4, the most common class value among the k nearest training
examples (for more details about the k-NEAREST NEIGHBOR algorithm see Ap-
pendix . An explanation of how the algorithm works is given in Fig. in which
it is assumed that instances are points in a two-dimensional space, the number of the
neighboring elements to select is £ = 5, the measure used is the euclidean distance,
and the set of the classes is C' = {a, b}.

As the k-NEAREST NEIGHBOR algorithm is a lazy learning algorithm, it
never forms an explicit general hypothesis regarding the target function. It simply
computes the classification of each new query instance by the use of a majority
voting criterion. The inductive bias of this algorithm corresponds to an assumption
that the classification of an instance x, will be most similar to the classification of
the other instances that are nearby w.r.t. the chosen dissimilarity /distance function.
The crucial aspects of the k-NEAREST NEIGHBOR algorithm are: the value of the
parameter k, determining the number of similar training instances to chose and the
effectiveness of the dissimilarity measure used for selecting the training instances.

21

The accuracy of the algorithm strictly depends from them.

This thesis investigates the application of instance-based learning methods in
the Semantic Web context that is a relational setting. Particularly in Sect. an
extension of the k-NEAREST NEIGHBOR algorithm applied to ontological knowl-
edge is presented. The application of such algorithm to expressive knowledge bases
such as ontologies is not straightforward at all. Indeed, k-NEAREST NEIGHBOR
algorithm, in its classical setting, is applied to propositional knowledge bases, con-
sequently described by very low expressive representation languages. The usage of
a more expressive representation language requires the availability of new similarity
measures able to exploit such expressive power. For this reason a set of seman-
tic similarity and dissimilarity measures for Description Logics have been defined in
Chapt.[d Moreover, in order to cope with ontological knowledge, two main problems
have to be taken into account: non-disjointness of the classes (rather a multi-class
classification problem) and the Open World Assumptionlﬂ that is typically made in
the Semantic Web. On the contrary, in the classical k-NEAREST NEIGHBOR set-
ting, classification is performed with classes assumed to be disjoint and an implicit
Closed World Assumption (all that is not explicitly stated is false) is made.

Some effort in applying nearest neighbors methods to more expressive knowl-
edge representation (namely more rich symbolic representations) and/or relational
setting have been made in the literature [4, 190, [7, 202] [72]. Anyway, to the best
knowledge of the writer, there is no developed work defining nearest neighbor meth-
ods that can be applied to ontological representations.

The developed relational k-NEAREST NEIGHBOR algorithm (see Sect.
classifies individuals of an ontology with respect to the concepts therein or with
respect to new complex concept definitions built (on the fly) from the reference
ontology. It can be effectively used for improving several different tasks such as:
making the ontology population a less time consuming task, improving the retrieva]E
of a concept defined in an ontology or of a new query concept. Indeed, as will be
experimentally shown in Sect. [5.1.1] classifying instances in an ontology by analogy
w.r.t. the neighbors makes possible to enable the induction of new knowledge (new
assertions non logically derivable). Such new assertions can be used as suggestions
to the knowledge engineer that has only to validate them rather than manually
create assertions. Moreover these assertions augment the amount of the information
returned by the concept retrieval inference service computed only in a deductive
way.

1Gee Sect. [1.1.2| for the meaning of Open World Assumption.
15See Sect. [2.3.2 for a formal definition of retrieval which is a DL inference.

22

Clustering

Hierarchical Partitional

Single Complete Square Graph Mixture Mode
Link Link Error Theoretic| | Resolving Seeking

k-means Expectation

Maximization

Figure 1.5: A taxonomy of clustering approaches

1.3.2 Cluster Analysis

Cluster Analysis is the discipline having as a main goal the study and setting of
different methods finalized to the organization of a collection of unlabeled pattern
(usually represented as a feature vector) into meaningful clusters based on a similar-
ity criterion. Other terms synonymous with cluster analysis include: unsupervised
learning [107], numerical tazonomy [186], learning by observation [142]. With the
growing of the results in cluster analysis another goal has been focused, that is to set
up clustering methods able to generate intensional (possibly human readable) de-
scription of the obtained clusters. This methods have been denominated Conceptual
Clustering methods. In the sequel they will be analyzed separately.

Clustering Methods

Given a data collection, clustering algorithms give as output a set of meaningful
clusters obtained by the use of a similarity criterion. Clusters (classes) are collections
of objects whose intra-cluster similarity is high and inter-cluster similarity is low,
namely, pattern within a valid cluster are more similar to each other than they are
to a pattern belonging to a different cluster.

Different approaches for clustering data have been formalized. In Fig.
a taxonomy of the main clustering methods (based on the discussion in [107]) is
shown. At the top level there is a distinction between hierarchical and partitional
approaches. Hierarchical methods produce a nested series of partitions based on
similarity criteria for merging or splitting clusters. The obtained clustering structure
is usually called dendrogram. On the contrary, partitional methods identify the
partition that optimizes a criterion function defined either locally (on a subset of

23

the patterns) or globally (defined over all of the patterns). So a single data partition
is obtained rather than a clustering structure. Partitional methods have advantages
in applications involving large data sets for which the construction of a dendrogram
is computationally prohibitive. On the other side, a problem accompanying the
use of a partitional method is the choice of the number of desired output clusters.
Moreover, partitional algorithms typically run multiple times with different starting
states, in order to find the best configuration.

The simplest and most commonly used partitional clustering algorithm is the
k-means algorithm [141] based on the use of the squared error criterion function
which is the most frequently used. Other approaches belonging to the class of
partitional clustering methods are: those based on graph theoretic (grounded on
the construction of the minimal spanning treﬂ; and the mixture resolving and
mode seeking based algorithms (whose goal is to find the parameters for a supposed
distribution of the patternﬂ. With regard to hierarchical clustering approach,
particularly important are: single link [I86] and complete link [120] algorithms, as
most of the hierarchical clustering algorithms are variants of such algorithms (besides
of the minimum-variance algorithm [204 [153]).

Hierarchical algorithms are more versatile than partitional algorithms even
if last ones are less expensive and so suitable for clustering large data sets. An
analysis of the main algorithms for each category [I08] showed that the single-link
algorithm is suitable to perform clustering on data sets containing non-isotropic
clusters including well-separated clusters, chain-like clusters, and concentric clusters.
On the contrary, the k-means algorithm works well only on data sets having isotropic
clusters, furthermore it strictly depends from the choice of the initial £ seeds for
starting the clustering process. Hybrid algorithms have been developed [154] in
order to exploit the good features of both categories.

This thesis focuses on the single and complete link algorithms and their ap-
plication to the SW context (more specifically to SWS), in order to improve the
efficiency of the resource (service) discovery process. This choice has been motivated
by the fact that the single and complete link algorithms are considered suitable for
clustering non-large amount of data with very few information available [108].

The Single-Link and the Complete Link are hierarchical agglomerative cluster-
ing algorithms, generally applied to feature vector representations. They are called
agglomerative because they start the clustering process by considering every pattern
in a distinct cluster. Successively they merges clusters together on the ground of an
adopted similarity function, until a stopping criterion is satisfied. They differ in the
way the similarity between a pair of clusters is characterized. In the single-link algo-

16See [208] for more details.
17See [108] for more details.

24

R =

s

Figure 1.6: The dendrogram obtained using the single-link algorithm

rithm, the distance between two clusters is the minimum of the distances between
all pairs of patterns drawn from the two clusters (one pattern from the first cluster,
the other from the second). Conversely, in the complete-link algorithm, the distance
between two clusters is the mazimum of all pairwise distances between patterns in
the two clusters. In both cases, two clusters are merged to form a larger cluster
on the ground of the minimum distance criteria (for more details about single-link
and complete-link algorithms see Appendix . As these algorithms make use of the
hierarchical methodology, their return a dendrogram as output that represents the
nested grouping of patterns and the similarity levels at which grouping changes. An
example of dendrogram, obtained from the single link algorithm, is shown in Fig.[1.6]
A, B, C, E, F and G are labels of the corresponding patterns. The dendrogram can
be broken at different levels to yield different clustering of the data.

A dendrogram can be effectively used in order to perform the resource dis-
covery. Indeed, rather than match every available resource to find the requested
one, clustered resources, represented by a dendrogram, can be explored by follow-
ing the dendrogram paths that satisfy the match condition. However, in order to
do this, intensional cluster descriptions could be useful. On the contrary, complete
link and single link algorithms return only clustered data without any intensional
descriptions. To reach this goal conceptual clustering methods are necessary.

Conceptual Clustering Methods
The problem of determining the meaning of the obtained clusters is simply left to the
researcher in the presented algorithms. This represents a significance disadvantage.

Indeed, a researcher analyzing data may be typically more interested in creating

25

clusters that, besides of being mathematically well defined, also have a meaningful
conceptual interpretation.

The difficulties in determining intensional cluster definitions are mainly due to
the used measures that are typically numerical measures of object similarity that
takes into account all pattern features but are contezt-free, namely they do not take
into account the ”environment” surrounding the objects of which similarity have
to be measured, useful for characterizing objects configurations. Consequently, the
resulting clusters (classes) do not necessarily have a simple conceptual description
and may be difficult to interpret them. Moreover, such an approach could not be
fully meaningful in cases in which only some attributes are relevant for describing
object similarity.

First efforts for generating intensional cluster descriptions have been made
by Diday et al. in [63]. They define a compact cluster description in terms of
clusters prototypes or in terms of representative patterns as the centroid. However,
this kind of descriptions do not take into account the context or concepts useful
to characterize objects configurations. Such limitations have been overcome by
conceptual clustering in which a configuration of objects forms a class only if
it is describable by a concept from a predefined concept class. The main works
introducing conceptual clustering are [144), [145] and [146] in which CLUSTER/2,
that is one of the most famous conceptual clustering system, has been presented.

Conceptual clustering is defined as the process of constructing a concept net-
work characterizing a collection of objects, with nodes marked by concepts describing
object classes and links marked by the relationship between the classes. Conceptual
clustering methods are distinguished from ordinary data clustering by generating a
concept description for each generated class. In conceptual clustering it is not only
the inherent structure of the data that drives the cluster formation, but also the de-
scription language available to the learner. Thus, a statistically strong grouping in
the data may fail to be extracted by the learner if the prevailing concept description
language is incapable of describing that particular regularity.

There is another important aspect solved by the conceptual clustering meth-
ods that is the use of similarity measures grounded on: 1) the characteristics of the
considered objects; 2) the surrounding context; 3) the concepts representing exist-
ing cluster descriptions. This is because, the treatment of the context is not the
unique aspect that has to be taken into account for obtaining meaningful cluster
descriptions. Indeed, also a context-sensitive measure{r_g] as that proposed in [92] is

18The measure is the reciprocal of the mutual distance. To determine the mutual distance of an
object A to B, objects in the collections are ranked w.r.t. their distances (generally the Euclidean
distance) to A, and then w.r.t. their distances to B. The mutual distance from A to B is the sum
of the rank of A w.r.t. B, and the rank of B w.r.t. A.

26

Figure 1.7: An example of Conceptual Clustering

not sufficient for reaching this goal. The reason is that such measure is concept-
free, namely it does not depend from any external concepts which might be useful
to characterize object configurations. Consequently methods that use these kinds
of measures may be fundamentally unable to capture the ”Gestalt properties” of
object clusters, namely properties that characterize a cluster as a whole and that
are not derivable from properties of individual entities. In order to detect such
properties, the clustering method must be equipped with the ability to recognize
configurations of objects that correspond to certain ”concepts”. To illustrate this
aspect, a famous problem of clustering point is shown in Fig. [[.7. If a human
analyze this figure he/she will typically describe the observed points as ”arranged
in two diamonds”. Thus, the point A and B, although closer to each other than
the other points, will be placed in separate clusters. The human solution involves
partitioning the points not on the basis of pairwise distance, but on the basis of
concept membership. This is the underlying idea of conceptual clustering. Indeed,
from the viewpoint of conceptual clustering, the ”similarity” between two point A
and B depends not only on those points and surrounding points (£), but also on
a set of concepts C' which are available for describing A and B together. In [144]
such measure is called conceptual cohesivenesﬂ and it is expressed as a function:
ConceptualCohesiveness(A, B) = f(A, B, E,C)

where A and B are two considered objects, E is the neighborhood of A and B and
C' is the set of concepts available for describing data to cluster.

Hence, besides of the generation of intensional cluster descriptions, the other
major difference of conceptual clustering methods w.r.t. numerical taxonomy meth-
ods lies in the extension of the notion of similarity measure between objects into a
more general notion of ”conceptual cohesiveness” that takes into account not only
the properties of individual objects, but also their relationship to other objects and
their relationship to some predetermined concepts characterizing object collections.

This Thesis focus on the realization of conceptual clustering methods applied to
ontological knowledge in order to improve the resource discovery process. The appli-
cation of the illustrated clustering methods to expressive data descriptions requires

19(See 144, [146] for more details about conceptual cohesiveness measure.

27

non trivial efforts. First of all, suitable measures, able to exploit the expressiveness
of the language have to be considered and most complex descriptions have to be
managed. In Sect. three clustering algorithms for ontological knowledge will
be presented. The first one is a conceptual clustering algorithm grounded on the
agglomerative hierarchical approach. It iteratively computes the similarity between
objects, by the use of the similarity measures proposed in Chap. 4] and merge the
two most similar objects in one cluster, hence, by the use of DL non-standard infer-
ences (see Sect. an intensional description of the obtained cluster is defined and
the objects in the cluster are discarded. The process stop when all available objects
are in a unique cluster. The other two developed methods are an extended version
of the single-link and complete link algorithms able to cope with ontological knowl-
edge. For this reason, similarity/dissimilarity measures for ontological knowledge
(presented in Chap. {4 are used. The stop criterion is given by collecting all ele-
ments in a unique cluster. Once that the dendrogram of the clustering is obtained,
an intensional cluster description at each clustering level is generated, by the use of
DL non-standard inferences.

Clustering algorithms are often used to speed up the resource retrieval process
in presence of very large data sets or to increase the efficiency of the decision making
task. In [I74], a large collection of documents is clustered and each of the clusters
is represented using its centroid. In order to retrieve documents relevant to a query,
the query is matched with the cluster centroids rather than with all the documents.
In [69] clustering methods are used to perform indexing of large data collection and
so improve the efficiency of the decision making task.

This thesis propose a way to improve the service discovery process of semantic
web services (see Sect. by the use of the realized clustering algorithm for on-
tological knowledge. Service discovery is the process responsible for searching and
finding an available service able to satisfy a request among a set of provided services.
Nowadays this process is performed by matching the request against all available
provided services. Obviously, the efficiency of the discovery task degrades with the
increasing of the amount of available services. The idea, that will be presented in
Sect. [5.2.2] consists in firstly clustering the provided services jointly with the inten-
sional cluster descriptions of every node of the obtained dendrogram. Hence, the
matching procedure could be performed w.r.t. the intensional description of the
nodes in the dendrogram rather than w.r.t. all available service descriptions. In this
way, in the best case, it is possible to reduce the number of matching from linear
(in the number of available services) to logarithmic. All the implication of the case
will be analyzed in Sect. [5.2.2]

28

1.4 Objectives of the Dissertation

The Semantic Web represents the new vision of the current web. It is a Web of
enriched machine-readable content (called metadata), in which the semantics of
web-resources is encoded in a machine-interpretable form. The SW goal is to make
resources, available on the Web, not only human-readable but also machine-readable
and machine-interoperable. The realization of the SW vision requires interdisci-
plinary research involving: Knowledge Representation, Databases, Software Engi-
neering, Natural Language Processing, Machine Learning (ML) besides of business
aspects and applications. Nevertheless, as Rudi Studer highlighted during the last
edition of the International Semantic Web Conferencd®®, ML has a great poten-
tial w.r.t. the necessity of the Semantic Web research unfortunately not yet really
exploited.

A goal of this thesis is to apply ML methods to the Semantic Web and Semantic
Web Services fields in order to improve reasoning procedures, induce new knowledge
not logically derivable and improve the efficiency and effectiveness of tasks such as
ontology population and service discovery and ranking. Nevertheless, as seen in
Sect. [1.3] most of ML methods need of (dis-)similarity measures able to determine
the (dis-)similarity value among the considered resources. Unfortunately, assessment
of similarity values among complex concept descriptions (as those in the ontologies),
is a field that has not been deeply investigated (as also asserted by Borgida et al.
in [29]). Hence, in order to reach the goal, a set of (dis-)similarity measures for
ontological settings is defined.

The considered knowledge representation language are Description Logics (DL),
which represent the theoretical foundation of the OWL Language, that is the stan-
dard ontology representation language. Hence, the set of defined (dis-)similarity
measures are formalized with respect to such representation languages and most of
all ALC logic, even if measures for ALN logic and language independent measures
are also defined.

Such measures applicable to ontological knowledge may be used to define new
and/or modified ML methods for ontological representations. This thesis inves-
tigates and set up various learning methods and algorithms. The first learning
algorithm defined is an instance-based classifier able to classify individuals w.r.t.
concepts asserted in an ontology. The realization of such algorithm requires to solve
important problems: how to cope with the Open World Assumption typically made
in the SW, and how to cope with the non-disjointness of the classes (concepts) with
respect to the classification is performed. The solutions to these problems besides

20see http://iswc2006.semanticweb.org/program /keynote_studer.php for the slides of the presen-
tation (ISWC 2006)

29

of the algorithm definitions are illustrated in Sect. [5.1.1]

The realized classifier may be used to enforce the computation of the concept
retrieva]@. Indeed, asking for the instances of an existing concept in an ontology,
it returns a set of instances induced from the Knowledge base, besides of the set of
instances that are asserted in the knowledge base or that can be derived. It performs
a form of approximate reasom'nglﬂ grounded on induction, retrieving concept asser-
tions, even in presence of inconsistent knowledge bases. As argued by Hitzler et al.
in [100], approximate reasoning techniques are fundamental for obtaining scalable
systems, even if the price to be paid could be unsoundness or incompleteness (or
both); anyway this is done in a controlled and well-understood manner that allows
to assess the quality of the induction made by the approximate reasoner.

On the ground of the way in which the classifier performs the concept retrieval,
it may be used also to improve the query concept tasks. Indeed, in the same way,
the classifier could be used for determining the extension of a new query concept,
defined in terms of existing concept in the considered ontology. Furthermore, the
induced assertions could be employed to make the ontology population task less time
consuming. Indeed, they can be provided as suggestion to the knowledge engineer
that has simply to validate the induced knowledge rather than manually write all
the assertions.

Such a classifier has been realized in a double version: extending the k-nearest
neighbor algorithm to work on ontological knowledge and by integrating a defined
relational kernel function for ontological knowledge in an existing Support Vector
Machine available on the Web.

In this thesis, conceptual clustering algorithms applicable to ontological knowl-
edge are also presented (see Sect. . Specifically, extensions of the complete-link
and single-link algorithms applied to DLs knowledge bases are formalized. The main
characteristic of these formalizations is the construction of intensional definitions for
the obtained clusters by the use of DL non-standard inferences. Moreover, another
conceptual clustering algorithm is formalized. It is an iterative agglomerative hier-
archical clustering algorithm: at each step the two most similar elements are found
and merged in a unique cluster. Then an intentional cluster description is generated
and the elements belonging to the cluster are discarded. The process stops when
all elements are merged in a cluster. All three algorithms return a tree as output
of the clustering process that can be used for improving retrieving and indexing se-
mantically annotated resources. Specifically, this thesis focuses the improvement of
the service discovery task exploiting clustering methods for ontological knowledge.

21See Sect. for more details about concept retrieval.
228ome example of approximate reasoning are: non-monotonic reasoning, paraconsistent reason-
ing and resolution-based reasoning. See [I00] for more details.

30

Once that provided services able to satisfy a request are discovered, a desirable
situation for the requester would be to have a rank of the selected services based on a
fixed criterion. Currently most of the methods simply return a flat list of discovered
services. Following the DLs-based framework for describing services proposed by
Grimm et al. in [93], a service description (particularly for the service requests)
characterized by the distinction between Hard Constraints i.e. constraints that have
necessarily to be satisfied, HC for short and Soft Constraints i.e. constraints that
can be optionally satisfied, SC for short is presented in this thesis (see Sect. .
Hence, a ranking procedure is proposed. It ranks the most semantically similar
services to the request and satisfying both HC and SC in the highest positions,
while services less semantically similar to the request and/or satisfying only HC are
ranked in the lowest positions (see Sect. . In this way the requester can find
the proper service in a more efficient and effective way and also the negotiation
process could result less complex.

1.5 Chapter Summaries

This PhD Thesis aims at providing a set of semantic (dis-)similarity measures appli-
cable to ontological knowledge expressed in Description Logic and to formalize some
learning methods to be applied in the Semantic Web and Semantic Web Services
contexts. It is organized as follow.

Chapter [l| provides an overview the Semantic Web and Semantic Web Services,
defining what currently is intended with these expressions and the issues related to
them. Hence, the learning problem in Machine Learning is presented as well as an
overview of the main learning methods. The applications of learning methods to
the Semantic Web and Semantic Web Services are briefly presented.

In Chapter [2| the reference language for the knowledge representation is pre-
sented. Particularly, Description Logics are analyzed jointly with the reasoner ser-
vices they offer.

Chapter [3] reviews previous works on (dis-)similarity measures assessment in
propositional and relational setting. Specifically, the main approaches for deter-
mining (dis-)similarity functions are analyzed. They include: measures based on
geometrical models, path distance measures, feature matching measures, Informa-
tion Content based measures, measures based on alignment and transformational
models, relational kernel functions, and first measure proposals for DLs. Hence, the
reasons of the necessity of defining new measures for assessing similarity between
elements expressed in Description Logics are briefly explained.

In Chapter 4] a set of semantic (dis-)similarity measures for concept descrip-

31

tions and individuals expressed in Description Logics and particularly in ALC and
ALN logics are presented. Moreover, some language independent measures are also

defined.

Chapter || presents similarity based learning methods applied to the Semantic
Web and Semantic Web Services contexts. Specifically, some classifiers for individu-
als with respect to classes (concepts) defined in an ontology or with respect to new
concepts built on the fly are presented. Two different classifier are presented. One is
developed as a modified version of the k-nearest neighbor algorithm applied to on-
tological knowledge. Another is obtained by integrating a relational kernel function
with an existing Support Vector Machine, available on the Web. Moreover cluster-
ing methods are presented in order to improve the efficiency of the Semantic Web
Service discovery. Hence, a ranking procedure for ranking services selected by the
discovery process is proposed. It ranks provided services on the base of constraints
hardness and similarity criterion with respect to the request.

Chapter [6] presents conclusions and further research directions. It discusses
the main contributions and drawbacks of the presented work and proposes lines for
future research.

32

Chapter 2

Description Logics

Research in the field of knowledge representation and reasoning is usually focused on
methods for providing high-level descriptions of the world that can be effectively used
to build intelligent applications. In this context, "intelligent” refers to the ability of
a system to find implicit consequences of its explicitly represented knowledge. Such
systems are therefore known as knowledge-based systems.

Description Logics (DLs) is the name for a family of knowledge representation
(KR) formalisms. By the use of such formalisms, the knowledge referring to an ap-
plication domain (the "world”) is described by first defining the relevant concepts of
the domain (its terminology), and then by specifying object properties and concept
assertions occurring in the domain (the world description).

Description Logics descend from the so-called ”structured inheritance network
representations” [32) [33], which were introduced to overcome the ambiguities of the
early semantic networks [I87, B34] and frames [I149], and which were first realized
in the system KL-One [35]. The following ideas, first put forward in Brachmang
work on structured inheritance networks [32], have largely shaped the subsequent
development of the DLs:

e The basic syntactic building blocks are atomic concepts (unary predicates),
atomic roles (binary predicates) and individuals (constants)

e The expressive power of the language is restricted in that it uses a rather small
set of (epistemologically adequate) constructors for building complex concepts
and roles

e Implicit knowledge about concepts and individuals can be inferred automati-
cally by the use of inference procedures.

e Adoption of the open-world assumption

33

The semantics of concepts is defined in terms of the set-theoretic interpretation.
A concept is interpreted as a set of individuals while roles are interpreted as sets of
pairs of individuals. The domain of interpretation can be chosen arbitrarily, and it
may be infinite.

DLs distinguish features are the formal, logic-based semantics, the emphasis
on reasoning as a central service, and the open-world assumption. Particularly, rea-
soning is the mechanism that allows to infer implicit knowledge from the knowledge
that is explicitly contained in the knowledge base. DLs support inference patterns
that occur in many applications of intelligent information processing systems, and
which are also used by humans to check and understand the world. An exam-
ple of inference is the classification of concepts and individuals. The classification
of concepts determines subconcept/superconcept relationships (called subsumption
relationships in DL) between the concepts of a given terminology. Hence, a termi-
nology can be structured in the form of a subsumption hierarchy. The classification
of individuals (or objects) determines whether a given individual is an instance of a
certain concept (i.e. whether this instance relationship is implied by the description
of the individual and the definition of the concept). It provides useful information
on the properties of an individual.

In the remainder of this chapter an overview of syntax and semantics for the
whole family of DLs will be given. Moreover the main standard and non-standard
DL inference services will be presented. In this chapter, just the necessary results
for gaining the minimal awareness of DL basic theory are reported; a thorough
exploration of 20 years of DLs research can be found in [8]. In order to avoid the
citation of the same reference many times, for this chapter the following convention
will hold: all definitions, propositions and results have been drawn from [8] where
not differently indicated.

2.1 Knowledge Representation in DL

The realization of knowledge systems involves two primary aspects. The first consists
in providing a precise characterization of a knowledge base. This involves precisely
characterizing the type of knowledge to be specified to the system as well as clearly
defining the reasoning services the system has to provide. The second aspect con-
sists in providing a rich development environment where the user can benefit from
different services that can make his/her interaction with the system more effective.

As regard building a knowledge base, it is important to distinguish between:
the intentional knowledge that is the general knowledge about the problem domain,
and the extensional knowledge, which is specific of a particular problem. So, a DL

34

knowledge base is comprised by: a "TBoz” and an "ABoz”. The TBox contains
intensional knowledge in the form of a terminology (hence the term ”TBox”, even
if ”taxonomy” could be also used). It is built through declarations that describe
general properties of concepts. It mainly represents the vocabulary of an application
domain. The ABox contains extensional knowledge, also called assertional knowl-
edge (hence the term " ABox”), namely knowledge that is specific to the individuals
of the domain of discourse. Intensional knowledge is usually thought not to change,
to be "timeless” in a way, while extensional knowledge is usually thought to be
contingent, or dependent on a single set of circumstances, and therefore subject to
occasional or even constant change.

In the following the notion of TBox and ABox are formalized. A TBox con-
tains elementary descriptions that are atomic concepts and atomic roles. Complex
descriptions can be built from them, inductively, by the use of concept constructors.
Such complex concept descriptions can be named by the use of a symbolic name; it
represents an abbreviation of the complex concept description. The basic form of a
declaration in a TBox is a concept definition, that is, the definition of a new concept
in terms of other previously defined concepts. Such definitions are called termino-
logical axioms; they makes statements about how concepts and roles are related to
each other. For example, a woman can be defined as a female person by writing
the following declaration: Woman = Person M Female. Such a declaration is usually
interpreted as a logical equivalence, which amounts to providing both sufficient and
necessary conditions for classifying an individual as a woman. This kind of axioms
are also called equality axioms. A terminology containing only equality axioms is
called a definitorial terminology.

In a TBox, a symbolic name is defined no more than once. Given a TBox 7, the
atomic concepts occurring in 7 can be divided into two sets, the name symbols Nt
that occur on the left-hand side of axioms and the base symbols B that occur only
on the right-hand side of axioms. Name symbols are often called defined concepts
and base symbols primitive conceptsE].

Equality axioms are much stronger than the ones used in other kinds of knowl-
edge representation which typically impose only necessary conditions. These kind
of axioms are called inclusion axioms. They are used when the knowledge engineer
is not able to precisely define a concept. So, for instance the concept Woman could
be defined, by an inclusion axiom, as: Woman C Person. An inclusion axiom (i.e.
an inclusion whose left-hand side is atomic) is also called specialization.

A set of axioms is called a generalized terminology if the left-hand side of

I'Note that some papers use the notion of ”primitive concept” with a different meaning; e.g.
it is used as synonym of what here is called atomic concept or it is used to denote the (atomic)
left-hand side of concept inclusions.

35

each axiom is an atomic concept and for every atomic concept there is at most one
axiom where it occurs on the left-had side. Hence, a generalized terminology may
contain both equality and inclusion axioms. It is possible to transform a generalized
terminology into a definitorial terminology (see [§] for more details). Moreover a
TBox is called cyclic if it contains at least one cycle, namely if there exists at least
on axioms in which an atomic concept uses itself in its definition (see [8] for more
details), otherwise a TBox is called acyclic. In this dissertation, only acyclic TBoxes
will be considered, where not specified differently.

The ABox represents the world description. In the ABox, it is described a spe-
cific state of affairs of an application domain in terms of concepts and roles. Here,
individuals are introduced by giving them names, as well as, properties of these
individuals are asserted. An ABox contains assertions about individuals, usually
called membership assertions. For example Woman(MARY) states that the indi-
vidual MARY is a Woman and represents a concept assertion. In the same way
an ABox contains role assertions such as hasChild(MARY,JOHN) that specifies that
MARY has a child which is JOHN.

A DL system not only stores terminologies and assertions, but also offers ser-
vices to reason about them. Typical reasoning tasks for a terminology are to deter-
mine whether a description is satisfiable namely non-contradictory and to determine
whether one description is more general than another one, namely whether the first
subsumes the second. The subsumption test allows to organize the concepts of
a terminology into a hierarchy, according to their generality. Reasoning tasks for
an ABox are: to find out whether the set of assertions is consistent and to check
whether the assertions in the ABox entail that a particular individual is an instance
of a given concept description. A concept description can also be conceived as a
query, describing a set of objects one is interested in. Thus, with instance tests it is
possible to retrieve the individuals that satisfy the query.

Satisfiability checks of descriptions and consistency checks of sets of assertions are
useful to determine whether a knowledge base is meaningful or not.

In any application, a Knowledge Representation (KR) system is embedded
into a larger environment. Other components interact with the KR component, by
querying the knowledge base and by modifying it, that is, by adding and retracting
concepts, roles, and assertions. A restricted mechanism to add assertions are rules
(which are an extension of the logical core formalism) is still logically interpreted.

Since Description Logics are a KR formalism, as a KR system should always
answer user queries in reasonable time, in the same way DL researchers are interested
in reasoning procedures that are decision procedures, i.e., unlike, e.g., first-order
theorem provers, these procedures should always terminate, both for positive and
for negative answers. Anyway, the guarantee to have an answer in finite time not

36

imply that the answer is also given in reasonable time. For this reason a lot of
research about DLs concerns the investigation of their computational complexity by
the use of decidable inference problems.

Decidability and complexity of the inference problems depend on the expressive
power of the considered DL. Expressive DLs are likely to have inference problems
of high complexity, or they may even be undecidable. Weak DLs (with efficient
reasoning procedures) may not be efficiently expressive to represent the important
concepts of a given application. Investigating this trade-off between the expressivity
of DLs and the complexity of their reasoning problems has been one of the most
important issues in DLs research.

2.2 Syntax and Semantics

Description logics are a family of knowledge representation languages, fragment of
First Order Logic (FOL). As seen in the previous section, atomic concepts and
atomic roles represent elementary descriptions. Complex descriptions can be built
from atomic concepts and roles, inductively, by the use of concept constructors.
Different description logics are distinguished in the DLs family, by means of the
constructors they provide. In the sequel, various languages from the family of
AL—languages will be discussed, with particular attention to ALE, ALC, ALN
and ALCN DLs. The language AL stands for attributive language, it has been
introduced in [I76] as a minimal language that is of practical interest. The other
languages of this family are extension of AL.

Whatever DL language is considered, it can be defined in terms of two non
empty sets No = {A, B, ...} and Np = {R, S, ...}. Items in N¢ are atomic concepts,
items in Ny are atomic roles. Complex concept descriptions C, D in AL are formed
according to the syntax and semantics presented in Table [2.1]

Table 2.1: AL constructors and their meaning.

Name Syntax Semantics

atomic concept A AL C AT
top concept T AT
bottom concept 1 0
atomic negation ~ —A AT\ Af
concept conjunction CT1D CTnD?
limited existential restriction 3IR.T {a € AT |3b (a,b) € R*}
universal restriction VR.C {a € AT | Vb (a,b) € RT — b € CT}

37

Note that, in AL, negation can only be applied to atomic concepts, and only
the top concept is allowed in the scope of an existential quantification (existential
concept restriction) over a role.

In order to define a formal semantics of AL—concepts, interpretations Z have
to be considered. An interpretation consists of a non-empty set A, representing
the domain of the interpretation, and an interpretation function, which assigns to
every atomic concept A a set A7 C A? and to every atomic role R a binary relation
R* C AT x A?. The interpretation function is then extended to concept descriptions
by means of the inductive definitions presented in Table Moreover two concepts
C and D are defined equivalent (C' = D in symbols), if and only if C* = DZ. In
addition it is possible to extend the interpretation to provide (terminologica]ED TBox
semantics. The interpretation of a TBox amounts to interpreting all of its axioms
and hence all concepts contained therein. Therefore, an interpretation is a model
for a TBox 7 if it satisfies all of its axioms.

Besides of the giving a semantics to the TBox, a semantics to the ABox is
also given, it is an ”open-world semantics”. The semantics to the ABox is given
by extending interpretations to individual names. Considered an interpretation
T = (A%, 1), it also maps each individual name a to an element a? € AZ. In general
it is assumed that distinct individual names denote distinct objects, therefore this
mapping has to respect the wunique name assumption (UNA), that is if a,b are
distinct names, then a’ # b*. The interpretation Z satisfies the concept assertion
C(a) if a¥ € C%, and it satisfies the role assertion R(a,b) if (a%,b?) € RZ%; b is called
role filler of R. An interpretation satisfies the ABox A if it satisfies each assertion in
A; T is a model of A. Finally, 7 satisfies an assertion o or an ABox A with respect
to a TBox 7 if in addition to being a model of « or of A, it is a model of 7. A model
of A and 7 is an abstraction of a concrete world, where the concepts are interpreted
as subsets of the domain as required by the TBox and where the membership of
the individuals to concepts and their relationships with one another in terms of
roles respect the assertions in the ABox. Remembering that a knowledge base K is
defined as I = (7, A) where 7 is a TBox and A is an ABox, an interpretation Z is
a model of K if it is a model of both 7 and A.

More expressive languages than the AL-language can be obtained adding fur-
ther constructors to AL. Different languages are defined, depending from the con-
structors they allow. In Table the list of the possible constructors and their
semantics is reported, while in Table the list of the different languages is re-
ported. For every language, the allowed constructors are shown.

By looking at Tab. [2.2] it is important to note that the full existential quan-

2In case of cyclic TBox, the notion of interpretation make use of a fixpoint semantics; see [§]
for more details.

38

Table 2.2: DL Constructors semantics

Name Syntax Semantics

atomic negation —A, A€ No AT C A?
full negation -C CT C AT
concept conjunction CnD ctnD*
concept disjunction CubD ctuD?
full existential restriction JR.C {a € AT |3b (a,b) € REANb e CT}
at most restriction <nR {ae AT||{be AT | (a,b) € RT} |<n
at least restriction >nR {ae AT||{be AT | (a,b) € RT} |>n
qualified at most restriction ~ <nR.C {a€ AT||{be AT | (a,b) € REAbE CT} |<n
qualified at least restriction ~ >nR.C {a€ AT||{be AT | (a,b) e REAbECT} |>n
one-of {aj,as,..a,} {a€Af|a=a;1<i<n}
has value JR.{a} {be AT | (b,a?) € R}
inverse of R- {(a,b) € AT x AT | (b,a) € R}

tification (or full existential restriction), indicated by IR.C' differs from the limited
existential quantification, indicated by dR.T. Indeed the latter allows only the top
concept in the scope of an existential quantification over a role, while the former
allows arbitrary concepts to occur in the scope of the existential quantifier. In the
same way, it is important to note that atomic negation, indicated by —A, allows to
apply negation only to atomic concepts while full negation, indicated by =C allows
the negation of any concept (atomic or defined). Another interesting difference is
between number restriction, indicated by < n R, > n R, and qualified number re-
striction, indicated by < n R.C, > n R.C. The semantics of the former requires that
the number of instances of R are at least/at most n without any other constraints

Table 2.3: Some AL-languages

DL Name Constructors

ALN —=A,M,VR.C,3R.T,<nR,>nR

ALE ~A,M,YR.C,3R.C
ALEN ALE U{< nR,> nR}
ALC ALE U {~C, L}

ALCN ALC U {<nR,>nR}
SHOIN ALCN U{R}, role hierarchies,
role transitivity, role symmetry,
(inverse) functional properties

39

while the latter require that the number of instances of R having fillers (namely
the second element of the instance of a role) that belong to the concept C are at
least/at most n.

Among the languages of DL family (see Table , some DLs are well known
languages as they have been thoroughly studied in literature or have been employed
in some remarkable application domain. Some examples are: ALN that is the
simplest DL including number restrictions, ALC that is, in its turn, the simplest

allowing for full negation®| and, increasing in expressivity, SHOZN [8,[102] that has
been employed for defining the OWL language (see Sect. |1.1.1)).

2.3 Standard Inference Services

A knowledge representation system based on DLs is able to perform specific kinds
of reasoning. Indeed the purpose of a knowledge representation system goes beyond
storing concept definitions and assertions. As explained in Sect. 2.1} a knowledge
base K = (7,.A) is made by a set of axioms, and so, like any other set of axioms
(such as in first-order predicate logic), I contains implicit knowledge that can be
made explicit through inferences. In the following, DL inferences will be discussed,
starting from inferences for concepts and TBoxes, then inferences for ABoxes, and
finally for TBoxes and ABoxes together. It will turn out that there is one main
inference problem, namely the consistency check for ABoxes, to which all other
inferences can be reduced.

2.3.1 TBox Reasoning

In the construction of a terminology 7, new concepts are defined, likely in terms of
concepts already defined. During this process, it is important to find out whether
a newly defined concept makes sense or whether it is contradictory. Logically, a
concept makes sense if there is an interpretation that satisfies the axioms of 7 (that
is, if there is a model of 7). A concept with this property is said to be satisfiable
w.r.t. 7 and unsatisfiable otherwise. Checking satisfiability of concepts is formally
defined as:

Definition 2.3.1 (Satisfiability) A concept C is satisfiable w.r.t. T if there exists
a model T of T such that CT is nonempty. In this case it is said also that T is a
model of C'.

3 As full negation is available, De Morgans laws for disjunctions can be used [176].

40

Other important inferences for concepts (that can be reduced to (un-)satisfiability)
are: subsumption, checking concepts equivalence and checking concepts disjointness.
They can be formally defined as follow.

Definition 2.3.2 (Subsumption) A concept C is subsumed by a concept D w.r.t.
T if CT C D?* for every model T of T. In this case it is written C Ty D or
7TECLCD.

The subsumption test is the most common inference in DL. One of its most useful
use cases is building up concepts subsumption hierarchies (taxonomies) in order to
organize the concept graph of a TBox for instance in a knowledge base management
system.

Definition 2.3.3 (Equivalence) Two concepts C' and D are equivalent w.r.t. T if
CT = D? for every model T of T. In this case it is written C =7 D or T = C = D.

Definition 2.3.4 (disjointness) Two concepts C' and D are disjoint w.r.t. T if
CT N DY =0 for every model T of T .

If the TBox 7 is clear from the context, the qualification "w.r.t. 7”7 is sometimes
dropped. It is also dropped the qualification in the special case where the TBox
is empty, in this case it is simply written = C' C D if C' is subsumed by D, and
= C = D if C and D are equivalent.

Among the presented inferences, subsumption plays a key role. Indeed it is
sufficient in order to implement and prove the other inferences. This is possible by
reducing these inferences to a subsumption problem.

Proposition 2.3.5 (Reduction to Subsumption) Given two concepts C' and D
it holds that:

o C is unsatisfiable < C' is subsumed by L;
e C and D are equivalent < C' is subsumed by D and D is subsumed by C;

e C and D are disjoint < CT1 D is subsumed by L.

The statements can be defined also with respect to a TBox.

If the considered description languages, besides of intersection, allow for the
use of full negation, it is possible to reduce all inferences to the unsatisfiability
problem [I85].

41

Proposition 2.3.6 (Reduction to Unsatisfiability) Given two concepts C' and
D it holds that:

o (' is subsumed by D < C' T =D is unsatisfiable
o C and D are equivalent < both C'T1 =D and —=C M D are unsatisfiable

e C and D are disjoint < C 11D is unsatisfiable.

The statements can be defined also with respect to a TBox.

Hence, the ability to solve the subsuption test is fundamental for solving any
other inference. For less expressive DLs the so called structural subsumption algo-
rithms were devised. The basis of such algorithms for deciding subsumption is the
syntactical comparison of normal form concepts (see Sect. for more details about
normalization of a concept). Namely, after turning concepts into normal form, the
algorithm returns true if and only if the atomic concepts contained in the top level
conjunction of the potential subsumer appear also in the subsumee and all concepts
in the value restrictions of the subsumers subsume the ones in the corresponding
restrictions in the subsumee.

Structural subsumption algorithms fail to be complete treating description
languages that allow for disjunction, full negation and full existential concept re-
striction. For languages including these constructors, the tableau-approach has to
be used. It is a decision procedure for implementing subsuption test whose corner
stone is given by Prop.[2.3.6] Indeed, in such cases, the reduction of the subsumption
to the satisfiability problem gives the way to implement the subsumption decision
procedure.

Specifically, Tableau algorithm, that can be proved to be a complete and con-
sistent procedure, prove that C' T+ D by testing whether the concept DM —C'is un-
satisfiable in every interpretation of the TBox 7. So Tableau algorithm, differently
from structural subsumption algorithms, decides whether a concept is satisfiable,
rather it returns true, if and only if for any intepretation of a TBox there can exist
a TBox model for the input concept, and gives it out as output. If such model does
not exist, it returns false. Operationally, starting from the input concept of which
satisfiability has to be verified, the algorithm tries to build a model of it, i.e.: an
individual that is an instance of such concept. For more details about tableau and
structural subsuption algorithm see [§].

Note that Prop. and Prop are given considering an empty TBox,
anyway they continue to be valid also in presence of a TBox. This is because, if
a TBox 7 is acyclic it is always possible to reduce reasoning problems w.r.t. 7

42

to problems w.r.t. an empty TBox. This is possible because 7 is equivalent to its
expansion T', where 7" is obtained from 7 by replacing iteratively each occurrence
of a (non-primitive) concept name on the right-hand side of a definition in 7" with
the concepts that it stands for. Since there is no cycle in the set of definitions,
the process eventually stops and ends up with a terminology 7' consisting solely
of definitions of the form A = C” where C” contains only base symbols (primitive
concept names) and no name symbols (defined concept names). 7" is called the
expansion of 7 and the size of the expansion can be exponential in the size of the
original terminology [156].

Considering the way in which the expansion C” of C is obtained, it is straight-
forward to understand that both are interpreted in the same way in any model of 7,
consequently it follows that C' =7 C’. Hence, C is satisfiable w.r.t. 7 iff C” is sat-
isfiable w.r.t. 7. However, C' contains no defined names, and thus C’ is satisfiable
w.r.t. 7 iff it is satisfiable. This yields that

e (is satisfiable w.r.t. 7 iff C’ is satisfiable.

In the same way, if D is another concept, D =7 D’. Thus, C Cy D iff C' Ty D’
and C' =7 D iff ¢/ =7 D'. Again, since C' and D’ contain only base symbols, this
implies that:

e 7TECLCDIiff EC'C D
e TEC=Diff EC' =D
With similar arguments it is possible to show that:
e C and D are disjoint w.r.t. 7 iff C" and D’ are disjoint.

Hence it is possible to conclude that, expanding concepts with respect to an
acyclic TBox allows one to get rid of the TBox in reasoning problems. The reason
of the attention to such aspect is that for developing reasoning procedures it is con-
ceptually easier to abstract from the TBox or, what amounts to the same, to assume
that it is empty, even if this require to pay the computational cost of expanding the
TBox.

2.3.2 ABox Reasoning

A knowledge representation system based on DLs is able to perform specific kinds
of reasoning. Besides of TBox inference services, ABox inference services are also
available. They are useful in order to make explicit assertional knowledge implicitly
contained in the ABox. Specifically, standard reasoning tasks for ABoxes are:

43

e ABox consistency check
e Instance checking

o Retrieval

They are analyzed in detail in the following.

ABox consistency check solves the problem of checking if a new assertion
(concept or role assertion) in an ABox A makes A inconsistent of not w.r.t. a TBox
7. This service is important because the representation of the knowledge in the
ABox (after a TBox 7 has been built and TBox taxonomy and consistency have
been checked) has to be consistent with 7', because otherwise arbitrarily conclusions
can be drawn from it. This means, for instance, that considering a simple TBox
7T = {Woman = Person I Female, Man = Person M —Female}, if the ABox contains
the assertions Woman(MARY) and Man(MARY), the system should be able to find
out that, together with 7, these statements are inconsistent. Formally, by the use
of the presented model theoretic semantics it is said that:

Definition 2.3.7 (ABox Consistency (w.r.t. a TBox)) An ABox A is consis-
tent with respect to a TBox T if there exists an interpretation that is a model of both
A and T. It is simply said that A is consistent if it is consistent with respect to the
empty TBoz.

So, using the example just above, the set of assertions {Woman(MARY), Man(MARY)}
is consistent with respect to the empty TBox because, without any further restric-
tions on the interpretation of Woman and Man, the two concepts can be interpreted
in such a way that they may have a common element. However, the assertions are
not consistent with respect to the presented TBox 7, since in every model of it,
Woman and Man are interpreted as disjoint sets.

Considering Def. [2.3.7 as for TBoxes, also for ABoxes it is simpler to reason
on them having an empty TBox rather than a non empty one. In order to obtain
this simplification, as for TBoxes, it is possible to expand an ABox. Particularly, it
can be defined the ezpansion of an ABox A with respect to a Thox 7 as the ABox
A’ that is obtained from 4 by replacing each concept assertion C'(a) in A with the
assertion C’(a), where C" is the expansion of C' with respect to ’Zﬂ (see Sect. .
In every model of 7', a concept C' and its expansion C” are interpreted in the same
way (see Sect. for more details). Therefore, it is possible to assert that A’ is

4Note that only concept assertions are expanded because the focus is on description languages
that do not provide constructors for role descriptions, hence TBoxes with role definitions (RBoxes)
are not considered.

44

consistent w.r.t. 7 iff A is consistent w.r.t. 7. However, since A’ does not contain
a name symbol defined in 7, it is consistent w.r.t. 7 iff it is consistent. Namely:

e A is consistent w.r.t. 7 iff its expansion A’ is consistent

As for the subsumption, ABox consistency is computed by the means of structure-
based algorithms for less expressive DLs, while for DLs allowing disjunction, full
negation, and full existential concept restriction the Tableau algorithm is used. For
more details see []].

For the sake of simplicity, the definitions of inferences given in the following
will be formalized with respect to ABoxes alone, considering that every inference
w.r.t. a TBox can be reduced to inference about expansion, provided that the TBox
is acyclic.

The instance check is the prototypical ABox inference consisting in checking
whether an assertion is entailed by an ABox. Indeed this is the inference used in
order to allow queries over an ABox concerning concepts, roles and individuals.
Formally:

Definition 2.3.8 (Assertion entailment) An assertion « is entailed by an ABozx
A and it is written A = «, if every interpretation that satisfies A, (i.e. every model
of A), also satisfies c.

If « is a role assertion, the instance check is easy, since the considered descrip-
tion language does not contain constructors to form complex roles. If « is of the
form C(a), it is possible to reduce the instance check to the consistency problem for
ABoxes thanks to the following connection:

o AEC(a)iff AU{=C(a)} is inconsistent.

Moreover, also reasoning about concepts can be reduced to consistency checking.
Indeed as important reasoning problems for concepts can be reduced to deciding
whether a concept is (un)satisfiable (see Prop. [2.3.6), in the same way concept
satisfiability can be reduced to ABox consistency. This is because of the following
connection:

e For every concept C: C' is satisfiable iff C'(a) is consistent

45

where a is an arbitrary individual name}

As a knowledge base is also a way for storing information about individuals,
it is likely to require to know, for instance, all individuals that are instances of
a given concept description C'. This is equivalent to use the description language
to formulate queries on the knowledge base. The possibility of making queries to
a knowledge base for getting the set of individuals that are instances of a certain
concept is called retrieval problem. The retrieval problem can be formally defined
as:

Definition 2.3.9 (Retrieval Problem) Given an ABox A and a concept C, to
find all individuals a such that A |= C(a)

A straightforward algorithm for a retrieval query can be realized by testing for each
individual occurring in the ABox whether it is an instance of the concept C.

Note that for any of the presented inference services the respective complexity
has been not given. This is because it depends on the particular description language
used (i.e. ALE, ALE...). In the next section non-standard inference services for some
particular DLs will be presented, hence the corresponding computational complexity
will be specified.

2.4 Non-Standard Inference Services

The name non-standard inference services refers to a set of reasoning services useful
for the development of knowledge bases but they are typically not provided by DL
Knowledge Reasoners Systems (KRS). The implementation of such services relies on
additional inference techniques that are considered non-standard, because they go
beyond the basic reasoning services provided by DL-KRS (presented in Sect. .
Such new inference services can formally be defined as new types of inference prob-
lems. Non-standard reasoning services can serve to a variety of purposes. For in-
stance they can be used in order to support tasks such as building and maintaining
knowledge bases, or can be used to get information from the represented knowledge.

Among the most useful non-standard inference tasks in DLs there are: the
computation of the least common subsumer, the most specific concept, matching

®Moreover has been showed in [I75] also that ABox consistency can be reduced to concept
satisfiability in languages with the ”set” and the ”fills” constructor, namely languages with one-
of and has-value constructors (see Tab. . Furthermore, in [68] has been showed that if these
constructors are not available in the considered description language, instance check may be harder
than the satisfiability and the subsumption problem.

46

unification of concept descriptions and concept rewriting. They will be analyzed in
detail in the following, focussing, first of all, on the ALC logic and secondarily on
the ALE and the ALN logics, in a way that is functional for this work.

Every non-standard inference has been built to solve a particular problem, in
order to improve the development and the maintainability of the knowledge base.
Particularly, the standard inferences can be applied, after a new concept has been
defined, to find out whether the concept is non-contradictory or whether its place in
the taxonomy coincides with the intuition of the knowledge engineer. However, these
inferences do not directly support the process of actually defining the new concept.
To overcome this problem, the non-standard inference services for computing the
least common subsumer and for computing the most specific concept have been
proposed.

If a knowledge base is maintained by different knowledge engineers, it is nec-
essary to have a tool for detecting multiple definitions of the same intuitive concept.
Since different knowledge engineers might use different names for the ”same” prim-
itive concept, the standard equivalence test may not be adequate to check whether
different descriptions refer to the same notion. The non-standard inference service
performing wunification of concept descriptions tackles this problem by allowing to
replace concept names by appropriate concept descriptions before testing for equiv-
alence. Matching is a special case of unification. It has been used, for instance,
for pruning irrelevant parts of large concept descriptions before displaying them
to the user. Moreover, the non-standard inference performing rewriting of concept
descriptions allows one to transform a given concept description C' into a ”bet-
ter” description D, which satisfies certain optimality criteria (e.g., small size) and
is related (e.g., by equivalence or subsumption) to the original description C'. An
overview of the state of the art of this field and detailed proofs of several of the
results mentioned below can be found in [125].

Approaches for solving the new inference problems are usually based on an
appropriate characterization of subsumption, which can be used to obtain a struc-
tural subsumption algorithmﬁ. At first, the concept descriptions are turned into a
certain normal form, in which implicit facts have been made explicit. This is be-
cause semantically equivalent (yet syntactically different) descriptions can be given
for the same concept. Anyway they can be reduced to a canonical form by means
of equivalence-preserving rewriting rules [I51) [§]. Then, the structure of the normal
forms is compared appropriately. This is one of the reasons why most of the results
on non-standard inferences are restricted to languages that can be treated by struc-
tural subsumption algorithms. In the following the definitions of ALE, ALC ALN

SNote that most of the results on non-standard inferences are restricted to languages that can
be treated by structural subsumption algorithms.

47

normal form concept descriptions (see [16], 151, |]) are reported (see Tab. for
their available constructors). First of all, some notations are necessary to access the
different parts of a concept description C':

e prim(C) denotes the set of all (negated) concept names occurring on the top-
level conjunction of C

e if there exists a value restriction of the form VR.C” on the top level conjunction
of C, then valg(C) := C’, otherwise valg(C) := T;

o exp(C) :={C"| there exists IR.C" on the top-level conjunction of C'}.

Definition 2.4.1 (ALE Normal Form Concept Descriptions) [36] An ALE con-
cept description C is in ALE normal form iff

1. ifC=LthenC=_1L;if C=T thenC=T
2. otherwise, C 1s of the form
C= [] An[] [VRvalz(C)n [] 3RE

Aeprim(C) ReNg Ecexpr(C)

An ALE concept description C' is normalized by applying the following equivalence
preserving rewriting rules modulo associativity and commutativity of conjunction:

VR.EMNVR.F —-VR(ENF) VR.EMN3R.F —-VREN3IR(ENF)
VRT —T ENT—FE
dR.1 — L ENT — 1

AM—-A— 1 for each A € N¢

Note that, due to the second rule in the first line, this normalization may
lead to an exponential blow-up of the concept descriptions. Every ALE concept
description can be turned into an equivalent concept description in normal form.

Definition 2.4.2 (ALC Normal Form Concept Descriptions) [36/ An ALC con-
cept description C' is in ALC normal form iff

1.ifC=LthenC=_1;ifC=T thenC=T
2. otherwise, C' is of the form C'=CyU---UC, with
Ci= [] An[] |VRvalg(C) [] 3RE
Aeprim(C;) ReNg Ecexp(Cy)

48

C; # L and every concept description in exg(C;) and valg(C;) is in ALC
normal form, for alli=1,--- n.

Every ALC-concept descriptions can be turned into an equivalent concept descrip-
tion in ALC-normal form. Unfortunately, this may take exponential time. As for
the ALE concept normalization, also for ALC, concept normalization is obtained
by the use of rewriting rules (see [§] for more details).

Definition 2.4.3 (ALN Normal Form Concept Descriptions) A concept de-
scription C is in ALN normal form iff

1.ifC=LthenC=1;,ifC=T thenC=T
2. otherwise C' is of the form
c= [] Pn[](VRCrN=nRNO<mR)

Peprim(C) ReNR
where Cr = valgr(C), n =ming(C) and m = maxg(C) and

e ming(C) =max{n e N|CC (>n.R)} (always a finite number);

e maxp(C) =min{n € N | C C (< n.R)} (if unlimited then maxg(C) =
00).

The complexity of the normalization process is polynomial [8]. About rewriting
rules for obtaining an ALN concept normal form see [I51), §].

In the following all cited non-standard inferences will be analyzed. Particular
attention will be posed to determining the least common subsumer of concepts and
the most specific concept of a considered individual, besides, in the context of con-
cepts rewriting, a particular attention will be given to the approximation of ALC
concept descriptions to ALE concept descriptions.

2.4.1 The Least Common Subsumer

Intuitively, the least common subsumer of a given collection of concept descriptions
is a concept description that represents the properties that all the elements of the
collection have in common. Particularly, it is the most specific concept description
(w.r.t. the subsumption relationship) that subsumes the given concept descriptions:

Definition 2.4.4 (Least Common Subsumer) Let L be a description language.
A concept description E of L is the least common subsumer (lcs) of the concept

descriptions Cy,--- ,Cy in L (les(Ch, -+, Cy) for short) iff it satisfies:

49

1. C;C E forallt=1,--- ,n and

2. E is the least L-concept description satisfying (1), i.e. if E' is an L-concept
description satisfying C; T E for alli=1,--- n, then EC FE'.

From the definition it is straightforward to see that the lcs is unique up
to equivalence.

It should be noted, however, that, depending on the DL language, the lcs need
not always exist. This can happen for two different reasons:

1. there may be several subsumption incomparable minimal concept descriptions

satisfying (1) of Def. [2.4.4}

2. there may be an infinite chain of more and more specific descriptions satisfying
condition (1).

It is easy to see that, case (1) of not existence of lcs does not occur for DLs allowing
for conjunction of descriptions.

The lcs inference has first been introduced by Cohen et al. in [42] as a new in-
ference task useful for different reasons. First, finding the most specific concept that
generalizes a set of examples is a common operation in inductive learning, called
learning from examples. Moreover, experimental results concerning the learnability
of concepts based on computing the lcs have been presented in [43]. Another reason
for considering the lcs is to use it as an alternative to concept disjunction. The
idea is to replace disjunctions like Cy U --- U C,, by les(Cy,---,Cy). In [42, 30]
this operation is called knowledge base vivification. Although, in general, the lcs
is not equivalent to the corresponding disjunction, it is the best approximation of
the disjunctive concept within the available DL. Using such an approximation is
motivated by the fact that, in many cases, adding disjunction would increase the
complexity of reasoning. Observe that, if the DL already allows for disjunction, it
has les(C1,...,C,) = Cy U --- U C,. This means that, for such DLs, the lcs could
not be really of interest. Finally, as proposed in [9] [12], the lcs operation can be used
to support the "bottom-up” construction of DL knowledge bases. In contrast to the
usual "top-down” approach, where the knowledge engineers first define the termi-
nology of the application domain in the TBox and then uses this terminology for
describing individuals in the ABox, the "bottom-up” approach proceeds as follows.
The knowledge engineer first specifies some ”typical” examples of a concept to be
defined, using individuals in the ABox. Then, in a second step, these individuals are
generalized to their most specific concept (see Sect. . Finally, the knowledge
engineers inspects and possibly modifies the concept description obtained in this
way.

20

The methods for computing the least common subsumer are restricted to rather
inexpressive description logics, not allowing for disjunction (and thus not allowing
for full negation). This is because, as seen above, endowed languages allowing dis-
junction, the lcs of a collection of concepts is simply their disjunction, and so nothing
new can be learned from it, as it represents a very poor generalization of the consid-
ered concepts. In contrast, for languages without disjunction, the lcs extracts the
”commonalities” of the given collection of concepts. Particularly, the computation
of the lcs for these less expressive languages, characterizes , as first step, the sub-
sumption of the concept descriptions (which is typically a structural subsumption),
hence the lcs is computed as a new concept containing the structural commonalities
of the considered concept collection. In the following, the computation of the lcs
for the ALE description logic will be shown (for more details see [12]). Specifically,
it will be shown that the lcs for ALE concept descriptions always exists and can
effectively be computed. The attention will be mostly focused on computing the
les of two concept description, since the les of n > 2 concept descriptions can be
obtained by the iterated application of the binary lcs operation.

Computing Least Common Subsumer in ALE logic

Computing the least common subsumer in ALE requires, as seen, first of all a
characterization of ALE subsumption concepts, hence the lcs is given exploiting
the characterization. Specifically, this characterization is given in terms of product
of description tree, hence, the notion of ALE-description tree is clarified in the
following.

An ALE-description tree is a way of representing a normalized ALE-concept
by means of a tree structure. An ALE-description tree has the form G = (V| E, vy, 1),
where G is a tree with root vy whose edges vrw € E are labeled with primitive roles
r € Ng and whose nodes v € V' are labeled with sets [(v) of primitive concepts from
N¢. The empty label correspond to the top-concept. Given an ALE concept C in
normal form, it can be translated in an ALE-description tree as follows. The set of
all (negated) primitive concepts occurring in the top-level conjunction of C' yields
the label [(vg) of the root vy, and each existential and/or universal restriction i.e.
Jr;.C; and/or Vr;.C; in this conjunction yields an r;-successor (resp. a Vr;-successor)
that is the root of the tree corresponding to C;. For example, for the ALE concepts
in normal form:

C:=Vr.LN3s.(PN3Ir.Q)
D := (Vr.(Ir.PMN 3Ir—P)) N (Is.3r.Q)

ol

Genz LR Lo @

m{l} wazd P} wy M W

C AT

-1-_3;{.-_?'} e ;{ F'-j- -r.r.-.::{—P'J- 'E'-E:{Q}

Figure 2.1: ALE-description trees

the corresponding ALE-description trees Go and Gp is depicted in Fig. [2.1]

Note that every ALE description tree G = (V, E, vy,1) can be translated into
an ALE concept description Cg (in normal form), so there is a 1 — 1 correspondence
between ALE concept descriptions and ALE-description trees.

Each ALE-description tree G = (V, E, vy, (), obtained obtained as just shown,
satisfies the following properties [12]:

e For each node v € V and each primitive role » € Ny, v has at most one
outgoing edge labeled Vr.

o Let {vrw,vVrw'} C E, and let C' denote the ALE-concept description corre-
sponding to the subtree of G with root w, and C’ the one corresponding to the
subtree of G with root w’. Then C C C".

e Leaves in G labeled with the empty set cannot be reached via an edge labeled
Vr for some r € Ng, i.e., Cg does not contain a subconcept of the form Vr. T

o If the label of a node contains L, then its label is {L} and it is a leaf that
cannot be reached by an edge with label » € Ng

The meaning of these rules is immediate, thinking of the equivalence preserving
rewriting rules for obtaining an ALE-concept in normal form, reported after Def.

In order to characterize the subsuption of ALE-concepts, the notion of homo-
morphism between ALE-description trees is necessary.

Definition 2.4.5 A homomorphism from an ALE-description tree H = (Vig, Eg, wo, ly)
into an ALE-description tree G = (Vig, Eq, vo, lg) is a mapping ¢ : Vg — Vi such
that:

o2

1. p(wo) = vg
2. lg(v) Cla(e(v)) orlag(p(v) ={L}) for allv e Vy

3. for all vrw € Ey,
either p(v)rp(w) € Eg, or p(v) = p(w) and lg(e(v)) = {L}

4. for all vWrw € Ey,
either p(v)Vro(w) € Eg, or o(v) = p(w) and lg(p(v)) = {L}.

Considering Fig. and mapping wy onto vg; wy, wsy, and ws onto vy; wy onto
vg; and ws onto w3, the conditions of Def. are satisfied, i.e. this mapping yields
a homomorphism from Gp into G¢.

By the use of the notion of homomorphism between ALE-description trees,
the subsumption[] in ALE can be characterized in a sound and complete way [12].

Theorem 2.4.6 Let C, D be two ALE-concept descriptions and Go, Gp the corre-
sponding ALE-descriptions trees. Then C T D iff there exists a homomorphism
from Gp into Go

Note that the presented subsumption is structural. The characterization of
the subsumption by homomorphisms allows to determine the lcs by means of the
product of ALE-description trees [12].

Definition 2.4.7 (Product of ALE-description trees) The product G x H of
two ALE-description trees G = (Vg, Eg, vo,lg) and H = (Vig, Eg, wo,ly) is defined
as follows.

o Iflg(vg) ={L} (ly(we) = {L}), then G x H is defined by replacing each node
winH (vin G) by (vo,w) ((v,wg))

o Otherwise G X H 1is defined by induction on the depth of the trees. Let G,
denote the subtree of G with root v. (vy,wy) is defined to be the root of G x H,
labeled with lg(vo) NIy (wy). For each r-successor v of vy in G and w of wy
in H, an r-successor (v,w) of (v, wq) is obtained in G x H, that is the root
of the product of G(v) and H(w). In the same way a Vr-successor (v,w) of
(vo, wo) is obtained in G X H if v is the Vr-successor of vy in G and w the one
of wy in H, and (v,w) is the root of the product of G(v) and H(w).

"Subsumption in ALE is an NP-complete problem [65].

23

Considering the example in Fig. the product G- x Gp can be obtained from Gp
by replacing wq with (vg, wp), w; with (vy,w;) for i = 1,2, 3, wy with (vq, wy), and
ws with (vs, ws).

The lcs in ALE is characterized as follows [12].

Theorem 2.4.8 Let C, D be two ALE-concept descriptions and G, Gp their cor-
responding ALE-description trees. Then Cg.xg, is the lcs of C' and D.

Note that the size of the lcs of two ALE-concept descriptions C, D may be
exponential in the size of C, D.

The lcs algorithm is formalized below. Let C' a normalized ALE-concept de-
scription. names(C) (resp. names(C')) denotes the set of (negated) concept names
occurring in the top-level conjunction of C, roles?(C) (resp. roles”(C')) denotes the
set of role names occurring in an existential (value) restriction on the top-level of
C, and restrict?(C)) (resp. restrict’(C)) denotes the set of all concept descriptions
occurring in an existential (value) restriction on the role r in the top-level conjunc-
tion of C'. Given C, D normalized ALE-concept descriptions, if C' (D) is equivalent
to L, then lesars(C, D) = D (lesace(C, D) = C). Otherwise, it has:

|CSA£5(O, D) = |_| A I_l -B T

Aé€names(C)Nnames(D) —~Becnames(C)Nnames(D)

M ['] ['] Ir.lessce(E, F) T

reroles? (C)Nroles? (D) Ecrestrict?(C),Fcrestrict? (D)

M |_| |—| Vrlesace(E, F)

reroles” (C)Nroles” (D) Ecrestricty (C),F€restrict? (D)

Note the presented way for computing the lcs in ALE uses a syntactic-based
approach and does not consider the TBox to which the concept descriptions refer.
In [16], the notion of good common subsumer (gcs) is introduced. It is a good
approximation of the lcs in ALE that considers the TBox to which the concepts for
computing the lcs refer. Moreover, in [10] it is shown that, in general, the ges is
more specific than the lcs. Furthermore it is proved that the gcs always exist for
acyclic definitorial TBoxes. Hence in case of generalized TBoxes (c.f.r. Sect. [2.1)),
they have to be translated into acyclic definitorial TBoxes for computing the gcs.

o4

2.4.2 The Realization Problem and the Most Specific Con-
cept

The realization problem is the dual inference with respect to retrieval (Sect. .
Given an individual @ and a set of concepts, the realization problems consists in
finding the most specific concepts (msc for brevity) C' from the given concept set,
such that A = C(a) where A is the reference ABox. Specifically, the most specific
concepts are those that are minimal with respect to the subsumption ordering C.
Realization can be used in systems that generate natural language. Indeed if terms
are indexed by concepts, a term as precise as possible can be found for an object
occurring in a discourse. Moreover, based on the computation of the msc of a set
of assertions about individuals, it could be possible to incrementally construct a
knowledge base (see [10]). The msc of an individual is formally defined as follow.

Definition 2.4.9 (Most Specific Concept) Let K = (7,.A) a knowledge base, a
an individual and C' a concept. C' is the most specific concept of a (msc(a) = C for
short) iff

1. A7 C(a)
2. For all concepts D, Al=r D(a) = CLCr D

Generalizing, it is possible to define the msc of a set of individuals.

Definition 2.4.10 Let K = (7,.A) a knowledge base. A concept description E is
the most specific concept (msc) of the individuals ay,--- ,a, defined in an ABox A

(msc(ay, - -+ ,a,) for short) iff
1. A= E(a;) foralli=1,...,n and

2. E is the least concept satisfying (1) i.e., if E' is a concept description satisfying
AE E'(a;) foralli=1,--- ,n then EC E'

The process of computing the msc can be split into two subtasks: comput-
ing the most specific concept of a single individual, and computing the least com-
mon subsumer of a given finite number of concepts. In fact, it is easy to see that
msc(ay, -+ ,a,) = les(msc(ay), -+ ,msc(ay)).

Similarly to the computation of the lcs, also for the msc computation, the
techniques proposed rely on compact representations of concepts using DLs with
low expressiveness. This computation are built either following the structural sub-
sumption approach, or though the definition of a well-suited normal form.

95

It is important to note that the msc needs not to exist in every DL allowing
for existential and qualified number restrictions [125]. The most common solution
to solve this problem in the literature is to approximate the msc (see |43, 123]). The
reason of this choice is that often the existence of the msc is guaranteed by allowing
cyclic definitions that, on the other hand, represent a problem for most of the other
reasoning tasks. So, the most common strategy is to impose a depth bound in the
recursive exploration of relationships among individuals. In [125] Kiisters shows that
in £L there is an algorithm that yields to the msc of an individual in polynomial
time, provided that it exists. Anyway, it is also proved that the same result is not
guaranteed considering more expressive DLs. In the following a set of problems and
(partial) solutions for computing msc for more expressive DLs are reported.

Given an ABox A, in order to simplify the notation it is denoted:
IndA the set of all the individuals in A

CA(a) ={C | C(a) € A}

IR(a) = {R | R(a,b) € A}

RF(R,a) ={b € Ind(A) | R(a,b) € A}

RF*(R,a) = {b € Ind(A), R*(a,b) € A where R* is the closurdf| of R}

The idea underlining the msc computation consists in characterize the instance
of a concept. For DLs not allowing disjunction such characterization is similar to
those of the structural subsumption, by the use of description trees (see Sect. .
In this case the notion of individual graph is used.

Definition 2.4.11 (Individual Graph) Let A be an ABox and a € Ind(A). The
individual graph of a (G(a) for short) can be defined as the tuple (V, E,l) as follows:

o V is the set of vertices of G: V = {a} URF(R,a) for any R € IR(a)

o FE is the set of edges of G: E = {viRvy | vi,vs € Ind(A), R role, such that
R(vi,v0) € A ANvy,ve € RF(R,a)}

o [is a labeling function that maps each vertex a (indiwidual) with the set CA(a)

In [125] it is shown that, considering DLs for which structural subsumption is
complete, the instance checking (see Sect. [2.3.2)) for an individual a w.r.t. a concept
C can be computed as a homomorphism between the description tree built for the

8see [8] for more details about role closure

o6

concept C' (also called concept graph) and the individual graph G(a). Conversely,
it is possible to obtain a concept graph starting from an individual graph. The only
inconvenience is given by the presence of cycles. A possible solution is to translate
every cycle by inserting a new node instead of drawing an edge back on the loop
node, and deciding a depth bound in exploring cyclic paths. The concept obtained
in this way is called C*. Tt represents the k-bound approximation of msc(a). Using
this translation, Baader et al. [I1] show the following result:

Theorem 2.4.12 (Most specific Concept in £L logic) Let A be an EL ABoz,
a € Ind(A) and k > 0. Then C* is the k-bound approzimation of msc(a). If there
are no cycles in G(a) then there exists k such that C* = msc(a) otherwise there
exists no msc(a).

Considering DLs that allow for (even atomic) negation, the main problems
are given by the existence of the Open World Assumption (OWA). Indeed, if an
individual, say a has been asserted to belong to each concept of a given set of
atomic concepts (say C'S C Np), there is no clue to say that it does not belong
to some concept P € Np \ CS. In order to better explain this problem let be
consider the following example. Let C' = P M 3r.(P M 3r.—P) a concept and let
A ={P(a), P(by),~P(bs), R(a,by), R(a,bs), R(b1,bs), R(ba, b3)} the reference ABox.
Building the concept graph Go for C' and the individual graph G(a) for a, it is
easy to verify that does not exist any homomorphism between G- and G(a) though
A = C(a). This is due to the fact that there is no information about the membership
(or non membership) of individuals, for instance like by, to primitive P. In such cases,
the suggestion is to perform the so called atomic completion of the individual, that
consists in adding, for every primitive concept P and for all nodes in the individual
graph either P or =P to their labels. If after every atomic completion, the concept
graph of C' is homomorphic to the completed individual graph then A = C'(a) (and
the converse holds as well).

In [105] the following definition and sketch of the algorithm for computing an
approximation of the msc (msc* for short) is presented.

Definition 2.4.13 (approximated msc) Given any ABox A and an individual
a € Ind(A), the approzimation of msc(a) is given by

msc*(a, SEEN) = Real(a) M RoleCncpt(a, SEEN) M CycleCncpt(a, SEEN)

where

57

Real(a) = |_| C
)

CeCA(a

[
RoleCncpt(a, SEEN) = |—| JR.msclInt(a, SEEN)
ReIR(a)

bERF(R,a)\SEEN

[J
CycleCncpt(a, SEEN) = |_| dR.T
ReIR(a)
beRF(R,a)NSEEN
and
[
mscint(a, SEEN) = [] msc*(b, SEENU {a, b})
bERF(R,a)

AE3R.Mmsc* (b,SEEN)(a)

where the parameter named SEEN is a set of individuals. msc*(a,0) is denoted
simply by msc*(a).

The msc* operator takes as input an individual and a set of individuals and
returns a concept consisting of a group of three main conjuncts. Real(a), which is the
left-most conjunct in the definition represents the intersection of all the concepts in
CA(a) that is the set of all the concepts to which the starting individual a is asserted
to belong to. The middle conjunct, RoleCncpt(a, SEEN), is the intersection, for any
role R involving a i.e. R € IR(a), of all the qualified existential restrictions. Such
role R can be obtained considering any R-filler b of R (i.e. b € RF(R,a)) provided
that such b is not in SEEN, that means that b has not been already visited. The
concepts in the scope of such existential restrictions are again msc, but computed,
this time, on b. In the same time the individuals {a,b} are added to the SEEN
set. For each b the restrictions IR.msc*(b) are refined conjoining as many msc’s
as possible (as long as a belongs to this kind of restriction). The third conjunct,
CycleCncpt(a, SEEN), is the intersection of as many IR.T as the number of R-fillers
of a, for any role R € IR(a), that appear also in the SEEN set.

The presented definition allows to compute an approximation of the msc both
in case of acyclic ABoxes and in case of cyclic ones. This guarantee to have an ap-
proximation of the msc if for the case in which an exact msc needs not exists (namely
for DLs allowing for existential and qualified number restrictions). Furthermore, the
obtained concept from the msc* computation can be easily translated into a concept

o8

graph that can be mapped by means of a homomorphism to the individual graph
G(a), hence the individual will be an instance of the msc approximation.

The msc* can be computed considering a fixed bound, as suggested by Cohen
and Hirsh in [43]. They fix an integer k as the maximum path length in explor-
ing relationships starting from the desired individual and the output is a concept
containing at most k universal value restrictions on the roles the individual (and
recursively its R-fillers) takes part to. It is straightforward to see that this approach
is the same one to which def. has been inspired. For clarity the following ex-
ample is considered. Let K = (7, A) be a knowledge base, with 7 = {AC T,B C
T,CCT,3RTLC T} and A = {A(a), B(b),C(c), R(a,b), R(b,c), R(c,a)} and let
k := 2 be the fixed value for the bound k. The computation of the concept D
(following [43] and def. as the k-bound approximation for the individual a
will be: D = ANVR.(BMVR.C). This result can be easily understood noting that:
a belongs to the extension of A (k= 0)

a takes part to role R with b as filler and b belongs to the extension of B (k = 1)
b takes part to role R with ¢ as filler and ¢ belongs to the extension of C' (k = 2).

Looking at the last example two observations can be made:

e asking for £ > 3 the next step in computing D will consist in considering
R(c,a) which implies to examine a again, consequently cycling on the same
assertions. Therefore the bound k assures to avoid falling in infinite loops that
might easily occur even in tiny ABoxes as the one in the example;

e asking to a reasoner whether a actually belongs to concept D (computed in
the example), it would answer with a discouraging "no”. This is due to the
Open World Assumption (OWA).

Differently from the Closed World Assumption (CWA), usually adopted in
database systems, DL reasoners are allowed to infer the truth of universal (or nu-
meric) restrictions only if this is directly stated in the knowledge base, and not
solely on the ground of the known assertions in the A-Box. Indeed, it may always
happen that new assertions contradict an erroneous generalization. This is true
also when dealing with negated restrictions (anything that is not asserted or is not
provable cannot be assumed as false - negation as failure). To solve this problem
three different solution can be considered:

e building up the k-bound abstraction using existential restrictions instead of
universal ones (this ensures that the individual always belongs to its abstrac-
tion);

e building up the k-bound abstraction using universal restrictions and adding
required assertions to the knowledge base;

29

e employing an epistemic operator [67] for relativizing an assertion to what is
currently known to the knowledge base.

Note that choosing the second alternative, considered the concept D built in the
previous example, the following assertions should be added to the ABox: {VR.(BN
VR.C)(a),VR.C(b)} . This recalls a default reasoning setting (for more details about
default reasoning see [§]), in which some unexpressed knowledge, if consistent with
pre-existing one, may be added to the knowledge base.

2.4.3 Computing Unification and Matching of Concept De-
scriptions

Unification and matching are non-standard inferences that allow to replace certain
concept names by concept descriptions before testing for equivalence or subsump-
tion. This capability turns out to be useful when maintaining (large) knowledge
bases, generally made by different knowledge engineer.

Unification

Concept unification [14] is an operation that can be regarded as weaking the equiva-
lence between concept expressions. The introduction of this non-standard inference
has been motivated by the following application problem: if several knowledge engi-
neers are involved in defining new concepts, and the knowledge acquisition process
takes rather long, it can happen that the same (intuitive) concept is introduced
several times, often with slightly differing descriptions. In this context, testing for
concept equivalence could be not enough to find out whether, for a given concept
description, there already exists another concept description in the knowledge base
describing the same notion. In order to overcome this problem the idea is that, given
a concept description, some parts of it could be replaced by other concept names in
order to make such concept definition equivalent to another. In order to clarify this
notion an example is shown. Let be considered the following concept descriptions
that are intuitively supposed to be equivalent:

VhasChild.VhasChild.Rich M YhasChild.Rmr
Acr M YhasChild.Acr M VYhasChild.VhasChild.Rich

Under the assumption that Rmr stands for ”Rich and married rich” and Acr stands
for ” All children are rich”, and replacing the concept name Rmr by the description
Rich M VhasSpouse.Rich and Acr by VhasChild.Rich yields the descriptions

60

VhasChild.VhasChild.Rich 1 VhasChild.(Rich M YhasSpouse.Rich)
VhasChild.Rich M VhasChild.VhasChild.Rich M VhasChild.VhasSpouse.Rich

which are clearly equivalent. Thus it is possible to conclude that both descriptions
are meant to express the concept ”All grandchildren are rich and all children are
rich and married rich”.

A substitution of concept descriptions for concept names that makes two con-
cept descriptions C, D equivalent is called a unifier of C' and D. Of course, before
testing for unsatisfiability, it has to be decided which of the concept names the uni-
fier is allowed to replace. These names are called concept variables, to distinguish
them from the usual concept names that cannot be replaced. In the above example,
the concept names Acr and Rmr were considered to be variables, whereas Rich was
treated as a (non-replaceable) concept name. Concept descriptions containing vari-
ables are called concept patterns. Formally, a substitution (in a certain DL) is defined
as a mapping from the concept variables into the set of concept descriptions. An
example is the substitution {Rmr — RichMVhasSpouse.Rich, Acr — VhasChild.Rich}
used in the example. The application of a substitution can be extended from vari-
ables to concept patterns. Currently, the results for unification have been formalized
only for DLs with low expressivity (see [14] [I5] for more details).

The intuition underlining concept unification is that, in order to find possi-
ble overlaps between concept definitions, certain concept names can be treated as
variables, hence, via unification, can be discovered that two concepts (possibly inde-
pendently defined by distinct knowledge designers) are equivalent. The knowledge
base may consequently be simplified by introducing a single definition of the unifiable
concepts. Of course, it can happen that concept descriptions unifiable in this way
do not really mean to represent the same notion. However, an unsatisfiability test
can be used to suggest to the knowledge engineer possible candidate descriptions.

Matching

Matching can be seen as a special case of unification, where one of the two expres-
sions to be unified do not contain variables [14] [15]. Thus, a matching problem is
of the form C' =" D where C is a concept description and D is a concept pattern.
A substitution o is a matcher of this problem iff C' = (D). Moreover, it is possi-
ble to define matching (as well as also unification) by the use of the subsumption
relation rather than the equivalence. The first approach is named matching modulo
equivalence, while the second one matching modulo subsumption [2§].

A matching problem modulo subsumption is of the form C' T’ D, where C
is is a concept description and D is a concept pattern. Such a problem asks for
a substitution o such that ¢ T o(D). Since o is a solution of C C* D iff o

61

solves C' =" C'M D, then matching modulo subsumption can be reduced to matching
modulo equivalence and hence seen as a unification problem. Anyway, in the context
of matching modulo subsumption, the interest is in finding the "minimal” solutions
of C' " D, namely o should satisfy the property that there does not exist another
substitution 0 such that C' C (D) C o(D).

Matching modulo equivalence was introduced to help filtering out unimpor-
tant aspects of complicated concepts appearing in large knowledge bases, and to
specify patterns for explaining proofs carried out by DL systems [139]. For exam-
ple, matching the concept pattern D = Vresearchinterest. X against the description
C' = Vpets.CatlMVresearchinterest. Al Vhobbies.Gardeninn yields the minimal matcher
o = {X — Al}, thus finding the scientific interest described in the concept and
consequently filtering out the other aspects described by C. Another motivation
for matching as well as unification can be found in the area of integrating data or
knowledge base schemata represented in some DL. In fact, an integrated schema can
be viewed as the union of the local schemata along with some interschema assertions
satisfying certain conditions. Finding inter-schema assertions can be supported by
solving matching or unification problems, as proposed in [27].

2.4.4 Concept Rewriting and Approximation across DLs

Approximation in DLs was first mentioned by Baader, Kiisters and Molitor in [I3]
as possible new inference. Approximating a concept, defined in a DL, means to
translate this concept to another concept, defined in a second, typically less expres-
sive, DL, such that both concepts are as closely related as possible with respect to
some relation such as equivalence or subsumption (generally subsumption is used).
Formally, concept approximation consist in: given a concept C' defined in a certain
DL L, (”s” for source) find a concept D, the upper/lower approximation of C, in a
DL £, ("d” for destination) such that i) D subsumes/is subsumed by C, and ii) D
is minimal /maximal concept in £, (w.r.t. subsumption) with this property.

There is a number of different applications of this inference problem (see [36]
for an overview). A first example is represented by the translation of Knowledge
Bases which may become necessary to port KBs across different knowledge repre-
sentation systems or to integrate different KBs. In these cases approximation could
be used to (automatically) translate a KB written in an expressive DL into another
(semantically closely related) KB described by a less expressive DL. Another im-
portant application of the approximation is enabling non-standard inferences for
expressive DLs. In fact, as seen previously, non standard inferences in DLs are
mostly restricted to quite inexpressive DLs (such as those that do not allow for
concept disjunction). By first approximating KB written in expressive DLs to a

62

less expressive DL, non-standard inferences, that cannot be applied to the original
knowledge base, could be applied to the approximated knowledge base. In this way,
even some information may be lost, it is possible to have some (even most general)
results rather than to have no results.

Approximation can be also used for computing commonalities between concepts.
Indeed, as seen in Sect. [2.4.1] typically the Least common subsumer is employed
for this task, but for DL allowing disjunction it is simply given by the union of the
considered concept descriptions, that gives very low information about concept com-
monalities. So, a possible solution is given by approximating concept descriptions to
less expressive DLs not allowing for disjunction and hence compute the lcs on such
approximated concepts. In this way concept commonalities can be made explicit.
As it will be shown in Sect. this thesis uses concept approximation for finding
commonalities between ALC concept descriptions.

Computing approximation from ALC to ALE concept descriptions

In this section it is illustrated how ALC concept descriptions can be approximated
by ALE concept descriptions [36]. The notion of concept approximation is formally
defined.

Definition 2.4.14 (Concept approximation) Let £y and Lo be two DLs, and
let C be an L1- and D be an Lo concept descriptions. Then, D is called upper
(lower) La-approzimation of C (D = approx,,(C') for short) if

1. CCD(CCD)

2. D is minimal (mazimal) with this property, i.e., C T D" and D' C D (D C D")
implies D' = D for all Ly concept descriptions D’.

In this section the attention will be concentrated on upper ALE-approximations
of ALC concept descriptions.

First of all it is important to note that approximations need not exist in gen-
eral. Indeed, let £; = {M} and £y = {U} be two DLs allowing respectively only
conjunction and disjunction operators, and let A and B be two concept names. It
is straightforward to see that there does not exist an upper level £;-approximation
of the Ly-concept description A LI B. In the same way there does not exist a lower
Lo-approximation of the £;-concept description A M B.

Moreover, approximations need not be uniquely determined. Indeed, looking
at the example just shown, it is easy to see that both A and B are lower Li-
approximations of the concept definition A LI B.

63

Anyway, considering ALE DL, since it allows for conjunction, it immediately
follows that if upper ALE-approximations exist, they are uniquely determined up
to equivalence (as shown in [36]). In the following, the algorithm for obtaining an
ALE-approximation, starting from an ALC concept description is presented. It is
based on the structural characterization of subsumption between an ALC-concept
description, say C', in ALC-normal form and an ALE-concept description, say D.

Theorem 2.4.15 (Subsumption between an ALC and an ALE concept) Let
C =], C; be an ALC concept description in ALC normal form and D an ALE

concept description. Then
e CLDiffC=1LorD=T
or, for all t =1,...,n it holds that
1. prim(D) C prim(C;) and
2. for all D' € ex(D) there exists C' € ex(C;) such that C' Mval(C;) & D" and
3. val(C;) C val(D).

The ideq’] is that D is compared to every disjunct C; in C. This comparison,
in turn, is very similar to the structural characterization of subsumption between

ALE-concept descriptions (see Sect. [2.4.1)).

Given the notion of subsumption between an ALC and ALE concept, it is now
possible to show the algorithm ”c-approx 4,.¢” for computing the approximation.

c-approx 4 ¢ (In: ALC concept C') : Out: upper ALE-approximation of C

1. If C = 1, then c-approx 4,.¢(C) := L
2. If C =TT, then c-approx 4¢(C) := T

3. Otherwise, transform C into ALC-normal form C U --- U C,, and return

c-approx 4. (C) = |_| AN
AeNiL, prim(C5)
M |_| Fr.les{c-approx 4. (Ci Mval(C;)) | 1 < i <n} M
(€410, Cl) Eex(Ch) X X eX(Chn)
M Vr.les{c-approx 4.¢(val(C;)) | 1 < i < n}

9See [36] for the proof of the Theorem [2.4.15

64

As an example, let be two ALC concepts in normal form:
Cy = (Ir ANvVr.B)U (Ir ANIr.BNVr.A)
Co=3Ir ANIr.BNVr.(-AU-DB)
It can be verified that:
c-approx 4.¢(C1) = 3Ir.(AN B)
c-approx 4 0¢(Cy) = Ir.(AMN-=B) N 3r.(BM-A)
Hence, given an ALC concept description C, the c-approx 4, algorithm finds an
ALE concept description which is as specific as possible and satisfies the conditions
of Theorem [2.4.15] Moreover, in [36] the following important result is proved.

Theorem 2.4.16 (Approximation existence) For every ALC concept descrip-
tion C' the ALE-approrimation exists. It is uniquely determined up to equiva-
lence and can be computed by the c-approx,pe algorithm, i.e., approx,,.-(C) =

c-approx 4.¢(C).

Anyway in [36] it is also proved that the approximation of ALC concept de-
scriptions may grow exponentially and the algorithm for computing such approxi-
mation has a double-exponential time complexity.

65

66

Chapter 3

Similarity and Dissimilarity
Measures: Related Work

Defining similarity and dissimilarity measures is a topic that has been investigated
for a long time and that plays a key role in different areas such as Natural Language
Processing, Information Retrieval, Information Integration and Machine Learning.
As Quine observed [162] ” Similarity is fundamental for learning, knowledge and
thought, for only our sense of similarity allows us to order things into kinds so that
these can function as stimulus meanings. Reasonable expectation depends on the
similarity of circumstances and on our tendency to expect that similar causes will
have similar effects.” Similarity thus is fundamental in making predictions. Indeed
this task is generally grounded on the assumption that similar things usually behave
similarly. In Sect. some learning methods, namely instance-based and clustering
methods, have been presented and the importance that (dis-)similarity measures
have for them has been highlighted.

In this chapter similarity and dissimilarity measures will be formally defined,
and the set of properties that they satisfy will be explained. Hence the main models,
proposed in the literature, for (dis-)similarity assessment will be presented.

Definition and evaluation of similarity and dissimilarity measures have been
largely studied in the literature. They can be classified with respect two different
dimensions. One is related to the kind of knowledge representation to which they
are applied. The other is related to the way in which similarity and/or dissimilarity
is computed.

Along the dimension of the representation, it is possible to distinguish: mea-
sures applied to feature vectors, measures applied to strings, measures applied to
sets, measures applied to trees and measures applied to clauses (see [165] for a
complete overview).

67

Along the dimension of the way for computing (dis-)similarity, it is possible
to distinguish: measures based on geometric models, measures based on feature
matching, measures based on semantic relations, measures based on Information
Content, measures based on alignment and transformational models, and measures
based on contextual information (following [169] 80]).

With respect to the representation dimension, the distinction that will be made
is between propositional setting and relational setting. Hence, for each representa-
tional setting, the different models for computing (dis-)similarity will be presented.
For each model, the most prominent measures in the literature will be analyzed. In
the last part of this chapter, the attention will be focused on definition of measures
applied to knowledge expressed in Description Logics i.e. in the ontological setting
(see Sect. [L.1.1)). It is important to note that main interest of this thesis is about
assessing (dis-)similarity among concept definitions and among individuals, hence,
aspects such as assessing similarity between ontologies will be not treated exten-
sively. Even if such topic represents an interesting open issue for researchers w.r.t.
tasks such as ontology mapping and alignment, it is not directly linked with the
main motivations of this thesis.

3.1 Defining Similarity and Dissimilarity Measures

Similarity and dissimilarity measures are applied to objects of a considered domain
in order to determine ”somehow” how much they are similar or how much difference
there is among them. From here it will be used the term similarity measure for
determining the amount of similarity among objects and dissimilarity measure for
determining the amount of difference between objects.

Intuitively, defining a similarity measure requires two steps. In the first step, a
set of similarity values, e.g. the set {far, near} or the set {equal, similar, dissimilar,
totally different}, has to be defined. A commonly used set of similarity values is
the set of the real number R (where one has to specify whether larger values mean
”more similar” or "more dissimilar”). The second step consist in defining a function
from a pairs of objects to the set of similarity values. Following [20], [165] formal
definitions of similarity and dissimilarity measures can be given.

Definition 3.1.1 (Similarity Measure) Let D be a set of elements of a consid-
ered domain and let (V, <) be a totally ordered set. A function s: D x D —V isa
similarity function iff there exists an element Oy € V and 1y, € V' such that:

e the function is positive: Yr,y € D : s(x,y) > Oy

68

e the function is reflexive: Yx € D : s(x,z) = 1y and Yy € DAz # y
s(a.2) > s(z,9)

e the function is symmetric: Vx,y € D : s(x,y) = s(y,)

Definition 3.1.2 (Dissimilarity Measure) Let D be a set of elements of a con-
sidered domain and let (V, <) be a totally ordered set. A functiond: D x D — V is
a dissimilarity function iff there exists an element Oy € V' such that:

e the function is positive: Yx,y € D : d(x,y) > Oy

e the function is reflezive: Yo € D : d(z,x) = Oy and Yy € DAz # y
d(z,z) < d(z,y)

e the function is symmetric: Vx,y € D : d(z,y) = d(y, z)

In the sequel the terms measure and function will be used interchangeably as
is usual in the literature. For the next presentation of the function properties, only
the dissimilarity measure will be considered, since it is almost the same in the case
of the similarity measure. In general, it will be denoted with s a similarity measure
and with d a dissimilarity measure.

Definition 3.1.3 (Strictness property) Let D be a set of elements of a consid-
ered domain and let (V, <) be a totally ordered set. Let d be a dissimilarity function
on D with minimum value Oy € V. The function d is strict iff:

Ve,ye D : d(z,y)=0,=>x=y

The strictness property ensures that the minimum dissimilarity value is as-
signed only if the considered element are equal. If the strictness property is not
satisfied then also elements that are different could assumes the lowest dissimilarity
value.

Definition 3.1.4 (Triangle inequality property) Let D be a set of elements of
a considered domain and let (V,+, <) be a totally ordered set equipped with an order-
preserving addition operation such that (V,+) is a commutative group. Let d be a
dissimilarity function on D. The function d satisfies the triangle inequality iff:

Ve,y,z € D d(z,y) +d(y,z) > d(x, 2)

69

The idea of the triangle inequality is that the distance from an object A to an
object C, is not greater the sum of distances from A to another object B and from
B to C. Measures that satisfy the triangle inequality often produce more intuitive
results and also allow many optimizations in algorithms exploiting theml']

Definition 3.1.5 (Pseudo-metric) A dissimilarity function is a pseudo-metric
(or equivalently a semi-distance) iff it satisfies the triangle inequality.

Definition 3.1.6 (Metric) A pseudo-metric is a metric (or equivalently a dis-
tance) iff it satisfies the strictness property.

Definition 3.1.7 (Normalized Dissimilarity Function) Let D be a set of ele-
ments of a considered domain. Let d be a dissimilarity function on D with value in
R. Then d is a normalized dissimilarity function if

Ve,ye D @ 0<d(z,y) >1
where d(z,z) =0 and Ve € D,3y € D : d(z,y) =1

Note that, given a dissimilarity function d it is always possible to construct a
dissimilarity function d’ that is a normalized dissimilarity function.

About the opportunity that a measure satisfies the presented properties a long
debate has been developed among researchers that is currently opened. Mathemati-
cians assert the necessity that measures satisfy the presented properties because
they guarantee the completeness of the measure from a theoretical point of view.
On the contrary, researchers from other fields, such as Machine Learning, psychol-
ogy and cognitive science assert that some properties are not only useless but also
inappropriate. For instance, Tversky [197] argues that similarity is not always a
symmetric relation. The same opinion is shared in [71] where the argumentation is
that in the naive view of the world, distance as well as similarity, particularly if it is
defined in terms of a conceptual distance, is frequently asymmetric. However, Rada
et al. [163] argue that, when similarity is limited to a feature comparison process,
it is symmetric. They believe that the asymmetric problem of similarity found by
Tversky [197] is a result of the existence of another asymmetric relation. For exam-
ple, a metaphor relating two concepts by a ”like” relation involves a selective rather
than an unconstrained comparison process.

Also the importance of the triangle inequality has been discussed. Indeed while
the supporters of triangle inequality argue that it is fundamental both to produce

n [64], for example, a speed-up of a hierarchical algorithm is presented in case in which the
used measure satisfies the triangle inequality.

70

more intuitive results and also for allowing many optimizations in algorithms (as
shown in [64]) another line of research, as in [108, 90], claims that triangle inequality
is not necessary to guarantee good algorithm results.

Another characteristic of the similarity assessment often discussed in the lit-
erature is the relation between the notion of similarity and difference. In general,
it is assumed an inverse relation between similarity and difference. Anyway Tver-
sky [197] considers this assumption inaccurate. Specifically, he argues that, even
if an increase in the measure of the common features increases the similarity and
decreases the difference whereas an increase in the measure of distinction decreases
similarity and increases difference, the relative values of these two semantic relations
may differ. Indeed, while subjects may pay more attention to the similar features
in the assessment of similarity among objects, they may pay less attention to their
distinctive features in the assessment of difference [197, [122].

As will be shown in Ch.[4] this thesis focuses on the definition of (dis-)similarity
measures following Def. and Def. [3.1.2] so considering the symmetric property
important for the fixed goal. On the contrary, the triangle inequality is not consid-
ered fundamental for defining a good measure, therefor no attention will be posed
to satisfying this property. Moreover, even if not directly used, it is assumed that
the notion of dissimilarity is just the contrary of the similarity and vice-versa.

3.2 Similarity and Dissimilarity Measures in the
Propositional Setting

Distance based methods were mainly developed for the propositional setting. Con-
sequently, a large literature exists on determining (dis-)similarity measures in this
setting. Such measures are useful in Machine Learning area and particularly for
clustering and instance based learning methods.

When a propositional (or equivalently said attribute-value or features-vector)
language is used, examples are represented as rows in a single table. More formally,
the space of possible examples is defined as the product & = Dy x Dy x ... D, of
the n domains Dy, D, ... D, of the attributes, hence, each example E is an n-tuple
(x1,Ta,...2,) € £ of fixed length, where each position has a fixed type.

The best known distance measures on vector space are based on the geometric
model and the feature-matching model. In the following such approaches will be
analyzed separately.

71

3.2.1 Measures based on Geometric Model

Geometric models of similarity have been among the most influential approaches
for assessing similarity [40], 193, 194]. In this approach objects are seen as point in
an n-dimentional space. The similarity between a pair of objects is considered to
be inversely related to the distance between two objects points in the space. The
best known distance measures on vector space based on geometric model are the
Minkowski measure, the Manhattan measure and the Euclidean measure.

Definition 3.2.1 (Minkowski Distance) Let Dy, Dy, ..., D, be sets and let (V,+,<)
be a commutative group on which a total order is defined. Let D = Dy X Dy X ... D,

be the set of all vectors x = (x1, T, ...xy,) such that x; € D; fori=1,2...n. Then,
giwven q € N*, the distance functiond: D x D — 'V

dx.y) =[x~y [l= [Zm - y»q] q

=1

1s called Minkowski Distance, where n is the number of dimensions, x; is the value
of the item w.r.t. dimension i and q is a parameter that allows different spatial
metrics to be used.

Definition 3.2.2 (Euclidean Distance) A Minkowski distance where ¢ = 2 is
called Euclidean Distance

Geometrically speaking, the Euclidean distance assigns, as distance between two
points, the length of the straight line connecting the points.

Definition 3.2.3 (Manhattan Distance) A Minkowski distance where ¢ = 1 is
called Manhattan Distance

In the Manhattan distance, the notion of distance involves a city-block metric where
the distance between two points is the sum of their distances on each dimension
("short-cut” diagonal paths are not allowed to directly connect points differing on
more than one dimension).

Lemma 3.2.4 Minkoswki distance, Manhattan distance and Fuclidean distance are
metrics

72

Measures just presented are applied to vectors whose features are all contin-
uous. Nevertheless, it is quite common, in ML, to have vectors with categorical
features or vectors with mixed type features (categorical and continuous). In order
to cope with this slightly more complex situation, many other measures have been

developed?| Specifically, measures based on Feature Matching Model (see Sect.[3.2.3)
represent an answer to this problem.

3.2.2 Kernel Functions

Kernel functions can be informally defined as similarity functions able to work with
high dimensional feature spaces. They have been developed jointly with kernel
methods’} efficient learning algorithms realized for solving classification, regression
and clustering problems in high dimensional feature spaces. Two components of
kernel methods have to be distinguished: the kernel machine and the kernel function.
The kernel machine encapsulates the learning task and the way in which a solution
is sought, the kernel function encapsulates the hypothesis language, i.e., how the
set of possible solutions is made up. This means that the same kernel machine can
be used with different kernel function by simply considering a new kernel function
(high modularization). Different kernel functions embed different hypothesis spaces.
Before analyzing kernel functions, the intuition from which they move is briefly
illustrated in the following.

Kernel functions have been introduced in the field of pattern recognition whose
goal, in its simplest formulation, is to estimate a function f : RN — {-1,+1}
using input-output training data pairs generated independent identically distributed
(ii.d.) according to an unknown probability distribution P(z,y), where training
data are (z1,%1),... (zn,yn) € RY x Y, Y = {—1,+1}, such that f will correctly
classify unseen examples (z,y). An example is assigned to the class +1 if f(z) >0
and to the class —1 otherwise. The test examples are assumed to be generated from
the same probability distribution P(z,y) as the training data; hence, y is determined
such that (z,y) is in some sense similar to the training examples. To this end, a
similarity measure k : RY x RV — R is necessary such that, given two examples z
and 2’ returns a real number characterizing their similarity. For reasons that will be
clarified later, the function k is called a kernel [31]. A type of similarity measure that
is of particular mathematical appeal are inner products, namely given two vectors

2In [108, 26] a set of measures applicable to objects defined by non-numeric features are pre-
sented.

3The class of kernel methods is formed by learning algorithms like Gaussian processes [152],
kernel principal component analysis [I80] for feature extraction, kernel Fisher discriminant [T47]
19], the most famous Support Vector Machines [31], [I78] for supervised learning and Support Vector
Clustering [20] for unsupervised learning. Different kernel machines tackle different learning tasks.

73

e * s .
P ’
.J. = 1,,. ..l-_.
7= - .
i o,
s I"H.'!-,'i
L 4

Figure 3.1: Illustration of the overfitting dilemma: Given only a small sample (left)
either, the solid or the dashed hypothesis might be true, the dashed one being more
complex, but also having a smaller training error. Only with a large sample it is
possible to be able to see which decision reflects the true distribution more closely.
If the dashed hypothesis is correct the solid would underfit (middle); if the solid
were correct the dashed hypothesis would overfit (right).

o . N
z,x’ € RY the canonical inner product is defined as: (z-2') = Y_;_, z; - ¥, where z;

denotes the i-th entry of x.

One of the crucial points for solving the presented goal is, hence, the choice
of the function for performing classification. It has to be chosen in a way such that
it minimizes the expected error (risk). Specifically, since the expected error cannot
be computed, being P(x,y) unknown, the function has to be chosen such that it
minimizes the empirical risk [I52] (that is computable). This is since it is possible
to give conditions on the learning machine which ensure that asymptotically (as the
number of examples n — oo) the empirical risk will converge toward the expected
risk. However, for small sample sizes, large deviations are possible and overfitting
might occur, as shown in Fig. [3.1, Then a small generalization error cannot be
obtained by simply minimizing the training error. One way to avoid the overfitting
dilemma is to restrict the complexity{] of the function class from which the function
f is chosen [199]. The intuition which will be formalized in the following is that a
”simple” (e.g., linear) function minimizing the error and that explains most of the
data is preferable to a complex one (Occams razor).

Moving from such an intuition, algorithms in feature spaces target a linear
function for performing the learning task. Considering that this choice cannot be
always possible (see Fig. , algorithms use of the following trick. Via a nonlinear
mapping ¢ : RY — F that Vo € RY assigns ¢(z), (x1,...,25) € RY are mapped

4A specific way for controlling the complexity of a function class is given by the Vapnik-
Chervonenkis (VC) theory and the structural risk minimization (SRM) principle [199] 200, 201],
that present a way for bounding the complexity of the function class from which f is chosen from.
Complexity is captured by the notion of VC dimension, which measures how many training points
can be shattered (i.e. separated), for all possible labelings, using a function of the class. Anyway
sometimes this bound cannot be easily computed.

74

¥ i'['
] ” "
k. & b
kS
o
£ * i
H, ; o
- § ‘L
¥ w - T, .~3.‘-. .:' *
\ X ;
; [y N ! T4 "
- + - o=
\ gt -
w ._ s <
e - ra LA *
- .l e
"
.
o = w ”q- .

»o

Figure 3.2: Two-dimensional classification example. (a) Function separation in the
original space of features. (b) Linear function separation in the mapped feature
space.

into a, potentially, much high dimensional space F. Hence, for a given learning
problem, the same algorithm can be considered in F rather than in R”, i.e., the
algorithm works with the sample (¢(z1),v1),-..,(¢(xn),yn) € F x Y. Given this
mapped representation, a simple linear classification in F is to be learnt.

This idea can be clarified by means of the toy example in Fig. 3.2l in two
dimensions a rather complicated nonlinear decision surface is necessary to separate
the classes, whereas in a feature space of second-order monomials (see e.g., [I81])
¢ : R? — R3 such that V(z1,72) € R? : (21, 29) = (21, 20, 23) := (22, V21120, 23)
a linear decision surface is sufficient in order to separate the classes. In this exam-
ple, it is easy to control both the statistical complexity (by using a simple linear
hyperplane classifier) and the algorithmic complexity of the learning machine, as
the feature space is only three dimensional. However, it becomes rather tricky to
control the algorithmic complexity of the learning machine for large real-world prob-
lems. For instance, considering images of 16 x 16 pixels as patterns and fifth-order
monomials as mapping ¢, then one would map to a space that contains all fifth-
order products of 256 pixels, i.e., to about a 10'°-dimensional space. So, even if
the statistical complexity of this function class can be controlled, the result is an
intractable problem executing an algorithm in this space. Fortunately, for certain
feature spaces F and corresponding mappings ¢ there is a highly effective trick for
computing scalar products using kernel functions [31], 199, 173]. For instance, con-
sidering the toy example, the computation of a scalar product between two feature
space vectors, can be readily reformulated in terms of a kernel function k& as follow:

75

(6(x) - 6(y)) = (21, V21129, 23) (47, V20100, 93))" = (21, 22) (41, 92)")* = (x - ¥)°
=: k(x,y). Hence, a kernel function is a similarity measure that computes the inner
product in a high dimensional feature space F, which is in general different from
the representation space of the instances.

The interesting aspect of the kernel functions is that the inner product can be
implicitly calculated in F, without explicitly computing, using or even knowing, the
mapping ¢. So, kernels compute inner products in spaces, where, otherwise, it could
be hardly performed any computations, as seen for the extended version of the toy
example above. A direct consequence of this is [I79]: every (linear) algorithm that
only uses inner products can implicitly be erecuted by using kernels, i.e., one can
very elegantly construct a nonlinear version of a linear algom'thmﬁ.

Until now RY has been considered as representation space of the instances.
Really whatever set X' can be considered. An important result is claimed in [6].
Here, it is asserted that any set, whether a linear space or not, that admits
a positive definite kernel can be embedded into a linear space. In the
following (see also Sect. , the term "valid” is used to mean ”positive definite”.
Here, the definition of a positive definite kernel|is reported.

Definition 3.2.5 (Positive Definite Kernel) Let X be a set. A symmetric func-
tion k : X x X — R is a positive definite kernel on X if, for all n € Z7T,
ri,...,x, € X, and cq,...,c, € R, it follows that

Z CiCjk(l'i,l’j) 2 0

i,j€{1,...,n}

namely, the matriz K defined by K;; = k(x;, x;) is positive definite.

While it is not always easy to prove the positive definiteness for a given kernel
following the definition above, the validity of a kernel function could be showed
exploiting some closure properties that have to be satisfied. In particular, kernel
functions are closed under sum, direct sum, multiplication by a scalar, product,
tensor product, zero extension, pointwise limits, and exponentiation [48], 99].

In the following, the traditionally used kernel on vector spaces are briefly
reviewed.

°Even algorithms that operate on similarity measures k generating positive matrices k(z;, x;)
can be interpreted as linear algorithms in some feature space F [I77].

6In Def. [3.2.5) a function with real value is considered. However many authors consider the
general case of complex-valued kernels. The relationship between the definition used for that case
and the ones used here is discussed in [21]. Virtually all the results extend naturally to the complex
case.

76

Let 2,2’ € RN and let (-,-) denote the inner product in RY. Apart from the

Linear Kernel
N

k(x,2') = (x,2') = le -

i=1
and the Normalized Linear Kernel
k(z,2") =

(z, ')

IEainiEa

the two most frequently used kernels on vector spaces are the polynomial kernel and
the Gaussian RBF kernel. Given two parameters [€ R,p € NT, the polynomial
kernel is defined as:

k(z,2") = ((z,2') +1)?

The intuition behind this kernel definition is that it is often useful to construct new
features as products of original features. The parameter p is the maximal order of
monomials making up the new feature space, while [can be used as a bias towards
lower-order monomials; for instance, if [= 0 the feature space consists only of
monomials of order p of the original features.
Given the parameter v, the Gaussian RBF kernel is defined as:
k(z,z') = e lz—2"|?

Using this kernel function in a support vector machine can be seen as using a radial
basis function network with Gaussian kernels centered at the support vectors. The
images of the points from the vector space RY under the map ¢ : RY — H with
k(x,2") = (¢(x), p(x')) lie all on the surface of a hyperball in the Hilbert space H.
Now two images are orthogonal and any set of images is linearly independent.

Others known kernels on vector spaces are: sigmoidal kernel where given
[,0 € R it is defined as:

k(x,z") = tanh(l{z, z") +)

and inverse multiquadratic kernel, where given ¢ € R, it is defined as:

1
Ve —a 2+

Kernel functions jointly with kernel methods have been largely used, partic-
ularly in pattern recognition, because they revealed high computational efficiency
when other methods hardly perform any computation. Anyway, in this initial formu-
lation, they are linked to feature vector representations and are not able to give any
information about how the conclusions of the learning process have been obtained.

7

3.2.3 Measures Based on Feature Matching Model

Similarity plays a fundamental role in theories of knowledge and behavior. It serves
as an organizing principle by which persons classify objects from concepts, and
make generalizations. Particularly, psychological researches demonstrated that these
tasks are often performed by recurring to common and distinguishing features that
characterize the objects considered. The main work proposing an evaluation of
similarity based on features matching has been proposed by Tversky [197]; where
objects are represented as collections of features, and similarity is described as a
feature matching process. Specifically, a set of qualitative assumptions is shown to
imply the contrast model, which expresses the similarity between objects as a linear
combination of the measures of their common and distinctive features. The model
is used to discover, analyze, and explain a variety of empirical phenomena such as
the role of common and distinctive features, the relations between judgments of
similarity and difference and the presence of asymmetric similarities.

Differently from the classical theoretical analysis of similarity measures (see
Sects. , dominated by geometric models, Tversky shows that there are some
situations in which such models are inappropriate. Indeed, as seen in Sect.
geometric models represent objects as points in some coordinate space such that
the observed dissimilarities between objects correspond to the metric distances (see
Def. between the respective points. Conversely, Tversky argues that a geo-
metrical dimensional representation cannot be used for whatever kind of data and
settings. While it can be appropriately used for representing certain stimuli (such
as colors, tones), it is not so appropriate for measuring other kinds of information
such as faces, countries, or personalities. Indeed, in these cases, a representation
in terms of many qualitative features is much more suitable. Considering this dif-
ferent kind of representation, the assessment of similarity in this settings may be
better evaluated as a comparison of features rather than as the computation of
metric distance between points. Moreover, in this comparison some properties of
the geometrical models could be inappropriate. An example is represented by the
symmetric property.

Tversky asserts that the similarity judgments can be regarded as extensions of
similarity statements, that is, statements of the form ”a is like b” which is directional,
in the sense that it has a subject, a, and a referent, b, and it is not equivalent, in
general, to the converse similarity statement ” b is like a”, since persons tend to select
the prototype, as a referent, and the less salient stimulus (or the variant) as a subject.
In fact, we say ” the portrait resembles the person” rather than ”the person resembles
the portrait” or " the son resembles the father” rather than ”the father resembles the
son”. This asymmetry in the choice of similarity statements is associated with the
asymmetry in judgments of similarity. Sometimes both directions are used, but

78

AnB

B-A

Figure 3.3: Graphical representation of the relation between two feature sets.

they carry different meanings. For example, considering metaphoric expressions,
the statement ” Life is like a play” says that people play roles, while the statement
7 A play is like life” says that a play can capture the essential elements of human life.
Given such considerations, the theoretical approach to similarity based on feature
matching is neither dimensional nor metric in nature.

In [I97] it is assumed that every object a,b,c,... can be represented by a set
of features A, B,C, ... respectively, where features are not restricted to binary or
nominal variables, but can be also ordinal or cardinal variables (i.e., dimensions)
and set variables. Hence, a notion of similarity between two objects a and b is
introduced. It is called ” contrast model” and it is expressed as a linear combination
of three basic components: the set of features that are common to a and b, let say
AN B, the set of features that belong to a but not to b, let say A — B and the set
of features that belong to b but not to a, let say B — A. A schematic illustration of
these components is presented in Fig. [3.3] A formal definition of contrast model is
given in the following.

Definition 3.2.6 (Contrast Model) Given a set of object E, for all a,b € E, let
A, B respectively, the set of their describing features. Then the similarity between a
and b is given by:

constrasty,(a,b) =0 - f(ANB) —a- f(A—B)— (- f(B—A)

where ”—" is the set difference, 0, a, 3 are non-negative constants and f(-) is taken

as the count of features in the set.

The similarity value between two objects is computed as a linear combination,
or a "contrast”, of the measures of the common and the distinctive features; hence,
the representation is called the contrast model. Moreover, the function is expressed
as an ordinal measure of similarity. That is, constrasty,(a,b) > constrast,,(c,d)
means that the object a is more similar to b than c is similar to d. Then, looking at

79

the function definition it is straightforward to note that the similarity value increases
with the addition of common features and/or deletion of distinctive features.

In the present theory, the assessment of similarity is described as a feature-
matching process, namely it is formulated in terms of the set-theoretical notion of
a matching function rather than in terms of the geometric concept of distance. An
important assumption that is implicitly made here is the solvability, which requires
that the feature space under study be sufficiently so rich that certain (similarity)
equations can be solved. Finally, it important to note that the contrast model does
not define a single similarity measure, rather a family of measures characterized by
different values of the parameters 0, o and . For example, if « = =0 and § = 1,
then constrasty,(a,b) = f(A N B); that is, the similarity between objects is the
measure of their common features. If, on the other hand, § = 0 and o = =1
thenconstrasty,(a,b) = f(A — B) + f(B — A) ; that is, the dissimilarity between
objects is the measure of the symmetric difference between the respective feature
sets, namely similarity is determined by distinctive features only. In this case the
measure can be regarded as a measure of distance or diversity. When o = 1 and
£ = 0, then the common features to a and b are compared with those unique to a.
The reverse is true when o =0 and 3 = 1.

In general the contrast model expresses similarity between objects as a weighted
difference of the measures of their common and distinctive features, thereby allowing
for a variety of similarity relations over the same domain. Moreover, such wights
allow to express the notion of asymmetry argued by Tversky. In case where asym-
metry is not desired, all parameters must have the same value.

The contrast model is the easiest form of similarity measure. Another measure,
called " ratio model” has been presented by Tversky [197]. The goal of this measure
is to provide a normalized similarity value in the range [0, 1]. It is formally defined]
in the following.

Definition 3.2.7 (Ratio Model) Given a set of objects E, for all a,b € E, let
A, B respectively, the set of their describing features. Then the similarity between a
and b is given by:

f(ANB)
f(ANB) +a- f(A=B)+ - f(B-A)

simy,(a,b) =

As for the contrast model, the presence of weights in ratio model express the
notion of asymmetry claimed by Tversky. Particularly, recalling the distinction
between the subject and the referent in a directional assertion of similarity made

"Note that 6 becomes 1 in the ratio model.

80

above, in the setting of the parameters, the features of the subject will be weighted
more w.r.t. the features of the referent (namely o >). Consequently, similarity
is reduced more by the distinctive features of the subject than by the distinctive
features of the referent. If asymmetry is not desired then a = g = 0.5.

Under the assumption that f is distributive over disjoint sets, namely f(A U
B) = f(A)+ f(B) in the case of AN B = (), then the ratio model is more commonly
written adh

2. f(AN B)
f(A)+ f(B)

Note that, as for the contrast model, also the ratio model defines a family of
measures depending of the values of the parameters.

simy,(a,b) =

A disadvantage of feature-based models is that two entities are seen to be sim-
ilar if they have common features; however, it may be argued that the extent to
which a concept possesses or is associated with a feature may be a matter of degree
[122]. Consequently, a specific feature can be more important to the meaning of
an entity than another. On the other hand, the consideration of common features
between entity classes seems to be cognitively sensible for the way people assess
similarity. Contrast and ratio models could be extended to more expressive knowl-
edge representations by preliminarily defining what a feature is for them. However,
feature-based models (as well as geometric models) are not able to capture expressive
relationships among data that typically characterize most complex languages.

3.3 Similarity and Dissimilarity Measures in Re-
lational Setting

As argued in [I64], for a large number of applications it is very problematic to
represent knowledge in a propositional language since having information in one
table could cause loss of information and /or redundancy. From here, the necessity of
working in more expressive settings. Particularly, in a relational language, multiple
relations can be used for representing knowledge. Obviously, the choice of a new
and more expressive language requires to define new algorithms and measures for
working with itﬂ In the following, different models for determining (dis-)similarity
in relational settings will be analyzed.

8Note that in this expression only the case of symmetric similarity is considered
9Chs. show that the choice of new and expressive languages such as DLs requires new
measures for assessing similarity among objects and also new and/or modified learning methods.

81

3.3.1 Measures based on Semantic Relations

The measures based on semantic relations are also called path distance measures.
They are typically applied to semantic networks [45] having a tree structure. Similar-
ity measures in this setting usually involves measuring path lengths in the network.
Distances between trees (see [165]) also belong to this category. They measure
differences between trees by comparing the different paths that constitute the trees.

In the early formulations of measures based on semantic relations [163], back-
ground information was provided in the form of semantic network involving concepts
and is-a edges. In this setting, semantic relatedness and semantic distance are equiv-
alent and so it is possible to use the latter as a measure of the former. Particularly,
in this context, the conceptual distance is the length of the shortest path between
two nodes in the semantic network. Considering this assumption, Rada et al. [163]
define the similarity between two nodes C' and D (i.e. between two concepts) as the
length of the path from C' to E plus the length of the path from D to E, where E
is the most specific is-a ancestor (msa for brevity); namely, going up in the tree, £
is the first ancestor that is common to C' and D. Formally:

sim(C, D) = length(C, E) + length(D, E)

where ' = msa(C, D) and length(A, B) is a function that, given two nodes A and
B, returns the number of edges that link A and B. Note that, since the considered
semantic network is a tree, the msa of two given nodes exists and is unique.

Further developments of the semantic-distance based models have been pro-
posed by Lee et al. [126]. They argue that, in a realistic scenario, adjacent nodes
are not necessarily equidistant and that a meaningful semantic-distance assessment
needs to consider the underlying architecture of the hierarchical network. The result
was a semantic distance model enriched by weighted indexing schema and variable
edge weights. Weights can be defined w.r.t. different criteria such as the local den-
sity of the hierarchy, the depth of a node in the hierarchy, the type of the link (i.e.,
type of semantic relation) and the strength of an edge link (i.e., closeness between a
child and its parent node). This is because, for example, the density effect suggests
that the greater the density, the closer the distance between the nodes; w.r.t. the
depth of a hierarchy, the distance shrinks as one descends the hierarchy, because
the differences between nodes are based on finer details. Conversely, concepts in
the middle to high sections of the hierarchical network, being spatially close to each
other, are deemed to be conceptually similar to each other. In [109] [189] some weight
are defined. They are assigned to the edges and are expressed as a function of the
link strength, the depth of the node, the local density of a node, the overall density,
and the type of link. Note that measures based on semantic-distance model satisfy
all metric properties and are context independent (see Sect. .

82

Recently, path distance measures have been used in order to assess similarity
between ontologies (in the easiest case in which an ontology is considered to be
a taxonomy). This goal is accomplished considering two kinds of measures: local
and global measures. The local measure compares the similarity of the positions
of a concept in the two different ontologies. The global measure is computed by
averaging the result of the local measure for concepts similarity. Local measures are
computed by recurring to path distance approach. Specifically, in [98] the Learning
Accuracy measure is proposed. It compares two concepts based on their distance
in the tree (e.g. the length of the shortest path between the root and their most
specific common abstraction). In [I38], the Balanced Distance Metric measure is
presented. It further develops the idea of the Learning Accuracy measure by taking
into account further types of paths and a branching factor of the concepts.

Although the semantic distance model has been supported by a number of ex-
periments, widely used in different fields such as information systems [24. 37, 144, 95],
and has shown to be well suited for specific domains, it has the disadvantage of being
highly sensitive to the predefined hierarchical network so to the semantic structure.
Then it gives coarse values of similarity for concepts that have a same superordinate.
Moreover, even if some works (for instance [109]) try to consider also more complex
relations among concepts, basically the semantic distance model considers only is-a
(and sometimes part-of) relations among concepts; this does not allow to exploit
such model jointly with expressive language for knowledge representation.

3.3.2 Measures based on Information Content

Measures based on Information Content (/C') use an approach similar to those used
by measures based on semantic relations (see Sect. , the main difference is
represented by the use of the notion of IC' rather than the notion of path length. The
main motivation for purpose this approach is overcoming the problem of semantic
distance-based model, namely its dependence from the structure of the network.

In the same way of measures based on semantic relations, measures based on
IC' consider knowledge represented by mean of a taxonomy of concepts where only
is-a relationships are considered. The most important work based on such an ap-
proach has been proposed by Resnik [166] [167]. The main idea is that similarity
between concepts can be measured with respect to the amount of information that
they share. Particularly, the more information two concepts have in common, the
more similar they are. The similarity between two concepts (classes) is approximated
to the amount of information conveyed by the first superclass in the hierarchy that
subsumes both classes. The amount of information of a concept is measured by
recurring to the notion of Information Content. Following the standard argumen-

83

tation of information theory [I71], the IC of a concept c is measured as negative
the log likelihood, namely IC(c) = —log p(c). As the probability of occurrence of
a concept in a corpus increases, the information conveyed by ¢ decreases, such that
the more abstract is a concept, the lower is its information content. Formally the
similarity between concepts is defined as in the following.

Definition 3.3.1 Let C be the set of concepts in an is-a tazonomy (also permitting
multiple inheritance) and let p : C — [0, 1] be the function that assigns, for any c € C,
the probability p(c) of finding an instance of the concept c. Given any ¢y,co € C:

Simres(cly CQ) = cegéixcz) [—lOg p(C)]

where S(cy, c2) is the set of concepts that subsume both ¢ and c.

Notice that although similarity is computed by considering all upper bounds
for the two concepts, the information measure has the effect of identifying minimal
upper bounds, since no concept is less informative that its superordinates. For this
reason the similarity function can be also writtenflV| as sim,..; = IC(E) = —log p(E)
where FE is the most specific ancestor of ¢; and ¢o: E = msa(cq, c2). Moreover, if
there is a unique top concept, its information content is 0. This is because, from
the definition of IC| it is straightforward to see that the function p is monotonic as
one moves up in the taxonomy, namely if ¢; is-a ¢o then p(c;) < p(cz2), consequently
the probability value of a concept ¢ is 1 if the taxonomy has a unique top node.

The principle underlining Resnik’s measure is indirectly captured by the semantic-
distance method (see Sect. [3.3.1)). Indeed, if the minimal path of is-a links between
two nodes is long, that means that it is necessary to go up highly in the taxon-
omy, to more abstract concepts, in order to find a least upper bound. For example,
considering the taxonomy in Fig. Nickel and Dime are both subsumed by Coin,
whereas the most specific superconcept that Nickel and Credit Card share is Medium
of Excha ngeE. This show that, measures based on IC are able to capture the same
idea of semantic distance measure, but, taking into account probabilities of concepts
and hence the IC of a concept, the problem of unreliability of edge distances (see
Sect. is avoided as no path lengths are counted.

0Notice that the situation is different in case of multiple inheritance, where could not exist an
upper bound structurally distinguishable, so, in this case, the computation of the maximum value
as reported in Def. is necessary.

HTn a feature-based setting (as proposed by Tversky in [197]) this would be reflected by explicit
shared features: nickels and dimes are both small, round, metallic, and so on. These features are
captured implicitly by the taxonomy in categorizing Nickel and Dimes as subordinates of Coin.

84

MEDIUM OF EXCHANGE
I

!
1
MONEY \

I
I
CASH CREINT
I
I

|
COIN
..-F‘"'ﬁ_"‘-\-.
MNICKEL IME CREDIT CARD

Figure 3.4: Fragment of the Wordnet taxonomy. Solid lines represent is-a links;
dashed lines indicate that some intervening nodes were omitted to save space.

Considering the evolutions of Resnik’s measure [167] in models based on se-
mantic networks, taking into account factors such as concept depth and density
[126], 109, [189], a simplified version of the measure proposed in [I09] but dealing
with IC' is:

dist(cy,c0) = IC(¢1) + IC(c2) — 2 - IC(msa(cy, ¢3))

In [I30] the following measure based on IC' and able to take into account
density and depth factors is also proposed:

2. IC(msa(cy,)
IC(eq) + IC(e9)

siMyin(c1, c2) =

This measure is a metric (see [I30] for the demonstration).

As experimentally shown [167], measures based on IC' generate better results
w.r.t. measures based on semantic networks. Moreover the information-content
model requires less information about the detailed structure of the network and the
determination of information content can adapt a static knowledge structure to mul-
tiple contexts. Anyway, it is also true that for concepts in a hierarchy that contain
an exaggerated information content, the information-content model can generate
a corse result for the comparison of classes, because it does not differentiate the
similarity values of any pair of classes in a sub-hierarchy as long as their ”smallest
common denominator” is the same. This could be, for example, the case of words in
a WordNet [203] taxonomy, where many polysemous words and multi-worded classes
surely have an exaggerated information content value.

85

3.3.3 Measures in Context-based Model

Cognitive and psychological studies have shown that the human process of assessing
similarity between objects is often influenced by the context in which objects are
considered. Anyway, the measures presented so far consider only the properties of
the compared objects regardless of any context (the ”environment” surrounding the
objects) or concepts useful for characterizing object configurations, namely they are
context-free measures. In ML, the necessity of having measures that are able to
consider the context was first pointed out by conceptual clustering and successively
by natural language processing.

One of the first works that introduces a context-sensitive similarity measure
has been proposed by Gowda [92], where the similarity between two objects A and
B depends not only on A and B, but also on the objects in the collection to be
clustered. The similarity is expressed as the reciprocal of mutual distance. To de-
termine the mutual distance from A to B, the objects in the collection are ranked
according to the Euclidean distance to A and then according to the Euclidean dis-
tance to B. The mutual distance from object A to object B is the sum of the ranks
of A w.r.t. B and the ranks of B w.r.t. A. Thus, the similarity between compared
objects depends on their relation to the other objectﬂ Even if this measureF_gl is
context-sensitve, it is concept-free, that is, it depends only on the properties of indi-
vidual objects and not on any external concepts which might be useful (particularly
for conceptual clustering) to characterize object configurations. Thus, using this
measure, for example jointly with clustering methods, does not allow to capture the
”Gestalt properties” of object clusters, namely properties that characterize a cluster
as a whole and are not derivable from properties of individual entities.

In order to solve this problem the intuition of Michalski and Stepp [144] was
that the system must be equipped with the ability to recognize configurations of
objects corresponding to certain concepts. An example of this intuition is shown
in Fig. where points are clustered with respect to the ”"concept” diamond. In
[144] a concept-sensitive similarity measure between objects is presented. It is called
conceptual cohesiveness and represents the corner stone of the conceptual clustering
algorithm presented therein (see Sect. [1.3.2). The idea is that given two points A
and B, the conceptual cohesiveness of A and B depends not only on those points
and on surrounding points E, but also on a set of concepts C' which are available for
describing A and B together. Formally conceptual cohesiveness can be expressed as:

Conceptual_Cohesiveness(A, B) = f(A, B, E,C)

12See [108] for an example of application of this measure.
13This measure is not a metric, it does not satisfy the triangle inequality. In spite of this, it has
been successfully applied in several clustering applications.

86

To illustrate this measure, let us consider a set of points in a two-dimensional
space and a set of concepts C' consisting of geometrical figures (i.e. sequences of
straight lines, circles, rectangles, triangles, etc.). A measure of conceptual co-
hesiveness could be defined, w.r.t. the considered example as: f(A,B,E,C) =
max;{(#e(i) — 1)/area(i)} where i indexes all geometrical figures that are specified
in C' and that cover points A and B, #e(i) is the total number of data points from
E covers by figure i, and area(i) is the area of figure i.

This measure is the most general similarity measure, it requires to define the
relation between objects and concepts for every specific task. Anyway, considering
its characteristics, it can be applied only for some particular tasks such as conceptual
clustering. Indeed there are some situations in which no concepts are available; this
consequently, does not make possible the usage of the presented measure.

In the natural language processing area, Miller and Charles [148], studying the
relation between semantic similarity and contextual similarity, discuss a contextual
approach to semantic similarity. A contextual representation of a word comprises
syntactic, semantic, pragmatic, and stylistic conditions that affect the use of that
word. Although they found that the similarity among contextual representations
is one of the factors for similarity assessment among words, their work revealed a
clear relationship between semantic and contextual similarity, when words belong
to the same syntactic category (i.e., nouns, verbs, adjectives, or adverbs). For such
words, the similarity assessment is defined in terms of the degree of substitutability
of words in sentences. The more often a word can be substituted by another word in
the same context, the more similar the words are. The problem with this similarity
measure is that it is difficult to define a systematic way to calculate it.

3.3.4 Measures Based on Alignment and Transformational
Models

Alignment-based models of (dis-)similarity have been realized in order to cope with
structured descriptions. In these models, comparison is not just matching features,
but determining the corresponding way of elements, or alignment way between el-
ements. Matching features are aligned to the extent that they play similar roles
within their entities. For example, a car with a green wheel and a truck with a
green hood share green feature, but this matching feature may not increase their
similarity because the car wheel does not correspond to the truck hood. Drawing
inspiration from analogical reasoning [84], [101], in alignment-based models, matching
features influence similarity more if they belong to parts that are placed in corre-
spondence, and parts tend to be placed in correspondence if they have many features
in common and are consistent with other emerging correspondences [85, [136].

87

Another empirically validated set of predictions stemming from an alignment-
based approach to similarity concerns alignable and non-alignable differences [135].
Non-alignable differences between two entities are attributes of one entity that have
no corresponding attribute in the other entity. Alignable differences are those that
require that the elements of the entities are firstly placed in correspondence. For
instance, comparing a police car to an ambulance, a non-alignable difference is
that police cars have weapons in them, but ambulances do not. There is no clear
equivalent of weapons in the ambulance. Alignable differences include the following:
police cars carry criminals to jails rather than carrying sick people to hospitals, a
police car is a car while ambulances are vans, and police car drivers are policemen
rather than emergency medical technicians. Consistently with the role of structural
alignment in similarity comparisons, alignable differences influence similarity more
than non-alignable differences [137]. Knowing these correspondences affects not only
how much a matching element increases similarity but also how much a mismatching
element decreases similarity.

Transformational models are based on the assumption that the comparison
process proceeds by transforming one representation into the other. A critical step
for these models is to specify what transformational operations are possible. In
Artificial Intelligence, Ullman [198] has argued that objects are recognized by being
aligned with memorized pictorial descriptions. Once an unknown object has been
aligned with all candidate models, the best match to the viewed object is selected.
The alignment actions considered are rotate, scale, translate, and topographically
warp object descriptions. For rigid transformations, full alignment can be obtained
by aligning three points on the object with three points on the model description.

In transformational accounts that are explicitly designed to model data similar-
ity, similarity is usually defined in terms of transformational distance. Particularly,
similarity is often assumed to decrease monotonically as the number of transforma-
tions required to make one sequence identical to the other increases. An example
of measure based on transformational model is the Levenshtein’s edit distance [128§]
which computes the similarity between two strings as the number of deletions, in-
sertions, or substitutions required to transform the one into the other. By the use
of this measure Maedche and Staab propose [133] a syntactic similarity measure for
strings defined as follows:

Definition 3.3.2 Given two strings L; and L; in L, the similarity between L; and
L; is given by the function: s: L x L — [0,1] such that VL;, L; € L:

man(| Li |, | Li |) — ed(Li, L)

LiaL': 07 N
s(Li Ly) = max(min(L L)

where | - | stands for the length of L; and ed(-,-) is the Levenshtein edit distance.

38

This measure returns a degree of similarity between 0 and 1, where 1 stands
for perfect matching and 0 for bad match. It considers the number of changes
that must be made to transform one string into the other and weights the number
of these changes against the length of the shortest string of these two. Moreover,
Maedche and Staab [I33] propose a way for determining lexical similarity between
two different ontologies, by computing the averaged string matching of the overall
concept names contained in them.

It is important to note that both alignment-based and transformational ap-
proaches place elements into correspondence. Whereas the correspondences are ex-
plicitly stated in the structural alignment method, they are implicit in transforma-
tional alignment. The transformational account often produces globally consistent
correspondences, for example correspondences that obey to a one-to-one mapping
principle, but this consistency is a consequence of applying a pattern-wide transfor-
mation and is not enforced by interactions between emerging correspondences. For
large data sets characterized by complex representations, both approaches could be
computationally expensive.

3.3.5 Miscellaneous Approaches

Considering advantages and drawbacks of the presented models, many works propose
a miscellaneous approach to take advantage from the usage of several mixed models.
In the following, some examples of miscellaneous approaches will be presented.

Propositionalization and Geometrical Models

Geometrical models are largely used particularly for their efficiency (see Sect. [3.2.1)).
Anyway they can be applied only to propositional representations. In order to ex-
ploit the efficiency of geometrical models also when relational representations are
considered, the propositionalization problem has been focused. Such a problem
consists in finding a way, namely a mapping, for transforming a multi-relational
representation into a propositional representation. Once that a propositional repre-
sentation has been obtained, any method can be applied on this one rather than on
the original representation. For instance, it is possible to compute (dis-)similarities
between objects by the use of geometrical models applied to the obtained proposi-
tional representation, hence results are referred to the original problem.

Hypotheses-driven distances

One of the most interesting works based on propositionalization and usage of
geometrical models, has been proposed by Sebag [I82] where a method for building
a distance on first-order logic representation by recurring to the propositionalization

89

is presented; the measure is named hypoteses-driven distance (HDD). The distance
is formalized starting from examples expressed as definite or constrained clauses.
Let £, denote the language of hypotheses, and let H = {hq,...,hs} be a set of d
hypotheses. ‘H induces a mapping 7 from L; onto the boolean space of dimension
d [I83], by associating to each example E the vector of the boolean coding wether
E is subsumed by h;, namely 7 : £, — {0,1}¢ and for all example £ — 7(E) =
(m1(E),...,mq(E)) where m;(F) = 1 if h; subsumes E, m;(F) = 0 otherwise. The
projection onto {0,1}¢ does not make any assumption on L; besides H, it only
invokes the covering test. Considering that {0,1}? is a metric space, a distance on
L, naturally follows, by setting, for all examples E and F:

dist(E, F) =Y | m(E) = m(F) |

By construction, dist is symmetric and satisfies the triangular inequality, but
it does not satisfy the identity relation, namely (dist(E,F) = 0) % (E = F). So
dist is a semi-distance measure. Another projection onto a richer metric space is
presented and the corresponding HDD is defined as the Euclidean distance [182].

It is important to note that HDDs are not so useful whenever they are based
on a concise set of hypotheses H: e.g. dist gets rather coarse if each example is
covered by a single hypothesis. Hence, the granularity of a HDD increases with
the redundancy of H (i.e. the average number of h; covering each example) and
more precisely with the number and diversity of hypothesis h;. Moreover, a HDD
does not involve in any way the conclusions associated to hypothesis h;; this suggest
that the relevance of a HDD is potentially independent from the relevance of H.
Furthermore, the structure of the boolean space does not reflect the structure of
the problem domain. A hypothesis h; usually covers less than half the problem
space: having m;(F) = 1 is thus less frequent than having m;(E) = 0, whilst 1
and 0 play equivalent roles in the boolean space. So, mainly these measures, rather
than syntactically comparing two examples, analyzes the way in which the examples
semantically behave with respect to a set of hypotheses.

Mixing Path Distance and Feature Matching Approaches

As seen in Sect. the feature-matching model is often able to capture similarity
between object in a satisfactory way. Anyway, such model can be applied only to
propositional representations. More complex representations can be considered only
by previously defining what a feature is in the new context. On the other hand, as
illustrated in Sect. [3.3.1] measures based on semantic relations are able to take into
account relationships among objects (at least is-a links) but they strongly depends

90

from the structure defining object links. Some works tried to improve the assessment
of similarity of objects by mixing these two models.

In [169], an asymmetric Matching Distance (MD) measure was presented with
the goal of providing a similarity measure between concepts within a single ontol-
ogy. Concepts are represented by means of synonym sets, characterizing the set
of features for a given concept and that are interrelated by hyponymy (is-a) and
meronymy (part-whole) relations. Similarity is evaluated by combining a feature-
matching process with a semantic distance measurement. Particularly, similarity is
expressed as the number of common and different features between two entity-classes
where the relevance of the different features is given in terms of the distance among
entities in a hierarchical structure. This represents one of the first works able to
treat also part-whole relationships, besides of is-a relationship. Anyway, considering
these relationships is not enough in case of knowledge bases described by expressive
languages. Moreover, since the Matching Distance measure is based on the com-
parison of distinguishing features, the lack of distinguishing features in an entity
class definition produces a null similarity value w.r.t. any other entity class in the
ontology. This is a common situation for entity classes that are general concepts
located at the top level of the hierarchical structure. Although this can be seen as
a drawback of the MD measure, the model strength is the capability to assess the
similarity among concepts located at or below Rosch’s basic level of a hierarchical
structure [I70], such as the concepts found in spatial catalogs. This characteristic
of the MD model is in contrast to previous models based on semantic distance [163].
Indeed, while semantic distance can determine similarity among general concepts
of a hierarchical structure, it usually assigns the same value to any pair of entity
classes that have a common superclass.

Another interesting example of similarity measure defined by jointly using
feature-matching and path distance models has been presented in [I33]. Here, a
measure for determining the taxonomic overlapping between two hierarchical on-
tologies is illustrated. First of all, the notion of semantic cotopy (SC) of a concept
C' (w.r.t. an ontology O where it is defined) is introduced. The SC is given by the
set of all direct super and sub-concepts of C' in O. Given the semantic cotopy of
the concept C' in the ontology O; and the semantic cotopy of C' in the ontology O,
the taxonomic overlapping of O; and O, with respect to C' is computed as the ratio
between the intersection of the SC of C' w.r.t. O; and the SC of C' w.r.t. Oy and the
union of such computed SC. So, mainly the SC is determined by recurring to the
path distance model while the taxonomic overlap is computed by recurring to the
feature matching model. Then, the overall taxonomic overlapping between O; and
O, is given by the averaged taxonomic overlapping computed w.r.t. to all concepts
the ontologies. A modified version of such measure has been proposed in [62], where
the common semantic cotopy rather than the semantic cotopy is considered.

91

Mixing Feature Matching, Context-based and Information Content-based
Approaches

Experiences in determining measures that use jointly feature matching and path-
distance approaches demonstrated experimentally interesting results (see [169, 133]).
Anyway, they sometimes suffer from the drawback of the path distance approach
that is the strong dependence on the hierarchical structure representing the KB (see
Sect. . In order to overcome this problem, the Information Content based
approach could be used (see Sect. [3.3.2). Moreover, it is shown that, in many
fields such as natural language processing and ML, the availability of measures
able to take into account contextual information, could improve the effectiveness
of several tasks such as clustering and words disambiguation. Moving from these
observations, Rodriguez [169] [168] proposed a measure for determining similarity of
concepts within an ontology that mixes feature matching and information content
based approaches and is able to take into account contextual information.

Concepts are represented by means of a set of features given by their synonym
sets. Concepts are then interrelated by means of hyponymy (is-a) and meronymy
(part-whole) relations. User queries are considered, representing context specifica-
tions that define the application domain. The application domain helps to select
among senses of a term with multiple meanings (i.e. polysemous terms), thus reduc-
ing the problem of word-sense ambiguity, since only these entity classes are consid-
ered in the similarity assessment. Similarity is expressed as the number of common
and different features between two concepts (also called entity-classes). Features are
weighted w.r.t. their relevance in the domain. Feature relevance is determined by
recurring to the notion of information content used for measuring the informative-
ness of a feature. Namely, if a feature is shared by all entity classes of the domain,
its relevance decreases. On the contrary, if a feature characterizes only some entity
classes of the domain, its relevance increases. So, the feature weights are determined
by analyzing the variability of distinguishing features within the application domain.
Consequently distinguishing features that present great variability are more impor-
tant in the similarity assessment than features that do not contribute significantly to
distinguishing entity classes. The experimental evaluation demonstrated that this
measure really improves the previous measure proposed by Rodriguez [169] based
on feature matching and path distance approaches. Anyway, when the application
domain has the maximum variability, that is no feature is shared by entity classes
or only one entity class is part of the application domain, the relevance is equally
assigned to the features. Similar result occurs without variability. Moreover, this
measure, and particularly the method for weighting features, shows sensitivity to
the set of entity classes defined in the ontology. This sensitivity becomes more im-
portant for a narrow application domain, where the omission on one entity class
may affect the determination of common and different features of the domain.

92

3.3.6 Relational Kernel Functions

Kernel methods have been revealed very efficient in solving many ML tasks such as
classification, clustering and regression. The key element of the kernel methods is
given by the kernel functions that are defined on any set and are able to perform an
implicit mapping of the feature data into a high dimensional feature space where a
learning task can be performed exploiting a linear function (see Sect. . Specif-
ically, in the new feature space, the computation of the kernel function corresponds
to compute the inner product in this space. In the first formulation, kernel functions
have been defined for propositional representation (see Sect. . Nevertheless, as
argued in Sect. [3.3] in a variety of AI problems there is a need to learn, represent
and reason w.r.t. definitions over structured and relational data. The development
of kernels functions for structured data have been motivated by the necessity of
solving real-world problems in an efficient way.

The best-known kernel for representation spaces that are not mere attribute-
value tuples is the convolution kernel proposed by Haussler [99]. The basic idea
of convolution kernels is that the semantics of a composite object can often be
captured by a relation R between the object and its parts. The kernel on such
objects is composed of kernels defined on different parts. Specifically, convolution
kernels are obtained by composing other existing kernels by a certain sum over
products, exploiting the closure properties of the class of positive definite functions.

Particularly, the class of kernels on a set X x X is closed under addition,
multiplication by a positive constant, pointwise limits and product (i.e. if k;i(z,y)
and ks (z,y) are kernels then k(x,y) = ki(z,y)ka(x,y) is a kernel). Moreover, since
kernels are closed under product, they are also closed under tensor product™ Sim-
ilarly, since kernels are closed under sum, they are also closed under direct sum [}
Furthermore, if k((z,u), (y,v)) is a kernel on (X x X) x (X x X') then the diagonal
projection k®(x,y) = k((x,7), (y,y)) is a kernel on X x X. Lastly, if S C X and
k is a kernel on S x S, then k£ may be extended to a kernel on X x X by defining
k(z,y) = 0 if either x or y is not in S. This follows directly from the definition of
positive definite function. This is called zero extension of k (for more details about
the closure properties of kernels see [99, 21]). In the following, convolution kernel is
formally defined.

Let X be a domain (set), let € X be a composite structure and zy,...,zp
are its "parts”, where x4 is in the set X, for each 1 < d < D, and D is a positive in-
teger. Xq,..., Xp are non empty, separable metric spaces. The relation "xy, ..., x4
are parts of 7 can be represented by a relation R on the set X; x -+ x Xp x X,

i e. if ky(x,y) is a kernel on X x X' and ko (u,v) is a kernel on U x U then k; @ko((x,u), (y,v)) =
k1(x,y)ka(u,v) is a kernel on (X x U) x (X x U).
Bk @ ka((z,u), (y,v)) = k1(z,y) + ka(u,v) is a kernel on (X x U) x (X x U).

93

where R(xy,...,zp,z) is true iff z;,...,xp are the parts of x. For brevity, let
7 =x1,...,2p, and denote R(x,...,xp,z) by R(Z,r). R is said finite if R~'(x)
is finite for all z € X.

Now suppose that z,y € X and for some decomposition of z and y, T =
T1,...,xp are the parts of z, and 3§ = y1,...,yp are the parts of y. Suppose also
that, for each 1 < d < D, a kernel k; in X, is available in order to measure the
similarity kq(x4, yq4) between the part x4 and the part y4. Then, the similarity &(z, y)
between x and y is defined as the following generalized convolution:

(3.1) k(z,y) = > T Fatea, va)

TER1(2), TR (y) d=1

This defines a symmetric function on S x S, where S = {z : R™!(z) is not empty}.
Hence the R-convolution of ky, ..., kp is defined. It is denoted by ky x - - - x kp(z, y)
and represents the zero order extension of k£ to X x X. k is called finite convolution
if R is finite.

Theorem 3.3.3 If ky,...,kp are kernels on X1 X X1,...,Xp X Xp, respectively,
and R is a finite relation on X1 X --- X Xp x X, then ki x---x kp is a kernel on
X x X.

Lemma 3.3.4 Let k be a kernel on a set U x U and for all finite, nonempty A, B C
U, define k'(A, B) = >_ s yep k(,y). Then k' is a kernel on the product of the set
of all finite, nonempty subsets of U with itself.

The presented resultﬁ ensures that the function defined in is a kernel on
X. Hence, the term ”convolution kernel” refers to a class of kernels that can be
formulated as shown in . This formalization defines a powerful method for
defining kernel for structured data, indeed the advantage of convolution kernels is
that they are very general and can be applied in several situations. Even if, because
of their generality, they require a significant amount of work to adapt them to a
specific problem, which makes choosing R in real-world applications a non-trivial
task.

Another important result is the relation between kernel functions and distances
satisfying the metric conditions [99).

6For the proof of the results see [99].

94

Definition 3.3.5 (Distances induced by kernels) Let k : X x X — R be a
kernel on X. The distance measure induced by k is defined as:

di(z,y) = Vk(z,2) — 2k(x,y) + k(y,y)

If k is a valid kernel (see Sect. then dj, is well-behaved in that it satisfies the
conditions of a pseudo-metric: (1) d(z,z) < d(z,y) + d(y, z) (triangle inequality);
(2) d(z,y) = d(y,x) (symmetry); (3) x =y = d(x,y) = 0. (For a metric this latter
implication must be an equivalence).

This relation is practically important as it extends the applicability of kernel
functions to distance-based methods such as k-nearest neighbour.

Moving from the notion of convolution kernel, many kernel functions have been
defined for different type of structured data. The simplest structured representa-
tion considered is the string structure. The traditional kernel function used for text
classification is simply the scalar product of two texts in their bag-of-words repre-
sentation [112], this kernel function does not take the structure of the text, or the
words of the text into account but only the number of times each word occurs.

More sophisticated approaches (based on convolution kernels) try to define a
kernel function on the sequence of characters. The idea behind this kernel is to
base the similarity of two strings on the number of common subsequences. The
subsequences can be also not continuous in the strings, because the more gaps in
the occurrence of the sequence, the less weight is assigned in the kernel function
[132, 205]. An alternative to this kernel has been presented in [158], [127], where only
continuous substrings of a given string are considered. Applications and empirical
results regarding these kernel functions can be found in [127, 132] (for a detailed
survey about string kernel functions see [79]).

Kernel functions on tree structures exploiting convolution kernels have also
been formulated. In [46], a kernel function on tree structures (that can be applied
in many natural language processing tasks) is presented. Here, the instances of the
learning tasks are considered to be labeled ordered directed trees. The key idea to
capture structural information about the trees in the kernel function is to consider
all subtrees occurring in a parse tree. A subtree is defined as a connected subgraph
of a tree such that either all children or no child of a vertex is in the subgraph.
The children of a vertex are the vertices that can be reached from the vertex by
traversing one direct edge. Thee kernel function is the inner product in the space
which describes the number of occurrences of all possible subtrees.

A generalization of this kernel to take into account also other substructures
of the trees is described in [115]. Another generalization considered in this paper
allows labels to partially match. Promising results have been achieved with this

95

kernel function in HTML document classification taskdl’)

Labeled graph are widely used in computer science to model data. Graph
kernels, exploiting convolution kernel, have been presented [78, 81], 114] 116]. Con-
ceptually, they are based on a measure of the walks in two graphs that have some or
all labels in common. In [78] walks with equal initial and terminal label are counted,
in [I14],116] the probability of random walks with equal label sequences is computed,
and in [81] walks with equal label sequences, possibly containing gaps, are counted.
One interesting application of such graph kernels have been shown in [80], where an
experiment in a relational reinforcement learning setting is presented™]

A framework that allows for the application of kernel methods to different
kinds of structured data has been presented [82]. The approach is based on the
idea of availability of a representation that allows for modeling the semantics of an
object by means of the syntax of the representation. The underlying principle is
representing individuals as (closed) terms in a typed higher-order logic [I31]. The
individuals-as-terms representation is a natural generalization of the attribute-value
representation and collects all information about an individual in a single term. The
key idea is to have a fixed type structure. This type structure expresses the semantics
and composition of individuals from their parts. The type structure is made up by
function types, product types, and type constructors. Function types are used to
represent types corresponding to sets, multisets, and so on. Product types are used
to represent types corresponding to fixed size tuples. Type constructors are used
to represent types corresponding to arbitrary size structured objects such as lists,
trees, and so on. The set of type constructors also contains types corresponding to
symbols and numbers. It is important to note that the elements of these sets, lists,
etc. are not restricted to be mere symbols but can again be structured objects. Each
type defines a set of terms that represent instances of that type, these are called the
basic terms. The terms of the logic are the terms of the typed A-calculus, which are
formed in the usual way by abstraction, tupling, and application. The basic term
kernel is then defined inductively on the structure of terms. Particularly, for each
possible part of a term, an existing kernel function is considered. Hence, the basic
term kernel is defined, analogously to convolution kernel, as product and sum of the
kernel functions considered for every part of a term.

This framework constitutes an interesting result for defining kernel functions
that are applicable to very expressive representation language and that are able to
exploit also semantics. Anyway, the expressiveness of the used language is far from
the expressiveness of very powerful representation language such as DLs.

"For a detailed survey about kernel functions applied on tree structures see [79].
18For a detailed survey on graph kernels see [79].

96

3.3.7 Measures for Simple Description Logics

As seen in the previous sections, the idea of measuring concept similarity has received
considerable attention in several domains, such as psychology, cognitive science,
computational linguistics and information retrieval. Recently, also in the field of
Information Integration it is increasing the necessity of having measure able to
determine the similarity between concepts. Such field often relies on ontologies
and hence concepts are described in DLs (see Sect. . Most past work has
concentrated on the similarity of ”atomic” concepts (see previous section), rather
than composite, defined concepts, which are the stock-in-trade of DLs.

One of the first works that focuses on the problem of assessing similarity be-
tween complex definite concepts expressed in DL has been proposed by Borgida et
al. [29]. Its goal is to generalize previous efforts in defining similarity for primitive
concepts in order to obtain a way for assessing similarity between complex concept
descriptions. For reaching this goal a very simple DL, allowing only concept con-
junction (such logic is called A), is considered. Hence, the main measures presented
in Sects. [3.2.3] [3.3.1], [3.3.2] are modified in a way such that they can be applied to A
concept definitions. Particularly, w.r.t. the feature matching model (see Sect,
features are represented by atomic concepts in this setting. An ordinary concept is
just the conjunction of its features. Considering that set intersection and difference
of the atom sets corresponds, at least in this simple case, to the least common sub-
sumer and concept difference in A (see Sect. , the Tversky’s measures can be
translated into DL notation as follows:

Definition 3.3.6 (Contrast Model) Given a set of concept definitions L, for all
C,D € L, the similarity between C' and D 1is given by:

constrasty,,(C, D) =0 - f(les(C,D) — a- f(dif(C,D)) — 3 - f(dif(D,C))

where 0, «, 3 are non-negative constants, f(-) counts the features in the set.

Definition 3.3.7 (Ratio Model) Given a set of concept definitions L, for all
C,D € L the similarity between C' and D is given by:

‘ B 2. f(les(C, D))
sl G D) = 5 5 ies(C. DY) + J(dif (C. D)) T F(dif(D.C))

where f(-) is taken as the count of features in the set.

In case of a semantic network model (as presented in Sect/3.3.1)), if the network
is a tree, then it is possible to consider | C' | that represents the length of the path
from C' to the root (T). Hence, given the concepts C' and D in the network, it is

97

possible to consider the paths from C' and D to the root. These paths first intersect
at the most specific ancestor msa(C, D) which, is the same as the lcs(C, D). Hence,
the Rada’s distance applied to concepts definition in A logic can be written as:

dist,aaa(C,D) =] C |+ | D|—=2-|les(C,D) |

For the IC models (see Sect. [3.3.2)), it is again possible to note the parallel
between msa(C, D) in a semantic network and les(C, D) in DL. So translating IC
measures to A logic yields:

dist(C, D) = IC(C) + IC(D) — 2 - 1C(ies(C, D))

2-1C(les(C, D))
IC(C)+ 1C(D)

Considering that, the DLs standardly used in the applications are much more
expressive than A logic, Borgida et al. [29] try to generalize the presented reformu-
lation to a complex DL. The first results of these efforts converge to a set of open
questions, for each analyzed approach, that have to be solved in order to define
measures for complex DL.

In feature based models, as highlighted in Sect3.2.3] the key issues are what
counts as a feature, and what valid decompositions into features are. In a proposi-
tional DL (like A), one might take the minimal disjunctive normal form, and count
literals; but it is much less clear what to do with terms constructed using roles. For
example, if (< 3R), (< 4R) and (< 9R) each count as a single feature, there is no
way to express that the first and second would be judged to be more similar than the
second and the third. Much more complicated is to assess similarity in presence of
nested role restrictions such as VR.(VR.A) vs. YR.A. In this case more information
is required concerning the salience of roles, and/or how to combine such measures
in the cases of enumeration and nesting to produce a legitimate measure of feature
set size’. Similarly, in network-based measures a key problem is that of assigning a
useful size for the various concepts in the description. Arbitrariness in choosing a
size measure for complex concepts could be a substantial obstacle to this approach.
Once again, some mechanism for measuring the size besides what is available in the
pure structural form is necessary. The use of IC based approach could overcome
the problem of the network based approach but, on the other side, this approach
requires a way for determining the probability p(C') of an object being an instance
of an arbitrary concept C' in order to define the information content of a concept.

simyn(C, D) =

In the next chapter, some measures applicable to expressive DL (mainly ALC
logic) are proposed. They are able to solve some of the issues illustrated above.
Based on this approach, a recent work [110] defines a new measure for ALCNR
logic that is applicable in Geo-Spatial context.

98

Chapter 4

Similarity and Dissimilarity
Measures for Description Logics

The application of learning methods to a knowledge base most of the times requires
the availability of (dis-)similarity measures to assess the (dis-)similarity of the con-
sidered elements. To this purpose, measures are strictly related to the adopted
representation language, since they need to capture all the expressiveness of the
language in order to evaluate similarity.

As seen in Ch. [3} a lot of work has been done in determining (dis-)similarity
measures by the use of various representation languages. Anyway most of the work
has been dedicated to propositional representations. However, most of the things
that can be done efficiently in a propositional setting, cannot be done efficiently
in relational setting. Hence, new measures for relational settings have been often
formalized. Main models for computing (dis-)similarity measures in relational set-
tings have been shown in Sect. [3.3] anyway, most of the measures ”implementing”
such models are not able to exploit the high expressiveness of DLs, because often
measure definitions are strictly connected with the representation language. Some
initial works for defining measures able to cope with DL representations have been
done (see Sect. , anyway they refer to very low expressive DLs. Moreover, such
works do not deal with the problem of assessing (dis-)similarity between individuals,
only concepts are considered.

In this chapter a set of developed similarity and dissimilarity measures for DLs
is presented. They are able to compute (dis-)similarity between complex concept
definitions, between individuals and concept and individual, asserted in the same
ontology. Mainly ALC description logi(ﬂ has been taken into account, since it is con-
sidered a good compromise between expressiveness and consequent computational

1See Sect. for more details about ALC logic.

99

complexity. Moreover, since numeric representation are almost always treated in
real world application, a measure for ALN logid? is also presented. At the end of
the section, a measure that is able to deal with whatever DLs is defined.

All the measures that will be presented are symmetrid’ Indeed, Tversky
[197] argues that asymmetric property is necessary when, searching the similarity
between elements, one element is considered more important than the one to which
the element is compared. On the contrary, in the considered scenario, learning
tasks are applied to ontological knowledge where no information is available about
the importance of the considered elements. So, in this scenario, it is fundamental
that the considered measures satisfy the symmetric property, since the absence of
this property could generate different results with respect to the order in which the
elements are considered. Moreover, most of the presented measures do not satisfy
triangle inequality. This is because, as argued by Jain et al. [I08], triangle inequality
is not fundamental in order to guarantee the fine work of a measure. In the following
all the measures will be presented in detail, jointly with the properties they satisfy.

4.1 A Semantic Similarity Measure for ALC

As argued in Ch. 2 [} a merely syntactic approach for determining the (dis-)similarity
value for elements described by means of expressive DLs is too weak, because it is
not able to exploit the expressiveness of the language. So a different approach (based
on semantics) has to be taken into account.

Considering semantics in DLs means to deal with concept and role extensions
(besides of the available inference operators). On the other hand, the main idea of
Tversky’s contrast model (see Sectf3.2.3)) is shared in this thesis. Namely:

e common features increase the perceived similarity of two concepts
e feature differences diminish the perceived similarity

e feature commonalities increase the perceived similarity more than feature dif-
ferences can diminish it

This intuition could be applied to a concept in an ontology, where its meaning is
given by its extension. Thus, two concept definitions in an ontology are more similar
as higher is the amount of the extension they share. Their differences are given by

2See Sect. for more details about ALN logic.
3See Sect. [3.1/for the properties of a (dis-)similarity measure and the opportunity that a measure
satisfies all or some of these properties.

100

the parts of the extensions that are not in common. Hence, in this vision, the
"features” of a concept are represented by the individuals in its extension. Because,
commonalities increase the perceived similarity more than feature differences can
dimanish it, in order to accomplish to this principle, a weight that increases the
amount of common extensions could be set.

Moving form this intuition, a measure for assessing concepts similarity is de-
fined. This measure employs the basic set theory and is mainly grounded on concept
commonalities. Particularly, the base criterion for this measure is: the similarity be-
tween concepts is not only the result of the common features, but also the result of
the different characteristics.

Let C' and D be two concept descriptions in a TBox 7, expressed in the ALC
logic. As seen in Sect. 2.3.2] given a concept C in 7, it is possible to consider
its extension CZ. Here the canonical interpretation of the ABox is considered and
the unique names assumption (UNA) is made, namely: constants in the ABox are
interpreted as themselves and different names for individuals stand for different
domain objects (canonical mterpretation@. The semantic similarity measure [53] is
defined as in the following:

Definition 4.1.1 (Semantic Similarity Measure) Let £ be the set of all con-
cepts in ALC and let A be an ABox with canonical interpretation Z. The Semantic
Similarity Measure s is a function s : L x L — [0, 1] defined as:

(41) (. D) |71 <!le \II\)
. s(C, = -maxX(—=, T
|CF[+ | DF| — |17 |CF[| D7

where I = C 1D and (-)* stands for the concept extension wrt the interpretation T.

The presented measure assigns the maximum value 1 if the two input concepts
C' and D are equivalent (namely if C C D and D C (), while it assigns the min-
imum similarity value 0 if the considered concepts are totally disjoint (namely if
CTD = 1), because in this case they are totally different, indeed they are semanti-
cally unrelated, being their intersection equivalent to the bottom concept and their
extensions do not overlap. In case of overlapping concepts, a value in the range |0, 1]
is computed. This value expresses the similarity between the two concepts (given by
the factor [I7|/(|C%|+|D*|—|I%])) reduced by a quantity (max(|/%|/|C%|,|I%|/|D*]))
which represents the major incidence of the intersection with respect to either con-
cept. Indeed, the higher such factor is the more one of the concepts is likely to be
subsumed by the other.

1See [8] for more details about the canonical interpretation.

101

oy (O

Figure 4.2: Geometrical interpreta-

Figure 4.1: Geometrical interpretation tion of similarity between concepts C
of similarity between concepts C' and and D. Similarity will be not so
D. Similarity will be high because D is high because they are differentiated by
almost near to be subsumed by C. many features” (namely individuals

not shared as concept instances).

Hence the presented measure assesses similarity between concepts considering
similarity not as an absolute value (namely considering only the amount of the
overlapping extension) but as weighted with respect to a degree of non-similarity. A
geometrical interpretation of the measure is shown in Fig. and Fig. [4.2] Circles
represent the extension of the concepts C' and D, I represents the extension shared
by the concepts, it is the same both for Fig. and Fig. Anyway, in case of
Fig. [4.1] the similarity of C' and D will be higher than the similarity computed in
Fig. M This is because in the first case differences between C' and D (namely the
parts of the extensions outside of I) are less than differences in Fig. 4.2,

In case of an incomplete knowledge base, the measure could suffer from the lack
of information. For example a concept could have a few individuals in its extension
that are almost all shared by another concept, hence they result to be very similar,
instead, really (w.r.t. the considered domain) they are not so similar. In order to
minimize such an effect, a "normalization” factor could be considered, for instance
by dividing by the cardinality of set of individuals in the ABox. Anyway, it has to
be considered that the illustrated drawback depends from an inadequate state of
the knowledge base rather than from the measure itself.

It is important to note that this measure is totally semantic. Indeed, it uses
only semantic inferences like instance checking (and retrieval) to determine the con-
cept extensions, and it does not make use of the syntactic structure of the concept
description. Hence it is independent from the granularity level of descriptions. This
fact reflects the intrinsic complexity of expressive DL languages like ALC for which
a merely structural approach to reasoning is ineffective (subsumption is computed
using a tableaux algorithm rather than a structural algorithm). Therefore, the mea-
sure definition employs set theory and semantic services, so it make use of numeric

102

approach despite its application on a symbolic DL representation. Moreover it can
be applied to knowledge base written in ALC logic as well as to any DL endowed
with the basic reasoning services required by its definitions.

Below it is proved that the function presented in Def. is really a similarity
measure. Then, an example of its application is given. Hence, the extension of the
measure for computing the similarity between individuals will be illustrated. At the
end of the section, complexity issues related to the computation of the measure will
be discussed.

Recalling Def. in Sect. 3.1, a function s is a similarity measure if the
following three properties are satisfied:

1. s is definite positive
2. s is symmetric

3. s satisfies the minimality property, namely: YC, D : s(C,D) < s(C,C)

The first property is trivially satisfied by the function definition as it has
values in the real interval [0,1]. Then, it is easy to prove the minimality property,
simply substituting the concept C' to D in the definition and computing s(C,C').
The symmetry property is also trivially verified. Indeed set intersection, sum, prod-
uct and maximum are commutative. It is straightforward to note that given two
concepts C' and D, it holds that:

_ | LU
s(C. D) = termprrm - wex(ierys 1o7) =
TN T R TCI A

prrrior (i jorp) = (D, C)

note that I remains the same because of the commutativity of the intersection.
In order to clarify Def. the following example is presented.

Example 4.1.2 Let be consider the knowledge base with the TBox and ABox re-
ported below.

Primitive Concepts: No = {Female, Male, Human}.
Primitive Roles: Nr = {HasChild, HasParent, HasGrandParent, HasUncle}.

TBox: T ={ Woman = Human N Female; Man = Human M Male;
Parent = Human M dHasChild.Human; Father = Man 1 Parent;
Mother = Woman M Parent AHasChild.Human;
Child = Human 1 dHasParent.Parent;

103

Grandparent = Parent M 3HasChild.(3 HasChild.Human);
Sibling = Child ™ 3HasParent.(3 HasChild > 2);

Niece = Human M dHasGrandParent.Parent LI 3HasUncle.Uncle;
Cousin = Niece M 3HasUncle.(3 HasChild.Human);

ABox: A = {Woman(Claudia), Woman(Tiziana), Father(Leonardo), Father(Antonio),
Father(AntonioB), Mother(Maria), Mother(Giovanna), Child(Valentina),
Sibling(Martina), Sibling(Vito), HasParent(Claudia, Giovanna),
HasParent(Leonardo,AntonioB), HasParent(Martina,Maria),
HasParent(Giovanna,Antonio), HasParent(Vito,AntonioB),
HasParent(Tiziana, Giovanna), HasParent(Tiziana,Leonardo),
HasParent(Valentina,Maria), HasParent(Maria, Antonio),
HasSibling(Leonardo, Vito), HasSibling(Martina,Valentina),
HasSibling(Giovanna,Maria), HasSibling(Vito,Leonardo),
HasSibling(Tiziana,Claudia), HasSibling(Valentina,Martina),
HasChild(Leonardo, Tiziana), HasChild(Antonio,Giovanna),
HasChild(Antonio,Maria), HasChild(Giovanna, Tiziana),
HasChild(Giovanna,Claudia), HasChild(AntonioB, Vito),
HasChild(AntonioB,Leonardo), HasChild(Maria, Valentina),
HasUncle(Martina, Giovanna), HasUncle(Valentina, Giovanna)

Considered this knowledge base, it is possible to compute the similarity value between
concepts as shown:

|(Grandparent 1 Father)?|
|Granparent” | + |Father”| — |(Grandparent I Father)?|
<|(Grandparent|_l Father)*| |(Grandparent 1 Father)?|
az

s(Grandparent, Father) =

)=

| Grandparent” | ’ | Father” |
2 2 2
= gygog Mlyp) =007

In the same way it is possible to compute the similarity value among all concepts
defined above. O

104

4.1.1 Derived Similarity Measure Involving Individuals

The measure in Def. is able to the assess similarity between concepts. Until
now, there is no way for computing similarity value between individuals. Determin-
ing the similarity between individual could be important for many learning tasks
such as classification and clustering and hence a similarity measure able to do this
could be very helpful for performing learning applied to ontological knowledge.

As seen in Sect. [2.4.2] for every individual in the ABox, it is possible to compute
its Most Specific Concept (msc) or at least its upper approximationﬂ (msc*). Namely,
given a and b, two individuals in a given ABox, it is possible to compute A* =
msc*(a) and B* = msc*(b). In this way concept definitions are available and hence,
it is possible to apply Def. {.1.1] thus yielding the similarity value for the two
individuals:

Va,b: s(a,b) = s(A*, B*) = s(msc*(a), msc*(b))

Hence, the similarity value between two individuals is set to be equal to the
similarity value computed considering their mscs. Analogously, the similarity value
between a concept description C' and an individual a can be computed as the simi-
larity value between the concept C' and the msc*(a):

Va: s(a,C) = s(msc*(a),C)

In order to clarify the extension of Def. to the case involving individuals,
the following example is given.

Example 4.1.3 Let T the TBox and A the ABox defined in Example[{.1.9 and let
Claudia and Tiziana the considered individuals. In order to determine the similarity
value of these two individuals their msc's have to be computed. They are given by:

msc*(Claudia) = Woman Sibling ™ 3 HasParent(Mother M Sibling M
M 3HasSibling(C1) M 3HasParent(C2) M IHasChild(C3))

where

e C1= Mother 1 Sibling M 3HasParent(Father 1 Parent) M 3HasChild(Cousin 11
JHasSibling(Cousin T Sibling M 3HasSibling.T))

e (2= Father dHasChild(Mother M Sibling)
e (3= Womann Sibling M 3HasSibling. T 1 JHasParent(C4)

5In some cases msc and msc* are equivalent. In general msc C msc*.

105

e (4 = Fathern Sibling M 3HasSibling(Uncle M Sibling M IHasParent(Father 1
Granparent)) M HasParent(Father 11 Grandparent M 3HasChild(Uncle 11 Sibling))

And for the individual Tiziana:

msc*(Tiziana) = Woman 1 Sibling M 3HasSibling(Woman 1 Sibling 1
dHasParent(C5)) 1 3HasParent(Father 1 Sibling M HasSibling(C6) N
JHasParent(C7)) 1 HasParent(Uncle 1 Mother 1 Sibling M
JHasChild(Woman M Sibling))

N O

where

o C5 = Mother Sibling 11 3HasSibling(C8) M 3HasParent(Father 11 3HasChild(Mother I
Sibling))

e (8 = Mother ™ Sibling 3HasParent(Father M Grandparent) 1 3HasChild(Cousin 11
JHasSibling(Cousin T Sigling M 3HasSibling. T))

e C6 = Unclen Sibling M 3HasParent(Father M Grandparent)
e C7 = FatherM Granparent M JHasChild(Uncle M Sibling)

Note that it holds that msc*(Tiziana) L msc*(Claudia) and msc*(Claudia) Z
msc* (Tiziana). Now, since (msc*(Tiziana))? = {Tiziana} and (msc*(Claudia))* =
{Claudia, Tiziana}, the similarity of these individuals is:

1 11
Claudia, Tizi =— -, -] =05
s(Claudia, Tiziana) To_ M (2, 1)
In the same way it could be calculate the similarity between a concept and an indi-
vidual. O

4.1.2 Computational Complexity

In order to assess the complexity of the presented measure, three different cases of
application of the measure are discussed separately. Considering that the measure
mainly use a numerical approach, the only source of complexity is given by the
retrieval operator, used for computing concept extensions. Since it is grounded on
the instance checking operator (IChk), then the only source of complexity for the
measure is given by the complexity of instance checking for the adopted DL language,
hereafter indicated with C(IChk). The complexity of the presented measure could
be summarized as in the following:

106

Similarity between concepts: (C(s) = 3 - C(IChk)
because the instance check is repeated three times: for the concept descriptions

C, D and I.

Similarity individual - concept: C(s) = C'(msc*) + 3 - C(IChk)
this is because, in this case, besides of the instance checking operations required
by the previous case, the msc approximation of the considered individual is to
be computed; the complexity of the msc approximation is denoted by C'(msc*).

Similarity between individuals: C(s) =2 - C(msc*) + 3 - C(IChk)
this case is analogous to the previous one, the only difference is that now two
msc approximations have to be computed for the arguments.

As clearly shown by these formulae, the measure complexity is sensible to the
choice of the reference DL. For instance, for the ALC logic, C(IChk) is PSPACE
(see [§], Ch. 3). For the cases involving individuals, it suffices to recall that also
the computation of the (approximation of) the most specific concept depends on
instance checking, besides of the specific algorithm (see Sec. and [134] for more
details about the complexity of the msc approximation).

Experimental evaluation has shown that the measure can be effectively used
to compute the similarity between concepts. Anyway it presents some problems
when similarity between individuals is computed. This is due to the use of the
(approximated) msc which often turns out to be so specific that its extension likely
includes only the considered individual. This phenomenon consequently provokes
a dissimilarity even if the individuals are assertions of concepts semantically very
similar.

As a consequence of some investigation for solving this issue, the more reliable
solution seemed to measure the similarity (or dissimilarity) of the concepts as a
combination of the similarity value of the sub-concepts that constitute the msc
concepts. The underling idea to this solution is that concepts defined in terms of
the same sub-concepts could be intuitively similar in their turn.

Anyway, the realization of such solution could be not so straightforward since,
as known, semantically equivalent concepts may be described in many syntactically
different ways. The solution to these problems is given by the measure presented in
the next section.

107

4.2 A Semantic and Structure driven Dissimilar-
ity measure for ALC

The assessment of similarity value between individuals cannot be effectively done
by ”simply comparing” the extensions of their (approximated) msc. This is because
msc is so specific that includes in its extension only the individual for which it is
computed and it does not cover other individuals semantically related.

In order to overcome this problem the idea is to compute the (dis-)similarity
value between individuals as a ”combination” of the (dis-)similarity of the sub-
concepts that constitute their (approximated) msc. This idea moves from the in-
tuition that concepts defined by almost the same sub-concepts will be probably
similar.

This intuition is not so different from those introduced in other relevant works
in relational settings. Indeed, for example, in [72] the computation of the similarity
between objects (described by features and by relations with other objects) depends
on the similarity of their attribute values and the similarity of the objects related to
them. The similarity of the related objects, in turn, depends on the attribute values
of these objects and their relation to other objects and so on. In [74] a distance
measure between structural descriptions is presented. It is defined according to a
top-down evaluation scheme: distance between disjunction of conjunctions, distance
between conjunctions, and literals. At the lowest level, the similarity is computed
based on a probabilistic interpretation of a matching predicate. An approach sim-
ilar to those of the just described previous works has been presented in [165] for
computing the similarity of concept descriptions in First-Order-Logic.

Differently from these works, in which similarity is computed mainly in a
structural way, the measure that will be shown here [50], 52] computes the similarity
value using a semantic approach, namely using the notion of the extension of the
considered concepts.

Anyway, considering sub-concepts of a description, a structural based approach
is also adopted, that is known to be not reliable when the representation language is
DL because it allow for semantically equivalent concepts written in many syntacti-
cally different ways. However, as seen in Sect. [2.4] given a DL, which is ALC in our
case, every concept descriptions can be turned into an equivalent concept description
in normal form by the use of rewriting rules. The normalization of concepts assures
that semantically equivalent concepts will be written all in the same way and hence
a structural approach can be used mitigating this drawback. In the following the
dissimilarity measure for ALC will be presented.

108

4.2.1 Overlap Function

In order to define a dissimilarity measure for ALC descriptions, the notion of overlap
function is introduced. This is a definite positive function on the set of ALC normal
form descriptions (see Def. , defined making use of the structure and semantics
of the concepts (and roles) involved in the descriptions. Consequently, from such
overlap function, the dissimilarity measure will be derived. In the following, the
overlap function is formally defined®|

Definition 4.2.1 (Overlap Function) Let £ = ALC/= be the set of all concepts
in ALC normal form and let A be an A-Box with canonical interpretation Z. f is
a functiorﬂ [+ Lx L~ R" such that for all C,D € L, with C = ||, C; and
D =L, D; it assigns:

oo ifC=D

Disjunctive level - f(C,D) = fy(C,D) = ?na;'fC’l_l P]T (J_C D;) o.w
i€ [1,n] i\, j

J€1,m]

Conjunctive level: — fr(C;, Dy) == fp(prim(C;), prim(D;))+ fv(Ci, D;)+ fa(C;, D;)

Primitive concepts:

|PE(C;) U PE(D;)|
((PE(C:) U PE(D;)) \ (PE(C;) N PE(D;))]

fp(prim(C;), prim(D;)) :=
where,

i pE<Cl) = (HPGprim(Ci) P) and PE() (|—|P€pr|m)I
(extension of the primitive concepts conjunctions)

e fp(prim(C;), prim(D;)) = oo when (prim(C;))* = (prim(D;))*
e fp(prim(C;),prim(D;)) = 0 when PE(C;) N PE(D;) =

Value restrictions : f(Cy, Dy) Z fu(valg(C;),valg(D;))
RENR
N
Existential restrictions: f3(C;, D;) = Z Z max fu(CF, DY)
RENg k=1 "

where CF € exp(C;) and DY € exg(D;) and it is supposed that N = |exg(C;)| >
lexp(D;)| = M, otherwise the indices N and M are to be exchanged in the formula.

5Note that the notations used are those introduced in Sec.
"The name A of the A-Box is omitted for keeping the notation as simple as possible.

109

The function f represents a measure of the overlap between two concept de-
scriptions (namely C' and D) expressed in ALC normal form. It is defined recursively
beginning from the top level of the concept descriptions (a disjunctive level) up to
the bottom level represented by (conjunctions of) primitive concepts. In this way,
at every level, sub-concepts are compared and their similarity is computed. Hence
the ”combination” of the similarity values computed at every level will give the final
similarity value of the considered concepts.

In case of disjunction, the overlap amount is obviously null if the two concepts
are totally disjoint (namely C'MD = 1), while the overlap is set to infinity if the two
concepts are equivalent, indeed in this case their extensions are exactly the same.
In case of partial overlap between the two concepts, the amount is computed as the
maximum of the overlaps computed between all couples of disjuncts (C;, D;) that
make up the top level of the considered concepts. The rationale of this third case
is given by the semantics of the disjunction operator. Since the disjunction requires
that at least one of the disjuncts is verified, in the same way it is assumed that
the overlap is given by the maximum of the computed values between all couples of
disjuncts.

Since each disjunct is a conjunction of descriptions, it is necessary to define how
to compute the overlap between conjunctive concepts. This overlap is computed as
the sum of the overlap measure computed on the parts that make up the conjunctive
concept descriptions. The rationale of this definition is given by the semantics of
the conjunction operator. In fact as conjunction requires that all of its terms are
verified, in the same way the overlap is measured as the sum of the overlap between
all terms constituting the conjunctions.

Specifically, a conjunctive form can have three different types of terms: prim-
itive concepts, universal restrictions and existential restrictions. Since conjunction
is a symmetric operator by definition, it is possible to put together every type of
restriction (occurring at the same level) so it is possible to consider the conjunctions
of primitive concepts (prim(C;), prim(D;)), the conjunctions of existential restric-
tions and the conjunction of universal restrictions as specified in the definition of
ALC normal form. Next, the computation of overlap for the three different type of
terms is defined.

The overlap between two conjunctions of (possibly negated) primitive concepts
is minimal if the they do not share any individual in their extensions. Conversely, if
the two concepts share some individuals, the overlap between them is computed as
a measure of the union of their extensions with respect to the complementary set of
the intersection with respect to their union. Hence, as the number of shared individ-
uals increases consequently, the denominator decreases and thus the amount of the
overlap computed for two conjunctions of (negated) primitive concepts increases.

110

This is exactly the desired behavior of a function that measures the intuitive notion
of "overlap” between concepts. Moreover it is important to note that the function
returns 0 or a value that is greater than 1.

The computation of the overlap between, respectively, concept descriptions
expressed by universal and existential restrictions is a bit more complex. Considering
the conjunction of universal restrictions, it is worthwhile to recall the rewriting rules
(see Sect. for which, in a conjunction, every universal restriction is relative to a
different role (since it is possible to write VR.C MVR.D = VR.(C' 1 D)). Moreover,
recall that the scope of each universal restriction is expressed in normal form. Thus,
the overlap between two concepts (within the disjuncts C; and in D, resp.) that are
in the scope of a universal restriction w.r.t. a certain role R can be computed as the
overlap between two concepts expressed in normal form recursively computed by f,
already discussed. Of course, if no disjunction occurs at the top level, it is possible
to regard the concept description as a disjunction of single term to which f, applies
in a simple way. Anyway, since a conjunction of different universal restrictions
may occur (one per different role), the amount of the overlap of this conjunction is
given by the sum of the overlap computed for every universal restriction, namely for
every scope of a universal restriction. It is worthwhile noting that, when a universal
restriction on a certain role (say R) occurs in a disjunct (e.g. in C;), but no such
restriction on the same role occurs in the other description (say D;), then valg(D;)
is considered equal to the top concept, namely valg(D;) = T.

Now, the overlapping computation between two descriptions made up of con-
junctions of existential restrictions is analyzed. In this case the notion of existential
mapping [124] is considered. It is supposed that N = |exz(C;)| > M = |exgr(D;)]|.
Such a mapping can be defined as a function: « : {1,..., N} — {1,...,M}. If
each element of exg(C;) and exg(D;) is indexed with an integer in the ranges [1, N|
and [1, M], respectively, then o maps each concept description C¥ € exg(C;) with a
description D} € exg(D;). Since each CF (resp. DY) is in normal form, again, it is
possible to compute the amount of their overlap applying f, to such corresponding
descriptions. Namely, fixed a role R and considered a certain CF (with k € [1, N]),
the overlap between C} and D} (with p € [1, M]) is computed. Remembering that
the hypothesis in the function definition at existential restrictions level is N > M,
thus each existential restriction on R is coupled with the one on the same role
in other description scoring the maximum amount of overlap. These maxima are
summed up per role, then the sum is made also varying the role considered. In case
of one role restriction on a certain role .S is absent from either description then the
concept scope of such ”hypothetical” role (S) is considered as the concept T.

111

4.2.2 Defining the Dissimilarity Measure

After clarifying the definition of the overlap function f, a dissimilarity measure is
derived from it as shown in the following.

Definition 4.2.2 (Semantic Dissimilarity Measure) Let L be the set of all con-
cepts ALC normal form and let A be an A-Box. The dissimilarity measure d is a
function d : L x L [0,1] defined as follows: ¥V C = | |;_, C; and D = | |i*, D;

concept descriptions in ALC normal form, let

1 if £(C,D) =0
(4.2) d(C,D):=¢ 0 if f(C,D) =00
1/f(C,D) otherwise

where f is the function defined above.

The function d measures the dissimilarity between two concepts, say C' and
D, in ALC normal form, using the overlap function f. Particularly, if the overlap
function assumes its minimum value (f(C, D) = 0), this means that there is no
overlap between the considered concepts, therefore d must indicate that the two
concepts are totally different, indeed d(C, D) = 0, that is minimum value of d. If
f(C, D) = oo this means that the two concepts are totally overlapped and conse-
quently d(C, D) = 0 that means that the two concepts are undistinguishable, indeed
d assumes the minimum value of its range. If the considered concepts have a partial
overlap then their dissimilarity, defined as 1/f(C, D) is lower as much as the two
concept are more overlapped®| Indeed, as noticed in the previous section, the value
of f will be always greater than one in this case and it grows with the increasing of
the overlapping amount, consequently, for Def. [£.2.2] d will be 0 < d(C, D) < 1.

The function d is really a dissimilarity measure. Remembering Def. a
function d is a dissimilarity measure if the following three properties are satisfied:
1) d is definite positive; 2) d is symmetric; 3) d satisfies the minimality property
namely: VC, D : d(C,D) > d(C,C). The first property is trivially satisfied by
d, as it has value in the real interval [0, 1]. Moreover, by construction, d computes
dissimilarity by means of sums of positive quantities and maxima computed on sets
of such values. The symmetry property is trivially verified by the commutativity
of the sum and maximum operators. Then, it is easy to prove the minimality
property. Indeed, by the definition, it holds that d(C,C) = 0 and d(C,C") =0 if C
is semantically equivalent to C”. In all other cases, VD € £ and D not semantically
equivalent to D (C' # D), results: d(C, D) > 0. To better clarify the usage of the
presented dissimilarity measure, an example is illustrated in the following.

8Remember that the overlap is measured considering the entire concept definitions and their
sub-concepts too.

112

Example 4.2.3 Let C' and D be two ALC concepts in normal form defined as
follows:

C=AN3R.BNVT.(VQ.(A, 1 Bs)) U Ay

D=AMNByMN3R.A3MIR. By MVS. B3 MIVT.(Bg M By) Ll By
where A; and B; are all primitive concepts.

To compute the dissimilarity value between C' and D, first of all, the overlap
function has to be computed. Let C' and D be neither equivalent nor disjoint. Hence
the third case of f has to be applied. For sake of simplicity it is denoted Cy := A
ElRBl|_|VT(VQ(A4|_|B5)) and D1 = All—]BQHHRAgﬂaRBQﬂVSBgﬂ\V/T(BGHB4)
The overlap will be given by the mazimum value of the overlap computed among all
couples of disjunctive terms:

f(07 D) = fu(C>D) = max{ fﬂ(claDl)afﬂ(ClaBQ)afﬂ(AlaDl)afl_l(AlaBQ) }

For brevity, only the computation of fr(Ch, D1) will be considered, which is also the
most complex case. fr is computed as the sum of fp, fv, f3 i.e., respectively. Let it
be (Ax)T # (A1 N Bo)t and also (A2)* N (Ay M By)t # 0. Hence, fp is given by:

fp(C1, D) = fp(prim(Cy),prim(Dy)) = fp(As, A1 By) =
[(A2)" U (Ay N By)*|
[((A2)F U (A1 11 Bo)®) \ ((A2) N (A1 11 By)?)|

In order to compute fy it is necessary to note that there are two roles at the
same level: T and S; so the summation over the different roles is made by two
terms. The role S is only in Dy and not in Cy, consequently valgr(Cy) = T. Thus,
i this case,

fv(C1, Dy) = Z fulvalg(Cy),valg(Dy)) =

RENR

fulvalr(Cy),valr(Dy)) + fu(vals(Ch),vals(Dy)) =
- fu(VQ(/Ll M B5),BG |_|B4) —|— fu(T,Bg)

The computations of f,(VQ.(A4 M Bs), Bg M By) and f,(T, Bs) are the same seen
above.

Now, the computation of f3 has to be performed. It is necessary to note that
here there is only one role R, so the first summation collapses to a single element.
Then N and M, that are the numbers of conjunctive existential concept descriptions
w.r.t. the same role (S in this case), are respectively N =2 and M =1, so it would
have to find the max in a singleton, that can be simplified. Hence the computation
of f3 for the current example will be:

fa(Cr, Dr) = fulexr(Cr), exx(DY)) = fu(Bi, As) + fu(Bi, B2)
k=1

113

Also in this case, the computation of f, is the same seen above.

In order to determine the dissimilarity value of C' and D the same operations
have to be performed for computing fn(Ch, Bz), fn(A1, D), fr(A1, B2). Once that
such the overlap amounts have been computed, the final overlap value between C
and D will be given by the maximum of the computed overlap values for all couples
of disjunctive terms. Hence, the dissimilarity value is immediately obtained as the
inverse of the chosen mazximum value. O

As seen in Sect. [4.1.7] the presented dissimilarity measure can be easily ap-
plied to compute dissimilarity between individuals or between an individual and
a concept, by recurring to the notion of the (approximated) msc of an individual
w.r.t. the considered ABox. The obtained msc can be normalized as whatever con-
cept description and consequently the dissimilarity value can be computed as seen
in Ex. [4.2.3] Computing dissimilarity between individuals or between concept and
individual may be turn useful both in inductive reasoning (construction, repairing of
knowledge bases) and in information retrieval. Differently from the measure defined
in Sect. [4.1] the presented measure is really able to determine the dissimilarity value
between individuals. By recurring to a structure driven approach, the dissimilarity
value is computed considering dissimilarities between sub-concepts of the concept
definitions. Even if a structural approach has been used, the computed dissimilarity
value does not depend from the way in which a concept is described, as concepts
in normal form are considered. Indeed the normal form of a concept ensures that
semantically equivalent concepts are also written in the same syntactic way. This
aspect allows to use also a semantic approach that is mainly given by the use of the
concept extensions when the dissimilarity between conjunctive (negated) primitive
concepts is computed. Moreover, as seen for the measure presented in Sect. [4.1] the
usage of the concept extensions allows to define a semantic dissimilarity measure by
means of a numeric approach.

Experimental evaluations (see Sect. of the presented measure showed
that it is effectively able to determine dissimilarity values between concepts, be-
tween individuals and between concepts and individuals. However, in case of com-
plex concept descriptions (such as msc), deeply nested sub-concepts could increase
the dissimilarity value. This is because, with the increasing of the nested sub-
concepts, increases also the dissimilarity values (between subconcepts) to sum up.
Anyway, deeply nested sub-concepts are less semantically related to the considered
concept. A solution to this problem is presented in Sect. In the following, the
computational complexity of the measure presented in this section is discussed.

114

4.2.3 Computational Complexity

The computational complexity of the dissimilarity measure d is strictly related to the
computational complexity of the overlap function f defined in Sect [£.2.1] Besides,
the overlap function relies on some reasoning services, namely subsumption and
retrieval. Assuming the most trivial computation of the retrieval by the use of the
instance checking inference operator (IChk), it is easy to note that the complexity
of f (and hence the complexity of d) depends on the complexity of these inferences.
Specifically, in order to define the complexity of d, three cases, descending from
being d grounded on f (namely Compl(d) = Compl(f,)), will be distinguished.

Let C = [_, Ci; D =];~, D; be two ALC normal form concept descriptions:

Case 1: C and D are semantically equivalent. In this case only subsumption is
involved in order to verify the semantic equivalence of the concepts. Thus

Compl(d) = 2 - Compl(3)
where Compl(-) represents the complexity.

Case 2: C and D are disjoint. In this case subsumption and conjunction are in-
volved. Anyway, being the conjunction complexity constant in time, the com-
plexity of d is the same as in the previous case.

Case 3: C and D are neither semantically equivalent nor disjoint. In this case the
complexity depends on the structure of the concepts involved. Particularly,
fr has to be computed for n - m times (for determining the maximum overlap
value among all couples of disjunctive terms); hence, the complexity is:

Compl(d) = n-m- Compl(fr) = n-m-[Compl(fp)+ Compl(fs) + Compl(f5)]

Thus, it is necessary to analyze the complexity of fp, fv, fa.

The dominant operation in computing fp is given by the Instance Checking
(IChk), used for determining the concept extensions. Considering that com-
puting fp, two concepts are involved, then the complexity of fp is given by:

Compl(fp) = 2 - Compl(IChk)

The computation of fy and f3 applies recursively the definition of f, on less
complex descriptions. Specifically, | Ng| calls of f, are necessary for computing
fv, while the number of invocations of f, necessary for computing f5 is equal

to [Ng| - N - M, where N = |exg(C;)| and M = |exg(D;)| as in Def. [4.2.1]
Hence, summing up, the complexity of d is given by:

Compl(d) = nm[(2Compl(IChk)) + (| Ng|Compl(1)) + (|Nr|MN Compl(f.))]

115

The complexity of the dissimilarity measure d strongly depends on the complexity
of the instance checking for ALC, which is P-space [8]. Nevertheless, in practical
applications, these computations may be efficiently carried out exploiting statistics
that are maintained by the DBMSs query optimizers. Besides, the counts that
are necessary for computing the concept extensions could be estimated by means
of the probability distribution over the domain. Another way for optimizing the
computation of d involves pre-computing the extensions of the primitive concepts,
and hence determining the extensions of complex concept description by means of
the set operations. In this way the complexity of d can be decreased. In the next
section, a modified version of the presented measure will be illustrated. This has
been developed in order to avoid that deeply nested concept definitions affect the real
dissimilarity value. Nevertheless, the weighted version of the dissimilarity measure
does not increase its complexity.

4.2.4 A Weighted Dissimilarity Measure for ALC

Experimental evaluationg’|of the dissimilarity measure presented in Sect. showed
that it performs well, assessing the dissimilarity between concepts, between individ-
uals and between concepts and individuals. However, for complex concept descrip-
tions, deeply nested sub-concepts could increase the dissimilarity value between two
concepts more than their "real” value. This is because, the dissimilarity measure is
defined on the ground of the overlap function (see Def. and Def. which
is recursively defined, beginning from the top level of the concept descriptions (a
disjunctive level) up to the bottom level represented by (conjunctions of) primitive
concepts. Hence concept descriptions constituted by deeply sub-concepts could in-
crease the overlap w.r.t. another concept adding further information. Anyway very
deeply sub-concepts (such as those contained in different nested levels of existential
and universal concept restrictions) are less semantically related to the initial con-
cepts (say C' and D), while they are more related to other aspects represented by
sub-concepts of C' and D. In order to clarify this intuition, the following description
is considered:

C = Woman M Sibling M 3 HasParent(Mother 11 Sibling M 3HasSibling(C1))
where
C1 = Mother 1M Sibling M JHasParent(Father M Parent)

The sub-concepts Father and Parent in the scope of JHasParent(Father M Parent)
refer to a specification of the concept C1, hence they are less semantically important

9See Ch. || for applications and experimental evaluations of the measures presented in this
chapter.

116

for C than concepts Mother and Sibling that specify directly the concept C (indeed
they are at the top level of the concept definition). Anyway computing the overlap
between C and another concept, the sub-concepts Mother, Sibling, Father and Parent
will have the same importance in determining such value. With the increase of the
nesting level of the sub-concepts, this phenomenon becomes more evident.

In order to solve this problem the measure can be weighted by the use of
a weighting factor that decreases the ”importance” of the overlap between sub-
concepts with the increase of their nesting levels in the initial descriptions [51].
Specifically, more sub-concepts are nested, more the overlapping will be decreased
by the associated weight; consequently such amount will be less determinant in com-
puting the final dissimilarity. Moreover, in order to make Def. and Def.
really computable, the value oo has to be quantified in a computable way. Using
the knowledge base as source of information, the value co can be substituted by the
cardinality of the ABox (|A|) which represents all the knowledge about the domain.
Hence the overlap function is modified as in the following:

Disjunctive level:

Al ifC=D
/ / 0 HfCcnNnbD=_1
C,D):=f,(C,D)=
I)= Jul) max ;e 1+ A fL(Cy Dj) ow.
JE,m]

where A is a weighting factor.

Primitive concepts:

|[PE(C:) U PE(D;)|
(PE(Ci) U PE(D;)) \ (PE(C;) N PE(D;))]

fp(prim(C}), prim(D;)) :=
where,

i PE<01) = (|_|P€prim(Ci) P)I and PE<D]) = (|—|P€prim(Dj) P>I
(extension of the primitive concepts conjunctions)

e fp(prim(C;), prim(D;)) = |A| when (prim(C;))* = (prim(D;))*

e fp(prim(C;),prim(D;)) = 0 when PE(C;) N PE(D;) =0

The definitions of the overlap function for the conjunctive level, value restric-
tion and existential restrictions remain the same as in Def. [£.2.1]

117

Analogously, the definition of the dissimilarity measure is modified as follow:

1 if f/(C,D)=0
d(C,D):=¢ 0 if f/(C,D)=A
1/f(C, D) otherwise

where f’ is the overlap function defined just above.

The new definition of the overlap function at disjunctive level determines the
overlap between the two concepts as the maximum of the overlaps among all couples
of disjuncts C;, D; that make up the top level of the considered concepts; such
amounts are multiplied by the weighting factor A used to decrease the importance of
the overlap of the sub-concepts, particularly the importance of the overlap decreases
with the increasing of the nesting level. The weighting factor can be defined as
a function of the level where the sub-concepts occur within the overall concept
descriptions (e.g. A = 1/level). Moreover it is important to note that the amount
of the overlap (as discussed in Sect. continues to be zero or greater that one.
This ensure that the dissimilarity function d, for its definition, has value in the range
[0, 1].

Summarizing, a dissimilarity measure able to compute dissimilarity values be-
tween concepts, individuals and concept and individual described in a ALC knowl-
edge base has been defined. It is grounded on a overlap function that measure
the overlap between concepts by computing the amount of overlap between their
sub-concepts. The importance of such amounts depends on the nesting level of the
sub-concepts in the descriptions; it decreases with the increase of the nesting level.
Hence, primitive concepts and restrictions play a different role in determining the
dissimilarity value. Moreover, as seen in the previous section, the overlap function
(and consequently also the dissimilarity measure) is based both on the semantics and
on the structure of the concepts involved. It is semantic because it is grounded on
the concept extensions, as retrieved from the current ABox. It is structural because
the dissimilarity value is determined by computing the overlap of the sub-concepts
constituting the descriptions. The use of normal form concept descriptions ensures
that the computed dissimilarity value does not depends from the structural concept
representations.

An important aspect to note is that the presented measure may represent a
solution to one of the open questions illustrated by Borgida et al. in [29] namely
”how differences in concept structure might impact concept (dis-)similarity? For ex-
ample considering the series dist(B, BMA), dist(B, BIIVYR.A),dist(B, BMVR.VR.A)
this should become smaller since more deeply nested restrictions ought to represent
smaller differences.” These problem has been solved by exploiting the structural
approach and weighting the nesting level of sub-concepts.

118

4.3 An Information Content based Dissimilarity
Measure for ALC

One of the most prominent work analyzing (dis-)similarity measures for DLs concept
descriptions has been proposed by Borgida et al. in [29]. The most important point
argued in this paper is that the empirical success of Information Content (IC)
based measuresET] for simple concept descriptions indicates that such model could
be the best solution for determining the (dis-)similarity between complex concept
descriptions. Furthermore, the necessity of considering concepts in normal form for
computing their (dis-)similarity is also explained.

The latter argumentation confirms the choice, presented in Sect. of consid-
ering concepts in normal form. Moving from the former argumentation, a measure
grounded on the notion of IC' that is able to determine the dissimilarity value be-
tween complex concept descriptions in ALC normal form, has been formalized. The
measure [55] is defined making use of the structure and semantics of the concepts.
Following the approach presented in Sect. [£.2] the measure elicits the underlying
semantics, by querying the knowledge base for assessing the IC' of concept descrip-
tions w.r.t. the knowledge base, as proposed also in [I7]. A function of the IC gap
between concepts is first defined, hence a dissimilarity measure is derived from it.
Moreover, an extension of this measure to cope with individuals and concept and
individual is proposed.

4.3.1 Measuring the IC Gap between Concepts

The IC depends on the probability of an individual to belong to a certain concept
(see Sect. [3.3.2). Differently from other works [I7, 29] which assume that concepts
are mutually independent and that a probability distribution for the concepts in an
ontology is known, here, a way to derive such probability from the knowledge base,
namely from the distribution that can be estimated therein, is proposed.

Specifically, in order to approximate the probability p(C') for a certain concept
C', the notion of concept extension w.r.t. the considered ABox in a fixed interpre-
tation is used. The chosen interpretation is the canonical interpretation Z, which is
the one adopting the set of individuals mentioned in the ABox as its domain and
the identity as its interpretation function [8, [134]. Particularly, given a concept C,
its probability is estimated by: pr(C) = |C%|/|A%|. Once that p(C) has been esti-
mated, the IC of a concept C' can be easily computed by recurring to its definition,
namely : IC(C) = —logpr(C).

10Gee Sect. for more details about measures based on IC.

119

Given these premises, a function for computing the variation of the /C between
concepts in ALC normal formE is defined as follows.

Definition 4.3.1 (IC gap function) Let L = ALC/= be the set of all concepts
in ALC normal form and let A be an ABox with canonical interpretation Z. g
is a functio?] g : L x L +— R*Y defined recursively as follows: YC,D € L, with
C =L Ciand D =], D; it has:

0 «C=D
Disjunctive level : g(C, D) := g,(C,D) ={ yonD=1
max ; ¢ 1,5, 9n(Ci, Dj) o.w.
jetm

Conjunctive level: gn(Cy, D;) := gp(prim(C;), prim(D;))+gv(C;, D;j)+g3(C;, D;)

oo if pc(Cy) Mpe(D;) = L
Primitive concepts : gp(prim(C;), prim(D;)) =

IC(pc(Ci)Mpe(D;))+1
IC(LCS(pe(Cs),pe(D;)))+1

0.w.

where, pc(Ci) == ([Tpeprim(cy) and pe(D;) == ([peprim(p,)) represent the primi-
tive concepts conjunctions.

Value restrictions : a(Ci, Dj) = Z gu(valg(C;), valg(Dy))
RENR
N
Existential restrictions : g3(C;, Dj) = Z Z HllaXMgu(Cik DY)
p=1,..
RENg k=1

where C € exp(C;) and DY € exp(D;) and we suppose w.l.o.g. that N = |exz(C;)| >
lexp(D;)| = M, otherwise the indices N and M are to be exchanged in the formula
above.

The function g represents a measure of the variation of IC' between two descriptions
expressed in ALC normal form. Following the same criterion illustrated in Sect.
it is defined recursively beginning from the top level of the descriptions (a disjunctive
level) up to the bottom level represented by (conjunctions of) primitive concepts.

HUEvery ALC concept description can be equivalently written in ALC normal form by means of
semantic preserving rewriting rules (see Sect. for more details).
12The name A of the ABox is omitted for keeping the notation as simple as possible.

120

In case of disjunctive descriptions three different possibilities have to be taken
into account. If the considered concepts C' and D are semantically equivalent then
g is set to 0. This is because the knowledge of both of them rather than only one
of them does not add any information. If C' and D are disjoint they convey a great
amount of IC, they could be seen as one the complementary of the other, hence the
value of g, in this case, is set to oo. If they have something in common, the amount
of additional information that they supply is computed as the maxima]E variation
of the IC among all couples of disjuncts (C;, D;) that make up the top level of the
considered concepts.

Since every disjunct is a conjunction of descriptions, it is necessary to calculate
the IC gap between conjunctive concepts. This is computed as the sum of the IC
gap among the parts that make up the conjunctive description that are primitive
concepts, universal restrictions and existential restrictions.

The amount of the gap between two conjunctions of (negated) primitive con-
cepts is the ratio of the informative content of the conjunction of the two concepts
over their Least Common Subsumer (see Def. , which simply amounts to their
disjunction in the case of ALC (see Sect. 2.4.1). The intuition is that the informa-
tion content conveyed by two concepts is inversely proportional to their semantic
similarity (measured as the overlap of the respective extensions). Specifically, the
gap between two conjunctions of (negated) primitive concepts is measured as the
variation of the IC' of the considered concepts at this level w.r.t. the IC con-
veyed by their lcs. Indeed, if C' and D share most of their extension, consequently
(pe(C) M pe(D))F] = |(les(pe(C), pe(Dy)F] = gp(prim(C,), prim(D;) = 1.
This means that very low IC' gap exists between the considered conjunctions of
(negated) primitive concepts. As the amount of extensions they share decreases,
IC(pc(C;) Mpe(Dy)) increases and consequently gp(prim(C;), prim(D;)) increases as
well (as the denominator IC(lcs(pe(C;), pe(D;))) is constant). It important to note
that gp is always greater than one.

The computation of the gap between descriptions expressed by universal and
existential restrictions is defined as explained in Sect. [£.2.1] Namely, in case of
conjunction of universal restrictions, the IC gap between concepts that are scope of
universal concept restriction with respect to the same role@ (say R) is computed by
applying ¢ ,. This operation is legal because the scope of each restriction is expressed
in normal form. Of course, if a single disjunct occurs at the top level, it is possible to
regard the concept description as a disjunction of a single term to which ¢, applies
in a simple way. Since a conjunction of concepts with universal restrictions (one
per different role) can be found, the gap of the conjuncts is given by the sum of

131t would be appropriate to consider the minimal dissimilarity (or an average one) as well.
14 Remember that, in an ALC normal form concept, for each role there is a unique universal
concept restriction, because of the rewriting rule VR.AMNVR.B = VR.(AM B)

121

the IC gap yielded by each restriction. When a universal restriction on a role (S
for example) occurs only in one of the descriptions (i.e. in C; and not in D;), then
the computation assumes T as the corresponding concept in the other description
(namely valg(D;) = T).

In case of conjunction of existential restrictions the existential mapping func-
tion o : {1,..., N}~ {1,..., M}, that maps each concept description C* € exz(C;)
to D} € exg(D;), is used. Where N = |exz(C;)[; M = |exg(D;)] and N > M is
supposed. Again, since each CF (resp. Df) is in normal form, fixed a role R and
considered a certain Cf (with k € [1, N]), the IC' gap between Cf and DY (with
p € [1, M]) is computed applying g ,. Each existential restriction on role R is coupled
with the one on the same role in the other description, scoring the maximal IC gap
(see footnote . These maxima are summed up per single role. In case of absence
of role restrictions on a certain role from either description then it is considered as
the top concept (T).

4.3.2 Information Content based Dissimilarity Measure

After clarifying the definition of the function ¢ and determined the IC' gap between
complex descriptions in ALC normal form, a dissimilarity measure is derived from
g as shown in the following.

Definition 4.3.2 (IC based Dissimilarity Measure) Let L be the set of all con-
cepts in normal form in ALC and let A be an ABox. The dissimilarity measure d,

is a function d, : L x L — [0,1], such that given the concept descriptions in ALC
normal form C' = | [, C; and D = | |}", D;, let

0 if g(C,D) =0
(4.3) d,(C,D):=¢ 1 if g(C,D) = o0
1-1/9(C, D) otherwise

where g 1s the function defined above.

The function d, measures the level of dissimilarity between two concepts (say C' and
D) in ALC normal form, using the function g that expresses the IC gap between
the two concepts, say C' and D. Particularly, if g(C, D) = 0 this means that one
concept (say D) does not add further information to that given by C, therefore
dy(C,D) = 0, which is the minimum value in its range. If g(C,D) = oo this
means that one concept is the contrary of the other one, thus d,(C, D) =1 i.e. it
amounts to the maximum value of its range, which indicates that the two concepts
are totally different. In the third case the dissimilarity value is given by one minus

122

the inverse of the amount of /C' gap between C and D. This can be easily understood
supposing to have concepts made by only conjunctive (negated) primitive concepts.
Remembering that, as discussed in Sect. [4.3.1] if they share most of their extensions
gp =~ 1 consequently, in this case, also g, = g ~ 1. Generalizing, the more the
considered concepts share their extensions the less dissimilar they are, hence the
dissimilarity value d, have to be near to 0.

Proposition 4.3.3 d, is a dissimilarity measure for ALC/=.

PROOF.

Three properties of Def. have to be satisfied: 1) d, is definite positive; 2) d, is
symmetric; 3) dg satisfies the minimality property (VC,D : d,(C,D) > d,(C,C)).
1. trivial: by construction d, computes a dissimilarity by using sums of positive
quantities and maxima computed on sets of such values;

2. by the commutativity of the operations involved;

3. by the definition of dg, it holds that d,(C,C) = 0 and dy(C,C") = 0 if C is
semantically equivalent to C'. In all other cases, YD € L and D not semantically

equivalent to C' (C # D), it results: d,(C, D) > 0.
To clarify the usage of the presented measure, an example is illustrated.

Example 4.3.4 Let C and D be the concepts used in the Example [{.2.3:
C = A, M3R.By NVT.(VQ.(A4 1 Bs)) U A,
D=AMNByN3R.A3MIR. By MVS. B3 MIVT.(Bg M By) Ll By

where A; and B; are all primitive concepts.

In order to compute the dissimilarity value between C' and D, the 1C gap
function has to be firstly computed. As in Fux. C and D are neither equivalent
nor disjoint. Hence the third the case of the g, has to be computed. For sake of
simplicity it is denoted Cy := A3 MAR.B1MVT.(VQ.(A4 1 Bs)) and Dy := A1 11 By
JdR.A3M3AR.BoMVYS.BsMVT.(Bg M By). The 1C gap will be given by the mazimum
value of the gap computed among all couples of disjunctive terms:

Q(C, D) = gu(C, D) = max{ gﬂ(claDl)agFI(ClaBQ)agﬂ<AlaDl)agﬂ<AlaBZ) }

For brevity, only the computation of g-(Cy, D) will be considered. This is computed
as the sum of gp, gv, ga. The computations of gy(C1, D1) and g3(Ch, Dq) are the
same for the Ex. . The computation of gp(C1, D1) is shown here. Suppose that
A2 I (Al (N Bg) §é 1. Then:

| . IC(A; (A1 M By))+1
gp(prim(Ch), prim(D1)) = gp(Az, A1 T1 By) = [C(<ZCSQ(A2(All M 322)>)> +1

Hence the value of gp will be computed by determining the extension of Ay (A;MBy)
and the extension of AslU(A1MBs) = les(Ag, A1MBsy) and then applying the definition

123

of IC, IC(Ay 11 (A; 1 By)) = —log p(Az M (Ay M By)) = —log(“2H0REL) ang
analogously for IC(As U (A M By)).

To determine the dissimilarity of C' and D the same operations have to be per-
formed for computing gn(C1, B2), gn(A1, D1), grn(Ay, Ba). Once that such amounts
have been computed, the 1C gap between C' and D will be given by the maximum
of the gap for all couples of disjunctive elements. Hence, the dissimilarity value is
immediately computed as one minus the inverse of the chosen maximum value. O

As seen in Sect. [1.1.1] the presented dissimilarity measure can be easily applied
to compute dissimilarity value between individuals and between an individual and a
concept by recurring to the notion of the (approximated) msc of an individual w.r.t.
the considered ABox. The presented dissimilarity measure, as the measure presented
in Sect. [£.2] is able to overcome the issues that the measure presented in Sect.
show, when the similarity between individuals has to be computed. This is obtained
by giving a more structural definition of dissimilarity. Moreover a semantic approach
is used. It is mainly given by the use of the notion of concept extensions when
dissimilarity value between conjunctive (negated) primitive concepts is computed,
which represent the base of the recursion of the definition of the measure, rather
of the definition of the IC' gap function (to which the measure is derived from).
The retrieval inference operator is used for determining the concept extensions. It
is important to note that, as seen in Sect. [£.2.4] also for the measure presented in
this section, a modified weighted form can be thought.

4.3.3 Computational Complexity

The computational complexity of d, is the same seen in Sect. for d, as both
depend from the overlap function f and the IC gap function g respectively, that
are defined in the same way except for the base of the recursion (given by fp and
gp respectively). The main source of complexity for fp is represented by the dou-
ble invocation of the retrieval operator whose complexity has been approximated
to the complexity of the instance checking. The computation of gp requires a dou-
ble computation of the IC' of a concept and the computation of the lcs of the
two definitions. The computation of the IC is based on the determination of con-
cept extensions whose complexity has been approximated with the complexity of
the instance checking. The computation of the lcs is constant in time. Thus,
Compl(fp) = Compl(gp) = 2 - Compl(IChk). Hence the complexity of f and g
(that is the same for d and d;), mainly depends from the complexity of the instance
checking operator which is P-Space in ALC [68]. Anyway, as said in Sect. , in
practical applications, these computations may be efficiently carried out exploiting
the statistics maintained by the DBMSs query optimizers and the set operations.

124

4.4 A Semantic and Structure driven Similarity
Measure for ALN

The experimental evaluations (see Sect. of the measures presented in the pre-
vious sections have shown their effectiveness in determining (dis-)similarity between
concepts, individuals and concept and individual. Such measures refer to ALC
concept descriptions. This represents an interesting result from a theoretical and
practical point of view, as they are, for the best of the knowledge, among the first
works, at the time of writing this thesis, assessing (dis-)similarity in quite expressive
description logic. Anyway, in order to apply (dis-)similarity measures to real-world
problems, numeric restrictions have to be treated. The measure that will be pre-
sented in this section has been developed moving by this consideration. Particularly,
this work aims at investigating and extending previous ideas to languages endowed
with numeric restrictions, starting from the simplest description logic allowing for
these numeric restrictions, namely ALN logic.

ALN is a DLs language which allows for the expression of universal features
and numeric constraints (see Sect. [2.2|for more details). It has been adopted because
of the tractability of the main reasoning services (see Sect. and [66] for more
details). Furthermore, it has already been adopted in other frameworks for learning
in hybrid representations such as CARIN-ALN [172] or IDLP [119].

4.4.1 Measure Definition

Using the structural notion of ALN normal form (see Def. where the notations
used in the definition are introduced) and the world-state as represented by the KB,

a similarity measure for the space of (equivalent) descriptions £ = (ALN |=) can
be defined as follows [76]:

Definition 4.4.1 (ALN similarity measure) The function s : L X L +— [0,1] is
defined as follows. Given C,D € L:

s(C,D) =X - sﬂprim(C’),prim(D))#—ﬁ Z s(valg(C),valr(D)) +

ReNg

+ ﬁ Z sn((ming(C), maxg(C)), (ming(D), maxg(D)))

ReNR

where A €]0,1] (A <1/3),

. | nPCEprim(C) Pg n ﬂQDEprim(D) Q%|

im(C'), prim(D)) :=
SP(prlm()7prlm(>> ’ﬂPCEprim(C) PgUﬂQDEprim(D)Q%‘

125

and if min(M¢, Mp) > max(me, mp) then

min(Me, Mp) — max(me, mp) + 1
SN((mC7MC)7(mD,MD>) = (¢ D) (C D)

max(M¢c, Mp) — min(me, mp) + 1

else
sy((me, Mc), (mp, Mp)) := 0

The rationale for the measure is the following. Due to the relative simplicity of
the language, the definition of operators working on ALN may be given structurally,
as seen in the Sect. for ALE. Thus, the measure s is defined by recursively
decomposing the normal form of the concept descriptions under comparison. Hence,
separately, per each level, the similarity of the sub-concepts are measured, namely:
primitive concepts, value restrictions, and number restrictions. The contribution of
the similarity at a given level is combined jointly with a ﬁxedﬁ rate A. Actually, in
order to have s ranging over [0, 1], A should be less or equal to 1/3.

The similarity of the primitive concept sets is computed as the ratio of the
number of common individuals (belonging to both primitive conjuncts) w.r.t. the
number of the individuals belonging to either conjunct. For those sub-concepts that
are related through a role (say R) the similarity of the concepts made up by the fillers
is computed recursively by applying the measure to valg(-). Finally, the similarity
of the numeric restrictions is computed as a measure of the overlap between the two
intervals. Namely it is the ratio of the amounts of individuals in the overlapping
interval and those the larger one, whose extremes are minimum and maximum. Note
that some intervals may be unlimited above: max = oo. In this case such upper
level could be approximated with an upper limit N greater than |A| + 1.

The baseline of this measure is the extension of primitive concepts. Since
such extensions cannot be known beforehand due to the OWA, as for the measures
illustrated in the previous sections, an epistemic adjustment is made, by assuming
that it is approximated by retrieving the concept instances based on the current
world-state (i.e. according to the ABox A); formally P! « {a € Ind(A) | I 4
P(a)} where P is a considered concept. The interpretation is not decisive because
of the unique names assumption (UNA) holding for the individual names. Hence,
the canonical mterpretatwﬂm is considered for counting the retrieved individuals.

Furthermore, it can be foreseen that, per each level, before summing the three
measures assessed on the three parts, these figures be normalized. Moreover, a
lowering factor A €]0, 1] may be multiplied so to decrease the impact of the sets
of individuals related to the top-level ones through some role R.

15 Actually different rates could be assigned to the similarity of primitive concepts, the similarity
of numerical restrictions and the similarity of concepts for the role fillers.
6The interpretation where individual names occurring in the ABox stand for themselves [g].

126

In order to clarify the function definition, an example is illustrated below. The
example shows that the measure exploits the ABox which can be supposed complete
according to the TBox descriptions (e.g. Female C —=Male).

Example 4.4.2 Let A be the considered Abox defined as in the following:

[Person(Meg), —~Male(Meg), hasChild(Meg, Bob), hasChild(Meg, Pat),
Person(Bob), Male(Bob), hasChild(Bob,Ann),
Person(Pat), Male(Pat), hasChild(Pat, Gwen),
A = ¢ Person(Gwen), ~Male(Gwen),
Person(Ann), =Male(Ann), hasChild(Ann,Sue), married To(Ann, Tom),
Person(Sue), =~Male(Sue),
Person(Tom), Male(Tom)

\

and let two descriptions be:

C = Person VYmarriedTo.Person™ < 1.hasChild
D = Malem VYmarriedTo.(Person M —=Male)1 < 2.hasChild

Noted that |[Ngr| = [{marriedTo, hasChild}| = 2, and let A\ = 1/3, the similarity
between C' and D in the knowledge base is computed as follows:

s(C,D) =5 - [sp(prim(C), prim(D)) + 5 > pen, s(valr(C),valr(D)) +
+1 > reny, SN((Ming(C), maxz(C)), (ming(D), maxg(D)))]

Now, the three parts are computed separately:

sp(prim(C), prim(D)) = sp({Person},{Male}) =
|{Meg, Bob, Pat, Gwen, Ann, Sue, Tom} N { Bob, Pat, Tom}|

"~ |[{Meg, Bob, Pat, Gwen, Ann, Sue, Tom} U { Bob, Pat, Tom}| _ 37
For the number restrictions on role hasChild:
sx((me. Me), (mp, Mp)) = sv((0.1),(0,2) = T2 F =BG oy
For the number restrictions on role married To:
sn((mg, M¢), (mp, Mp)) = sn((0,|A] +1), (0, |A] + 1)) = sn5((0,8),(0,8)) = 1
As regards the value restrictions on marriedTo, valmamrieato(C) = Person and

ValmarriedTo (D) = Person T —~Male, hence:

s(Person, Person 1 ~Male) = 1/3 - (sp({Person}, { Person,~Male}) + 1 + 1)

127

and

o |{I\/leg, Bob, Pat, Gwen, Ann, Sue, Tom} N {Meg, Gwen, Ann, 5ue}|

sp({Person}, {Person,~Male})

— 47

N |{I\/Ieg, Bob, Pat, Gwen, Ann, Sue, Tom} U {Meg7 Gwen, Ann, 5ue}|

As there are no value restrictions on hasChild, the similarity is mazimal (valpaschig(C) =
Valhaschia(D) = T).

Summing up:

1[3 1/1/4 1 1 2 92
D) = - |z+=(=(=+1+1)+=(1+1+1 —(1+2])] == ~.7301
s(C, D) 3[7+2(3(7++)+3(++))+2(+)} 196 7301 O

4.4.2 Discussion

It can be proven that s is really a similarity measure by demonstrating the three
properties of Def. 1) s is definite positive; 2) s is symmetric; 3) s satisfies the
minimality property (V C, D : s(C,D) < s(C,C))

Proposition 4.4.3 The function s is a similarity measure for the space L.

PROOF: the three properties of the definition are proved in the following

1. It is straightforward to see that s is positive definite since it is defined recur-
sively as a sum of non-negative values.

2. s 1s also symmetric because of the commutativity of the operations involved,
namely sum, minimum, and mazimum (note that the value of sy in Def.
does not change by exchanging C with D).

3. It has to be proven that VC,D € L : s(C,D) < s(C,C). This property can
be proved by structural induction on D. The base cases are those related to
primitive concepts and number restrictions, the inductive ones are those related
to value restrictions and conjunctions:

e if D is primitive then s(C,D) = Asp(prim(C), prim(D)) + s1 + s3] <
)\[lmPCEPrim(C) PgmﬂQDEPrim(D) Q%‘ + 1 + 1] <
|mPC€prim(C) PgunQDGPrim(D) Q%‘ o

) 7 _ T
)\[lmPCEPrlm(C) PC’mﬂPCGpnm(C) PC| + 1 + 1] — AI:]_ + 1 + 1] — S(O, O)

| mPCGprim(C) PgunPCEPrim(C) P(l::|

e if D is a number restriction the proof is analogous to the previous one,

observing that
0 min(Mc,Mp)—max(mc,mp) min(Mc,Mc)—max(me,mc) - 1
— max(M¢,Mp)—min(mc,mp) — max(Mc,Mc)—min(mc,m¢c) —

128

e if D is a value restriction, then supposing by induction hypothesis that
the property holds for descriptions whose depth is less than D’s depth.
This is the case of the sub-concept valg(D).

Thus s(valg(C),valgr(D)) < s(valg(C),valg(C)) from which it is possible
to conclude that the property holds.

e if D is a conjunction of two simpler concepts, say 3D, Dy € L : D =
D1 1 Dy, then assuming by induction hypothesis that the property holds
for descriptions whose depth is less than D’s depth such as Dys. This
means that ¥i € {1,2} : s(C, D;) < s(C,C). It can be proven that ¥i €
{1,2} : s(C, D) < s(C, D;). Hence the property holds. O

Note that, following [26], a dissimilarity measure can be easily derived from s.

Definition 4.4.4 (ALN dissimilarity measure) The dissimilarity function d :
L x L —[0,1] is defined as follows. Given C,D € L:

d(C, D) =1 — s(C, D)

From a computational point of view, as the approach presented in Sect.
has been followed, consequently, in the same way it is possible to assert that the
computational complexity of the measure presented in this section strongly depends
from the computational complexity of the instance checking operator for ALN.
Anyway, in order to control the computational cost of these functions, it could be
assumed that the retrieval of the primitive concepts is computed beforehand, on
the ground of the current knowledge base, and then the similarity measure can be
computed bottom-up through a procedure based on dynamic programming.

Moreover, as seen in the previous sections, the presented measure can be ex-
tended for assessing similarity between individuals, and between a concept and an
individual, by recurring to the (approximated) msc of an individual w.r.t. an ABox.

The presented measure can be refined introducing a weighting factor, useful
for decreasing the impact of the similarity between nested sub-concepts in the de-
scriptions on the determination of the overall value.

Another natural extension may concern the definition of (dis-)similarity mea-
sures for more expressive languages. For example, a normal form for ALCN can
be obtained based on those for ALN and ALC. Then, by exploiting the presented
measures for ALC and the current measure, a new measure for ALCN could be
obtained. Anyway, doing this, some aspects have to be considered such as, how to
manage the expression dR.AM > 3R. Indeed in this cases an approach that consid-
ers separately the different kinds of restriction is not semantically correct, being one
restriction related to the other one.

129

4.5 A Relational Kernel Function for ALC

As discussed in Sects. [3.2.2] [3.3.6] kernel functions are a means to express a notion
of similarity is some feature space. Generally, they are used jointly with a kernel
method. Kernel methods are a family of efficient and effective algorithms (including
the support vector machines — SVMs) that have been applied to a variety of prob-
lems and recently also to those requiring structured representationﬂ. One of the
advantages of kernel methods is that the learning algorithm (inductive bias) and
the choice of the kernel (language bias) are almost completely independent. Thus,
an efficient algorithm for attribute-value instance spaces can be converted into one
suitable for structured spaces (e.g. trees, graphs) by merely replacing the kernel
function. This motivates the increasing interest addressed to the SVMs and other
kernel methods that reproduce learning in high-dimensional spaces while working
as in a vectorial (propositional) representation.

Hence, the definition of kernel functions for structured data, parametrized on
a description language, allows for the employment of algorithms such as SVM that
can simulate feature generation. These functions transform the initial representation
of the instances into the related active features, thus making possible to learn the
classifier (in the case of SVM) directly from the structured data.

Moving from such a intuition and considering the efficiency and effectiveness
that characterize kernel methods, a kernel function for ALC concept descriptions
has been defined. It is based both on the syntactic structure (exploiting the con-
volution kernel; see Sect. and on the semantics which can be derived from
the knowledge base (in particular, from the ABox). It is proved to be valid and
efficiently computable, that it makes is eligible for kernel machines.

Furthermore, it is important to note that the original algorithm for feature
extraction produces only active features acting as positive examples for the adopted
propositional learners, thus making a sort of CWA, which contrasts with the main-
stream in DLs reasoning: an inactive feature should be explicitly inferred from the
knowledge base. By allowing negation in the language, it becomes natural to rep-
resent also negative examples. Moreover, since kernels reflect a notion of similarity
in an unknown embedded space of features, distance measures can be derived from

them[S]

17Gee Sect. [3.3.6| for more details about relational kernel functions.
18Gee Sect. [3.3.6] for the motivation about the derivation of a distance measure from a kernel.

130

4.5.1 Kernel Function Definition

In this section the definition of the kernel function applied to ALC concept defi-
nitions will be presented. Based on convolution kernel (that deals with compound
data by decomposing structured data into parts, for which valid kernels have already
been defined), it is structure driven. It is also semantic based, indeed the notion of
concept extensions is used in its definition.

In order to avoid dependance of the kernel function from the syntactic concept
representations, concepts in ALC normal form are considered. This guarantees that
semantically equivalent concepts are also written in the same Waylr_gl Considered an
ALC normal form description, a related ALC description tree can be derived (as
seen in Sect. for less expressive description logics). It is an AND-OR tree,
rooted in a disjunctive node (according to the normal form) and made by alternate
disjunctive and conjunctive nodes. Conjunctive nodes are labeled by a prim(-) set
and, per each R € Ng, branching one edge labeled VR to the subtree of valg(-) and
for each F € exg(+), an edge labeled IR to the subtree related to E. An empty label
in a node is equivalent to the top concept.

Hence, one way for defining a kernel for ALC descriptions, could be to for-
malize a kernel based on the AND-OR tree structure of the descriptions, like for
the standard tree kernels [83] where (as seen in Sect. similarity between trees
depends on the number of similar subtrees (or paths unraveled from such trees).
Yet this would end in a merely structural measure which does not fully capture the
semantic nature of expressive DLs languages such as ALC. The adopted approach,
by recurring to the idea of the convolution kernel (see Sect. [3.3.6]), uses the nor-
mal form to decompose complex descriptions level-wise into sub-descriptions. Valid
kernels already known, or kernels obtained by convolution are then applied to the
sub-descriptions. Particularly, for each level three different situations can be found:
the level is dominated by the disjunction of concepts, the level is a conjunction of
concepts, the level is simply made by primitive concepts. In this way. a family of
valid kernels for the space X of ALC descriptions can be obtained. In the following,
the kernel function is formally defined [75].

Definition 4.5.1 (ALC kernel) Given two concept descriptions in normal form

Dy = L, C} and Dy = |[}~, CF, and an interpretation T, the ALC kernel based
on 7 is the function kr : X x X — R inductively defined as follows.

disjunctive descriptions: kr(Dy, Do) =AY 0, >0 k2(C}, C3) with X €]0, 1]

19This is guaranteed since concepts in a single ontology are considered, so the same vocabulary
is used for defining several concepts.

131

conjunctive descriptions:

kr(CY,C?) = [T k(PP] kz(valr(C'),valg(C?)) -
Py € prim(C1) RENg
P, € prim(C?)

11 > k(CCY

RENR C} € exg(C)
cy e exr(C?)

primitive concepts: kr(Py, Py) = ko (PL, PL)/|AZ| = |PL N PE|/| AT

where kgt is the kernel for set structures defined in [83]. This case includes also the
negation of primitive concepts using set difference: (=P)* = AT\ P*

The rationale for this kernel is that the similarity between disjunctive de-
scriptions is treated by taking the sum of the cross-similarities between all couple
of disjuncts from either description. The term A is employed to downweight the
similarity of the sub-descriptions on the grounds of the level where they occur.

As regards the conjunctive level, the kernel computes the similarity between
two input descriptions, distinguishing among primitive concepts, those referred in
the value restrictions and those referred in the existential restrictions. These sim-
ilarity values are multiplied reflecting the fact that all the restrictions have to be
satisfied at a conjunctive level.

The similarity between primitive concepts is measured in terms of the inter-
section of their extensions, weighted by the number of individuals occurring in the
ABox. Another possible weight for the rate of similarity could be 1/|PfU P¥f| which
means weight the similarity value with the size of the concepts, measured in terms
of the individuals belonging to their extensions. Remind that the unique names
assumption is made on the individuals occurring in the ABox A. Hence, it is possi-
ble to take into account the canonical interpretation Z, using Ind(A) as its domain

(AT = Ind(A)).

In order to clarify the definition of the presented kernel function, an example
is presented below.

Example 4.5.2 Consider the following descriptions (whose trees are depicted in
Fig. .'

C=(PNP)UEBRPNVYR.(PMN-FP))

D= P;U(FRVR.P,M3R.~P)

132

K ‘ A”
{P} {P,-P} {—~P}
mE
VR
{rP}

Figure 4.3: The (compacted) tree representation for the descriptions used in Exam-
ple |4.5.2

Note that the parenthesis have been employed to emphasize the level-wise structure
of the descriptions.

Now, suppose
P]:.Z- = {a7b7 c}? Pé’z- = {b7 C}7 P?:)Z- = {a/7b7 d}7 AI = {a7 b7 C7 d’ e}

The application of the kernel function to such concepts will be as in the fol-
lowing. Since C' and D are already in normal form, the first step will be consist in
computing kg for every couple of disjunct, namely:

2 2

kz(C,D) =AY > " kr(Cy, D) = A-(kz(Cy, Dy)+kz(Ch, D) +kz(Co, Dy)+kz(Cy, Dy))

i=1 j=1

where
Cl P1|—]P2, OQEHR.PgHVR.(Plﬂ_'PQ),
Dl Pg, D2 = HRVRPQ 1 ElR_\Pl

Noted that C1,Cs, Dy, Dy are conjunctive, the kernel for the conjunctive level
has to be compute for every couple C;, D; as follows:

133

kr(Cy,Dy) = 11 [T F(PC PP) - k(T T) - bz (T, T) =
PEeprim(Cy) PP eprim(D1)
= k](Pl,P3)'kI(P2,P3)']_'1 =
H{a,b,c} N{a,b,d}| [{b,c} N{a,b,d}|

1 2
5 25

2
a,b,c,d, e a,b,c d,e 5
No contribution comes from wvalue and existential restrictions: the factors

amount to 1 since valg(Cy) = valgr(D;)) = T and exg(Cy) = exg(D1) = 0 which
make those equivalent to T too.

Hence, the conjunctive kernel on next couple of disjuncts, namely Cy and Do
has to be computed. In this case note that there are no universal restrictions, more-
over N = {R} = |Ng| = 1 this means that all products on varying R € Ng can be
simplified because they are products of a single element.

kr(Cy,Dy) = [kr(Py,T) - hr(Po, T k(T T) - Y kz(Be, Ep) =
Ec€exr(Ch)
Epeexr(Da2)

= (3:2)-1-[kg(T,YR.Py) + kz(T,~P1)] =
= 6[)\ Z kI(C,aD/)_'_Q]:

C'e{T}
DIG{VR.PQ}

N (1 k(T Py) - 1)+ 2] =
AN 1-2/5-1)+2] =6+ (20%/5+2) = 12(*/5 + 1)

= 6
6

Note that an empty prim is equivalent to T.

Now, it is computed:

kI(CQ, Dl) = k1'<—|—, P3) . kI(vaIR(C’g), T) . Z kI(Ec, ED) =
Eccexp(Ce)
Ep€exgr(D1)

- 3/5'kI(P1|_|_\P2,T) 'k?I<P3,T) -
3/5 - [AMkz(Pr, T) - kz(=P, T))]-3/5 =
— 3/5-[\(3/5-3/5)]-3/5 = 81)/625

Note that, again, the absence of the prim set is equivalent to T and, since one
of the sub-concepts has no existential restriction the product gives no contribution.

134

Finally, the kernel function on the last couple of disjuncts is computed

kz(Co, Dy) = kz(T,T) - kg(P C1—Py, T)- > k(D) =

Ce{pPs}
D"e{VR.P>,—~P:}

= 1-9)/25- [(kz(P3,VR.P) + kz(P3,~P,)] =
= ON/25-[N-kz(Ps3, T) - kz(T,Py) - kz(T, T)+1/5] =
= 9\/25-[A-3/5-2)\/5-1+1/5] = 9\/25 - [6A?/25 + 1/5]

Again the absence of restrictions was evaluated as the top concept.

By collecting the four intermediate results, the value for the computed kernel
function on definitions of C and D can be computed:

kz(C,D) =2/25+ 12(X*/5 + 1) + 81)/625 + 9A/25 - [6A?/25 + 1/5

Observe that the function could be also specialized to take into account the
similarity between different relationships. This would amount to consider each cou-
ple of existential and value restrictions with one element from each description (or
equivalently from each related AND-OR tree) and computing the convolution of the
sub-descriptions in the restriction. As previously suggested for A, this should be
weighted by a measure of similarity between the roles, measured on the grounds of
the available semantics. Particularly, given two roles R, S € Ng, a possible weight
can be: Ars = |R* N S%|/|AT x A?|. Anyway, in the same way seen before, the in-
tersection could be also measured on the grounds of the relative role extensions with
respect to the whole domain of individuals, as follows: Azg = |RZ N S%|/|RT U S7|.
It is also worthwhile to recall that some DLs knowledge bases support also the so
called R-boz (see Sect. with assertions concerning the roles, thus it could be
possible to know beforehand that say R C S, and compute their similarity conse-
quently.

As seen for the measures presented in the previous sections, the kernel can be
simply extended to the case of individuals a, b € Ind(A) by taking into account their
(approximated) most specific concepts, namely kr(a,b) = kz(msc(a), msc(b)). In
this way, it is possible to move from a graph representation, like the ABox portion
containing an individual, to an intensional tree-structured representation.

In the next section the validity of the kernel will be proven. Then a distance
measure, derived from the ALC kernel function is presented.

135

4.5.2 Discussion

The attractiveness of kernel methods comes from the fact that efficient learning can
be applied to highly dimensional feature spaces by transforming relational data by
means of a certain function ¢. Particularly, kernel methods are able to perform
learning leaving unknown this function. They really require only of a method for
computing the inner product in the original feature space. Valid kernels are those
which can be embedded in a linear space.

In this section, the validity of the presented ALC kernel function is proved. A
kernel function is valid (see Def. if it is symmetric and positive definite, namely
for any n € Z*, 21,...,2, € X and (c1,...,¢,) € R™ Y70 cicjk(wi, ;) > 0.
Positive definiteness is often hard to be proved. Anyway, as argued in Sect.
it can be also demonstrated by exploiting some closure properties of the class of
positive definite kernel functions. Namely, multiplying a valid kernel by a constant,
adding or multiplying two valid kernels yields another valid kernel. Here, the validity
of the presented kernel for the considered hypothesis space X of ALC descriptions
in normal form will be proved.

Observe that the core function is that relative to primitive concept extensions.
It is essentially a set kernel [83] which has been proven to be valid. The versions
for top-level conjunctive and disjunctive descriptions are also positive definite being
essentially based on the kernel on primitive concepts levels. Descending through the
levels there is an interleaving of the employment of these functions up the basic case
of the kernel for primitive descriptions.

Proposition 4.5.3 The function kg is a valid kernel for the space X of ALC nor-
mal form descriptions.

PROOF: The kernel validity is verified by demonstrating symmetry and positive
definiteness for kz.

(symmetry) The kernel function kz is symmetric because of the commutativity of the
operations involved in its computation.

(positive definiteness) This can be proven by structural induction on the depth d of
the descriptions (mazimum number of levels).

e (d=0) This case is related to the function for primitive descriptions (repre-
sented as a flat tree). It is a convolution based on the set kernel between single
primitive concept extensions. The multiplication by a constant (1/|A%]) does
not affect this property.

136

o (d > 0) Assuming by hypothesis that kg is positive definite for descriptions

of depth up to d — 1. Now, if the descriptions are in normal form, kr can be
computed based on the disjunctive or the conjunctive version (depending on the
top-level). In the former case, a convolution of a function for simpler descrip-
tions (mazimum depth < d) is verified that is positive definite by hypothesis of
induction. Hence it must be positive definite for this case also, by the closure
of the class of positive definite functions.
In the latter case, a product of positive definite functions for primitive (first
factor) or sums of positive definite functions for simpler descriptions (maz-
imum depth < d) is required, which is positive definite by hypothesis of in-
duction. Again, by the closure of the class of positive definite functions, the
function at depth d is positive definite.

By induction, then, the function is positive definite for descriptions of any depth O

As regards the efficiency, by pre-calculating the extension of all primitive con-
cepts, and so applying set operations for computing the kernel function at primi-
tive level, the kernel function k7 can be computed in time O(|Ny||N2|) where |N;|,
i = 1,2, is the number of nodes of the concept AND-OR trees, by means of dynamic
programming.

Summarizing, the presented kernel function for ALC descriptions has been
proved to be valid. Differently from other kernel functions for structured data pre-
sented in the literature, that are mainly structure driven, it is both structure and
semantic-driven. Moreover, for the best knowledge of the writer, it represent one
of the first kernel function able to cope with expressive DL. Furthermore, being kz
valid, it constitutes the basis for the definition of semantic distances suitable for the
same representation. Such distances could be employed in unsupervised as well as
supervised methods for learning from ALC knowledge base.

The main weakness of the approach is on its scalability towards more complex
DL languages. While computing msc approximations might be feasible, it may be
more difficult to define a normal form for comparing descriptions. Indeed, as long as
the expressive power increases, it also becomes more redundant, hence the semantics
becomes more and more detached from the syntactic structure of the descriptions.
Anyway the final goal could be to extend the presented kernel function towards
more expressive languages like SHZQ or SHOZN (D) for a full support to the
OWL ontology language.

137

4.5.3 A Distance Induced from the Kernel Function

Given a kernel function, it is possible to define an induced distance measurd®} It is
derived as follows.

Definition 4.5.4 (Induced Distance) Given two descriptions C' and D, and the
canonical interpretation I, the induced distance, based on the ALC kernel kz, is the
function dz : X x X +— R defined as follows:

dz(C, D) = \/kz(C,C) — 2kz(C, D) + kz(D, D)

Moreover, as said in Sect. |3.3.6, being k7 a valid kernel (as proved in the
previous section), it follows that the induced distance dr is a metric, namely the
following three properties are satisfied: (1) dz(C, D) < dz(C,E) + dz(E, D), (2)
dz(C,D) =dz(D,C), (3) C =D < dz(C,D) = 0.

As proposed in [99], the normalization of kernels to the range [0, 1] can be very
important in practical cases. By normalizing the ALC kernel function as follows:
B kz(C, D)

\/kI<C7 C) \/kI<D7 D)

it is obtained a valid kernel such that: 0 < EZ(C, D) < 1. This allows to derive
another distance measure, called radial distance, which is induced by the normalized
ALC kernel function in the following way:

kz(C, D)

d2(C, D) = %(log k7(C,C) +log kz(D, D)) — log kz(C, D)

These distances may have lots of practical applications spanning from instance-
based classification and clustering to raking of query answers retrieved in a knowl-
edge bases. This constitutes a new approach in the Semantic Web area. Indeed in
this way it is possible to combine the efficiency of the numerical approaches and the
effectiveness of a symbolic representation. Instead currently, almost all tasks applied
to the Semantic Web area use a logic-based approach, mainly based on deductive
reasoning. Moreover the presented function can be used in inductive tasks i.e. clas-
sify individuals of an A-Box. This can help to make complete large ontology that
are incomplete hence it is possible to apply deductive reasoning to such complete
knowledge bases.

The main source of complexity for the presented function is the computation
of the concepts extensions. However this complexity could be decreased by pre-
calculating the extension of all primitive concepts, and then using these as sets and
apply set operations.

20See Sect. and [83] for more details.

138

4.6 A Semantic Semi-Distance for Individuals in
Any DLs Knowledge Base

In the previous sections of the current chapter, many similarity and dissimilarity
measures for specific DL concept descriptions have been proposed. They can be
used in order to measure (dis-)similarity between concepts, individuals and between
a concept and an individual. Although they turned out to be quite effective, as will
be shown in Sect. [f], most of them are characterized by a drawback that is they
are partly based on structural criteria (given by the use of the normal form). This
determines their main weakness: they are hardly scalable to deal with standard
languages, such as OWL-DL, commonly used for knowledge bases.

In this section, a semi-distance measure for assessing dissimilarity between
individuals asserted in an ontology is presented, and it is shown that it is able
to overcome the limitations illustrated above. It is grounded on the principles on
which the Hypothesis-driven distances (See Sect. have been defined and can
be applied to a wide range of ontology languages (RDF through OWL) since it
is merely based on the discernibility of the input individuals w.r.t. a fixed set of
features, that are represented by concept definitions (hypotheses). As such, the new
measure totally depends on semantic aspects of the individuals in the knowledge
base. It is not absolute, on the contrary it depends on the knowledge base it is
applied to. In the following the measure is formally defined.

4.6.1 Measure Definition

The measures presented in the previous sections make use of the (approximated) msc
of the individuals in order to compute their (dis-)similarity value. This is because
individuals do not have a syntactic structure that can be compared and consequently,
to lift them to the concept level before the comparison is fundamental.

On the contrary, the main intuition on which the semi-distance measure is
defined is that on a semantic level, similar individuals should behave similarly with
respect to the same concepts. Hence, the (dis-)similarity of individuals in a knowledge
base can be computed by comparing their semantics along a number of dimensions
represented by a committee of concept descriptions. This way of assessing (dis-
)similarity between individuals can be easily seen as the way of determining distances
between examples by the use of the Hypotheses-driven distances (HDDs) [182]. In
the current context, hypothesis can be represented by (some of) the concepts of the
knowledge base. Thus, following the ideas borrowed from HDDs, a totally semantic
distance measures can be defined, that is able to assess dissimilarity value between
individuals in the context of a knowledge base.

139

More formally, the rationale of the new measure is to compare individuals on
the grounds of their behavior w.r.t. a given set of hypotheses, that is a collection of
(primitive or defined) concept descriptions, say F = {Fy, Fy, ..., F,,,}, which stands
as a group of discriminating features expressed in the language taken into account.

Consequently, by the use of the HDDs definitions and the Minkowski’s distance,
a family of distance functions for individuals asserted in a knowledge base can be
defined as follows:

Definition 4.6.1 (Family of Semi-Distance Measures) Let K = (7, A) be a
knowledge base and let Ind(A) be the set of the individuals occurring in A. Given
sets of concept descriptions F = {Fy, Fy, ..., F,} in T, a family of semi-distance
functions df : Ind(A) x Ind(A) — R is defined as follows:

1/p
Va,b € Ind(A) dF(a,b) [Z | mi(a) — mi()V’]

where p > 0 and Vi € {1,...,m} the projection function ; is defined by:

1 Fi(x) e A
Va € Ind(A) m(a) =< 0 -Fi(z)e A
% otherwise

The superscript F will be omitted when the set of hypotheses is fixed.

Note that a family of semi-distance measures is obtained (rather than a sin-
gle measure), because the measure d%» depends on the chosen set of hypotheses F.
Moreover, since the definition of d; is based on the Minkowski’s distance, its in-
terpretation can be easily understood in geometrical terms as seen in Sect.
Intuitively speaking, more similar the considered individuals are, more similar the
project function values are, consequently the difference of the projection values will
be close to 0 and the value of the semi-distance measure will be close to 0 as well. On
the contrary, more different the considered individuals are, more different the projec-
tion values are, hence their differences will increase and consequently the computed
value of d[F) will increase as well.

Moreover, remembering that Euclidean distance and Manhattan distance are
specialization of Minkowski distance, obtained by setting p = 2 and p = 1 respec-
tively, the following versions of dZF) can be considered:

m

Va,b € Ind(A) dy(a,b) = %Z | mi(a) — m(B) |

=1

140

or.

Va,b € Ind(A) da(a,b) = % Z (mi(a) — mi(b))?

(2

Note that the definition of the measures can be made more accurate by consid-
ering entailment rather than the simple ABox look-up, when determining the values
of the projection functions:

I KE F()
Va € Ind(A) mi(a)=<¢ 0 K = —F(x)
% otherwise

Obviously, this requires more computational effort than the simple ABox look-up.

An important assumption made here is that the feature-set F represents a
sufficient number of (possibly redundant) features that are able to discriminate
really different individuals. This is because, as seen in Sect. [3.3.5, HDDs do not
present any interest whenever they are based on a concise set of hypotheses: e.g.
the function dist (see Sect. gets rather coarse if any example is covered by a
single hypothesis. Then the granularity of a HDD increases with the redundancy
of the set of hypotheses (i.e. the average number of h; covering any example) and
more precisely with the number and diversity of hypothesis h;.

The choice of the concepts to be included in F — feature selection — is beyond
the scope of this work. Experimentally, good results was obtained by using the set
of both primitive and defined concepts found in the ontology (see Sect|5.1.1]).

4.6.2 Discussion

In this section it is proved that the function defined in Def. is really a semi-
distance measure. In order to prove this, the following three properties have to be

proved (see Def. [3.1.5):

Proposition 4.6.2 (semi-distance) For a fized hypothesis set and p > 0, given
any three instances a,b, c € Ind(A). it holds that:

0
2. dy(a,b) = dy(b,a)
d,(a,

(a,b) + d,(b,c)

141

1. Triwvial. By definition of Minkoski’s distance.
2. Trivial, as the absolute value of the difference projection values is considered.

3. Noted that

(Apla,)P = =3 | ml) = mle) P= Zm)+ 7)) P
< 3 Im@-mO) P Zrm — o) P

< (dp(a, b)) + (dp(b, ¢))" < (dp(a,b) +dy(b, c))

then the property follows for the monotonicity of the power function.

It cannot be proved that d,(a,b) = 0 iff @ = b. This is the case of indiscernible
individuals with respect to the given set of hypotheses F.

The presented measure is very powerful, indeed it can be applied to whatever
DLs as it is neither structure driven nor dependent on the constructors of a specific
language. Rather, it requires only retrieval (through instance-checking) service used
for deciding whether an individual asserted in the knowledge base is belonging to a
concept extension (or, alternatively, if this could be derived as a logical consequence).
Hence, the complexity of df is given by Compl(df) = |F| - 2 - Compl(IChk) for the
chosen DL and where |Chk stands for the instance checking inference operator which
is invoked |F| times for every individual.

Various developments for the measure can be foreseen as concerns its definition.
Namely, since it is very dependent on the concepts included in the committee of
features F, two immediate lines of research arise: 1) reducing the number of concepts
saving those concepts which are endowed of a real discriminating power; 2) learning
optimal sets of discriminating features. Both these objectives can be accomplished
by means of machine learning techniques especially when ontologies with a large set
of individuals are available.

142

Chapter 5

Applying the Measures:
Classification and Clustering in
the Semantic Web Domain

Most of the research in the Semantic Web and Semantic Web Services fields focus
on deductive-based reasoning methods. However, important tasks that are likely to
be provided by new generation knowledge-based systems, such as classification, con-
struction, revision, population, evolution are supported also by inductive methods.

To support these tasks and overcome the inherent complexity of the classic
logic-based inference other forms of reasoning are being investigated, both deductive,
such as non-monotonic, paraconsistent [97], approximate [100], case-based reasoning
[58] and inductive-analogical forms such as inductive generalization [43] and special-
ization [13]. Anyway, in general, inductive reasoning and knowledge discovery have
received less attention, although it may assist most of the tasks mentioned above,
such as clustering (that can be used for improving the efficiency of the service dis-
covery process), classification (that can be used to enforce concept retrieva][] besides
of KB population and evolution), mapping and alignment of knowledge bases.

In the perspective of knowledge/functionality sharing and reuse of the social
vision of the SW, new inference services are required, aiming at noise-tolerant and
efficient forms of reasoning. Two kinds of noise may be identified. The first one
may be introduced by inconsistency in the KB. A second kind of noise is due to
incorrect knowledge that does not strictly cause inconsistency, nevertheless it may
yield incomplete/inconsistent conclusions with respect to the intended meaning of
the concepts in the considered domain. From this perspective, inductive clustering

'Retrieval may be regarded from both a deductive perspective and from an opposite one,
through approximate reasoning [100].

143

methods and instance-based inductive methods applied to multi-relational domains
appear particularly well suited. Indeed, with special reference to instance based-
methods, they are known to be both very efficient and noise-tolerant. These are
very interesting characteristics, considered that noise is always harmful in contexts
where knowledge is to be acquired from distributed sources.

Moving from these considerations, a similarity-based relational instance-based
framework for the SW context has been devised to derive (by analogy) both con-
sistent consequences from the KB and, possibly, also new assertions which were not
previously logically derivable. The main idea is that similar individuals, by analogy,
should likely belong to similar concepts. Specifically, a classification procedure has
been derived by the use of different approaches: a relational form of the k-Nearest
Neighbor algorithm (K-NN, henceforth) (see Sect. [1.3.1Jand App. [A]for details about
classical K-NN setting) and a Support Vector Machine [31], 178] applicable to ALC
knowledge bases, by the use of a defined kernel function. Particularly, classification
can be performed even in absence of a definition for the target concept in the KB, by
analogy with a set of training assertions on such a concept (provided by an expert).

The cited approaches have been formalized in the literature for propositional
representations. Upgrading these algorithms to work on multi-relational represen-
tations, like the languages used in the SW, is not straightforward at all. Novel
(dis-)similarity measures suitable for such representations are necessary, since they
play a key role for the correct prediction of the classification results. Moreover,
in the standard setting of the instance-based classification methods, instances are
assumed to be disjoint. This typically cannot hold in a SW context, where an
individual may be instance of more that one concept. Furthermore, a theoretical
problem has been posed by the Open World Assumption (OWA) that is generally
made in the target context, differently from the typical ML settings (particularly
Logic Programming and Data Bases setting) where the Closed World Assumption
(CWA) is the standard. The usage of the realized instance-based framework can
bring various advantages:

e it can give a better insight in the specific domain of the ontology:;
e it may help ontology population which is time consuming and error-prone;

e it may trigger concept induction/revision by means of supervised and unsu-
pervised machine learning methods [73].

e it may be used to improve the concept retrieval inference service.

In the context of the SWSs, clustering methods and semantic (dis-)similarity
measures can be used to improve the effectiveness of the service discovery process

144

besides of the ranking of the retrieved services. Traditionally, service discovery is
performed by a syntactic matching between the service request and all provided
services. Hence, the services satisfying the match are returned. This approach is
characterized by some heavy drawbacks.

e some available services could not be discovered due to trivial syntactic differ-
ences even if they semantically perform the searched functionality

e the linear complexity (in the number of all available services) of the matching
process is unusable with the increasing of the number of the provided services

e services selected by the matching process need to be ranked with respect to a
certain criterion rather than returned as a (long)flat list.

In order to solve these problems, services can be described by means of DLs and ser-
vice discovery could be performed exploiting DLs inference services. (Conceptual)
clustering methods could be applied to such service descriptions, giving as output
subsets of services homogeneously grouped and intensionally described. Hence, the
discovery process can be performed by matching the request to the cluster descrip-
tions rather than to all available services. Once that the cluster of interest is found,
the matching process could be performed on the descriptions populating it, ignor-
ing the service descriptions contained in the other clusters. The services retrieved
by the matching process can then be ranked by the use of a similarity criterion
w.r.t. the service request. In this way the efficiency of the discovery process is
strongly increased. Moreover, the availability of a ranked list of the selected services
facilitates the choice the right one, decreasing the complexity of the negotiation pro-
cess. Indeed, by providing the most similar service to the request, the probability
of iterating the search of the right service among the matched ones decreases.

The application of clustering methods to complex DL representations requires
the availability of suitable (dis-)similarity measures, in order to ensure a meaningful
partitioning of the services. Moreover, a crucial point is represented by finding a
way for determining meaningful and readable intensional cluster descriptions. In
this chapter various aspects are treated:

e it is shown how the defined similarity and dissimilarity measures for DLs can
be helpful and effective, in important domains such as the SW and the SWSs

e it is experimentally shown the validity of the presented measures by embedding
them in inductive learning algorithms

e it is shown that inductive learning methods can be effectively used to improve
many open issues in the Semantic Web and Semantic Web Services context

145

In the next section, classification methods for improving the concept retrieval
inference task in the SW context will be illustrated. In Sect. clustering methods
for improving the SWS discovery will be analyzed.

5.1 Analogy Reasoning to Improve Concept Re-
trieval and Induce New Knowledge

Many inference tasks, such as concept retrieval as well as semi-automatize the ABox
population task, can be effectively performed in the context of the SW by the use
of inductive inference methods and particularly by means of instance-based learn-
ing methods. Indeed many studies [118 [59, 206] have pointed out a number of
advantages of instance-based learning methods: (1) they have often excellent per-
formance, (2) they are characterized by the ability of coping with symbolic as well
as continuous attributes and class values, and (3) they are robust with respect to
noise in the data or missing attribute values.

In this section, an instance-based framework applicable to ontological knowl-
edge is proposed. Exploiting the defined (dis-)similarity measures (see Chapt. [4)),
the proposed framework can derive inductively (by analogy) both consistent conse-
quences from the knowledge base and also new assertions which may not be logically
derived. Such a framework is based on a classification process whose goal is to clas-
sify individuals asserted in the knowledge base with respect to the concepts defined
therein. Hence, the framework can be effectively used to semi-automatize the task of
populating ontologies that are partially defined (in terms of assertions). Moreover,
classification can be performed even in absence of a definition for the target concept
in the knowledge base, by analogy with a set of training assertions on such a concept
provided by an expert. Consequently, it can be effectively used in order to improve
concept retrieval. Indeed, as will be shown experimentally, besides of having compa-
rable results with the classical deductive approach, new knowledge is also induced,
even in presence of noise. In turn, this enables other related (bottom-up) services
such as learning and/or revision of faulty knowledge bases, ontology construction
and evolution. The framework has been realized in a modular way:

e fixed a classification algorithm, different measures can be used

e fixed the instance-based approach, different classification algorithms can be
used.

Particularly, two different classification algorithms have been realized: a rela-
tion K-NEAREST NEIGHBOR algorithm and a Support Vector Machine. In the
following they will be analyzed in detail, jointly with their experimental evaluations.

146

5.1.1 Relational K-Nearest Neighbor

K-NN algorithms have been set to cope with propositional representations (see
Sect. . The extension of such algorithm to more complex representation [4]
and particularly to a relational setting is not trivial. Considering the advantages
that characterize this algorithm, namely efficiency and noise tolerance, many efforts
have been made for determining a version that is able to work in a relational setting.
Particularly, the First Order Logic has been focused as representation language (see
[72, 165]). The main problem highlighted in such works has been the lack of suit-
able measures that are able to cope with the increase of the expressiveness of the
representation language.

For the best knowledge, no efforts have been made to extend the K-NN to cope
with ontological representations. This task requires to solve other two issues, besides
of those to have suitable measures, that are: to deal with the OWA, generally made
in the semantic web context, and to deal with the non-disjointness of classes (con-
cepts), as an individual can belong to more than one concept in an ontology. Below,
the classification problem is formally defined, hence the solutions to the mentioned
problems are described, jointly with the formalization of the relational K-NN for
DLs [49, 54, [56].

The Classification Problem: Let KB = (7, A) a knowledge base, let C' =
{C1,...,Cs} be the set of concepts in 7 and let Ind(A) the set of all individuals
asserted in A.

Considered a € Ind(A) determining the set of concepts (classes) C' C C' to which a
belongs to, namely the set of concepts of which a is instance.

Considered the classification problem and the specification of the K-NN al-
gorithm in its classical setting (see App. , the classification process of a query
instance (namely an individual) x, could be performed as follows. Given a dissimi-
larity measure for DL, the set of k£ nearest pre-classified examples is selected. The
objective is to learn a discrete-valued target function h : IS +— C from a space
of instances I.S to a set of concepts C' = {C4,...,C,}. The value of h for z, is
determined on the ground of the value that h assumes in the neighborhood of z,,
i.e. the k closest instances to 4, in terms of the chosen dissimilarity measure. More
precisely, considering the weighted K-NN, the value of h for classifying z, is assigned
according to the (weighted) value which is voted by the majority of instances in the
neighborhood. Formally, this is expressed by:

k
h(x,) < argmax w;0(C, h(z;
(zq) ngec ; (Cy, h(zi))

where, ¢ is the Kronecker delta that returns 1 in case of matching arguments and

147

0 otherwise, w; is usually given by w; = 1/d(z;, z,) or w; = 1/d(x;,x,)* where d is
the chosen dissimilarity measure.

This is a limited definition of the classification problem, as the strong assump-
tion of this setting is that it can be employed to assign one value (e.g. one class) to
a query instance among a set of values which can be regarded as a set of pairwise
disjoint concepts/classes. On the contrary, in a SW setting, an individual could
be instance of more than one concept. Hence, the set C' = {C},...,Cs} has to be
considered as made by not necessarily pairwise disjoint classes C; (1 < j < s) that
may be assigned to a query instance.

In this more general case, in which nothing is known about the disjointness
of the classes (unless explicitly stated in the TBox), a new answering procedure is
proposed. It is based on the decomposition of the multi-class problem into smaller
binary classification problems (one per class). Therefore, a simple binary value set
(V ={—1,+1}) can be employed. Then, for each concept, a hypothesis fzj IS —V
is computed, for each class C; € C:

k

A d(v, hj(x;))
5.1 h; a a — I
(5.1) j(g) — ng i 1)

Vie{l,...,s}

where each function h; (1 < j < s), simply indicates the occurrence (+1) or absence
(—1) of the corresponding assertion in the ABox: Cj(z;) € A. Note that also
h; : IS — V. As a possible alternatiwﬂ, h; may return +1 when Cj(x;) can be
inferred from the knowledge base IC, and —1 otherwise.

Anyway, even if this formulation of the K-NN algorithm is able to solve the
problem of non-explicitly disjoint concepts, it makes an implicit assumption of Closed
World. To deal with the OWA, the absence of information on whether a certain in-
stance belongs to the extension of concept C; should not be interpreted negatively,
as see before, rather, it should count as neutral information. Thus, one can still adopt
the decision procedure in Eq. , however another value set has to be considered
for the h;’s, namely V = {—1,0,+1}, where the three values denote, respectively,
non-occurrence, absence and occurrence of the opposite assertion. Formally:

+1 Cij(x) e A
h](x) = —1 ﬁC’]'(JT) € A
0 otherwise

Occurrence can be easily computed with a lookup in the ABox, therefore the overall
complexity of the procedure depends on the number k < |Ind(A)|, that is the
number of times the distance measure is needed.

2For the sake of simplicity and efficiency, this case will not be considered in the following.

148

Note that, as the procedure is based on a majority vote of the individuals in
the neighborhood, it is less error-prone in case of noise in the data (i.e. incorrect
assertions in the ABox), therefore it may be able to give a correct classification even
in case of (partially) inconsistent knowledge bases.

Again, a more complex procedure may be devised by simply substituting the
notion of occurrence (absence) of assertions in (from) the ABox with the one of
derivability (denoted with) from the whole KB, i.e. £ Cj(z) (K I/ Ci(x)),
Kt/ Cj(x) and K t/ =C;(x), respectively. Although this may improve the precision
of inductive reasoning, it is also more computationally expensive, since the simple
lookup in the ABox must be replaced with instance checking. Besides, this method
could be extended with different (yet tractable) answering procedures based on
statistical inference, to control the degree of confidence on the answer correctness.

The classification results could be useful for various purposes. The first one is
that, classifying an individual w.r.t. the set of all possible concepts make possible
to induce new knowledge. Indeed, the classification process reveals that the consid-
ered individuals belongs to other concepts besides of those determined by deductive
reasoning. Consequently, by exploiting the inducted knowledge and classifying all
the individuals in the ABox w.r.t. to a fixed concept, the retrieval inference service
is improved. Furthermore, the most important point is that, not only classification
w.r.t. concepts defined in the KB can be considered, but also the classification of
individuals w.r.t. a totally new query concept, for example built on the fly from the
considered KB. Anyway, in this case, the notion of derivability from the KB has to
be employed, during the classification process, rather than the simply look up of the
ABox, as seen above.

Summarizing, the defined relational K-NN algorithm for DL is implemented
as a generalization of the propositional, distance-weighted k-NN algorithmE] to a
DL relational representation. It stores all training cases in its KB. It is ”"distance-
weighted” since the votes of neighbors further away from the query are weighted less
than the votes of nearby neighbors, as the weight is inversely proportional to the
distance values of the neighbors from the query instance x,. During classification,
for each known class, the k nearest neighbors of each query vote on the class of the
query instance. When asked to classify z,, the classifier computes its similarity to
each x; in the training set. The k& most similar neighbors are then retrieved and they
vote on the class of x,. Moreover, the classifier is able to cope with the problem
of non-disjointeness classes and the OWA. As regards the used inference services,
like all other instance-based methods, the presented method may require performing
instance-checking, in order to determine whether an individual, say a, belongs to a
concept extension, i.e. whether C'(a) holds for a certain concept C.

3See App. |A| for more details about the distance-weighted k-nearest neighbor algorithm.

149

Experimental Evaluation

In order to assess the validity of the presented method and the validity of the mea-
sures presented in Chap.[d] the method has been applied to the instance classification
problem. The measures chosen for the experimentation have been the dissimilarity
measure based on the overlap function presented in Sect. [£.2] and the dissimilarity
measure based on Information Content presented in Sect. [4.3] Both measures refer
to ALC logic. The classification has been performed on four different ontologies
represented in OWL: FSM, SURFACE-WATER-MODEL from the Protégé libraryﬂ
the FINANCIAL ontology [| employed as a testbed for the PELLET reasoner and the
FAMILY ontology written by hand. Although they are represented in languages that
are different from ALC, these details are simply discarded,in order to be able to
apply the cited measures.

FAMILY is an ALCF ontology describing kinship relationships. It is made
up of 14 concepts (both primitive and defined), some of them are declared to be
disjoint, 5 object properties, 39 distinct individual names. Most of the individuals
are asserted to be instances of more than one concept, and are involved in more
than one role assertions. This ontology has been written to have a small yet more
complex case with respect to the following ones. Indeed, while the other ontologies
are more regular, i.e. only some concepts are employed in the assertions (the others
are defined only intensionally), in the FAMILY ontology every concept has at least
one instance asserted. The same happens for the assertions on roles; particularly,
there are some cases where role assertions constitute a chain from an individual to
another one, by means of other intermediate assertions.

The FsM ontology describes the domain of finite state machines using the
SOF (D) language. It is made up of 20 (both primitive and defined) concepts (some
of them are explicitly declared to be disjoint), 10 object properties, 7 datatype
properties, 37 distinct individual names. About half of the individuals are asserted
as instances of a single concept and are not involved in any role (object property).

SURFACE-WATER-MODEL is an ALCOF (D) ontology describing the domain
of the surface water and the water quality models. It is based on the Surface-
water Models Information Clearinghouse (SMIC) of the USGS. Namely, it is an
ontology of numerical models for surface water flow and water quality simulation.
The application domain of these models comprises lakes, oceans, estuaries etc.. It is
made up of 19 concepts (both primitive and defined) without any specification about
disjointness, 9 object properties, 115 distinct individual names; each of them is an
instance of a single class and only some of them are involved in object properties.

4See the webpage: http://protege.stanford.edu/plugins/owl/owl-1library
®See the webpage: http://www.cs.put.poznan.pl/alawrynowicz/financial.owl

150

http://protege.stanford.edu/plugins/owl/owl-library
http://www.cs.put.poznan.pl/alawrynowicz/financial.owl

FINANCIAL is an ALCZF ontology that describes the domain of eBanking. It
is made up of 60 (both primitive and defined) concepts (some of them are declared
to be disjoint), 17 object properties, and no datatype property. It contains 17941
distinct individual names. From the original ABox, is has been randomly extracted
assertions for 652 individuals.

The classification method was applied to all the individuals in each ontology;
namely, the individuals were checked to assess if they were instances of the concepts
in the ontology through the analogical method. The performance was evaluated
comparing its responses to those returned by a standard reasonerf| used as baseline.
Specifically, for each individual in the ontology the msc is computed and enlisted
in the set of training (or test) examples. Each example is classified applying the
adapted k-NN method presented above. The chosen value of k has been /|Ind(A)],
as advised in the instance-based learning literature [89]. The experiment has been
repeated twice, adopting both the cited dissimilarity measures and a leave-one-
out cross validation procedure. For each concept in the ontology, the following
parameters have been measured for the evaluation:

e match rate: number of cases of individuals that got exactly the same classifi-
cation by both classifiers with respect to the overall number of individuals;

e omission error rate: amount of unlabeled individuals (namely the method
could not determine whether it was an instance or not) while it was to be
classified as an instance of that concept;

e commission error rate: amount of individuals (analogically) labeled as in-
stances of a concept, while they (logically) belong to that concept or vice-versa

e induction rate: amount of individuals that were found to belong to a con-
cept or its negation, while this information is not logically derivable from the
knowledge base

The average rates obtained (using both dissimilarity measures) over all the concepts
in each ontology are reported, jointly with their standard deviation.

By looking at Tab. reporting the experimental outcomes with the dissimi-
larity measure based on the overlap (see Def. , preliminarily it is important to
note that, for every ontology, the commission error was quite low. This means that
the classifier did not make critical mistakes i.e. cases when an individual is deemed
as an instance of a concept while it really is an instance of another disjoint concept.

In particular, by looking at the outcomes related to the FAMILY ontology, it
can be observed that the match rate is the lowest while the highest rate of omission

SPELLET: http://pellet.owldl.com

151

http://pellet.owldl.com

Table 5.1: Results (averagetstd-dev.) of the experiments with the method employ-
ing the measure based on overlap.

Match Commission Omission Induction

Rate Rate Rate Rate
FAMILY .6544.174 .000£.000 .231+.173 .115+.107
FSM .9744.044 .026+.044 .000+£.000 .0004.000
S.-W.-M. .8204+.241 .000£.000 .064+.111 .1164.246
FINANCIAL .807£.091 .0244.076 .0004.001 .1694.076

errors was reported. This may be due to two facts: 1) very few individuals were
available w.r.t. the number of ConceptsE]; 2) sparse data situation: instances are
irregularly spread over the concepts, that is some concepts have a lot of instances
while other concepts have very few instances, Hence the msc approximations that
were computed also resulted very different one from another, which reduces the
possibility of significantly matching similar mscs. This is a known drawback of
the Nearest-Neighbor methods. This is more clear by looking at Tab. where
the higher match rate values correspond to concepts having the higher number of
instances. However, as mentioned above, it is important to note that the algorithm
did not make any commission error and it is able to infer new knowledge (11%).

Classification results of individuals asserted in the FSM ontology reveal the
maximum match rate w.r.t. the classification given by the logic reasoner. Moreover,
differently from the other ontologies, both the omission error rate and induction rate
were null. A very limited percentage of incorrect classification cases was observed.
These outcomes were probably due to the fact that individuals in this ontology are
quite regularly divided by the assertions on concepts and roles, namely most of the
individuals are instances of a single concept or a single role, so computing their mscs,
these are all very similar to each other and consequently the amount of information
they convey is very low. A choice of a lower number k of neighbors could probably
help committing those residual errors.

For the same reasons, also for the SURFACE-WATER-MODEL ontology quite a
high rate of matching classifications was reported (yet less than with the previous
ontology); moreover, some cases of omission error (6%) were observed. The induction
rate was about 12% which means that, for this ontology, the classifier always assigned
individuals to the correct concepts and, in some cases, it could also induce new
assertions. Since this rate represents assertions that were not logically deducible

“Instance-based methods make an intensive use of the information about the individuals and
improve their performance with the increase of the number of instances considered.
8Specifically, there is a concentration of instances of concepts like Human, Child and GrandChild.

152

Table 5.2: Outcomes of the trials with the FAMILY ontology employing the measure
based on overlap.

Match Commission Omission Induction

Rate Rate Rate Rate

Father 0.590 0.000 0.359 0.051
Man 0.436 0.000 0.487 0.077
Parent 0.692 0.000 0.231 0.077
Female 0.436 0.000 0.410 0.154
Male 0.436 0.000 0.487 0.077
Human 0.974 0.000 0.000 0.026
Child 0.590 0.000 0.000 0.410
UncleAunt 0.846 0.000 0.154 0.000
Woman 0.436 0.000 0.410 0.154
Sibling 0.718 0.000 0.128 0.154
Grandchild 0.718 0.000 0.103 0.179
Grandparent 0.923 0.000 0.077 0.000
Mother 0.641 0.000 0.333 0.026
Cousin 0.718 0.000 0.051 0.231
average (.654 0.000 0.231 0.115

from the ontology and yet they were inferred inductively by the analogical classifier,
these figures may be a positive outcome (provided this knowledge were deemed as
correct by an expert). In this case the increase of the induction rate has been due
to the presence of assertions of mutual disjointness for some of the concepts.

Results are no different also for the experiments with the FINANCIAL ontology
that largely exceeds the others in terms of number of concepts and individuals. The
observed match rate is again above the 80% and the rest of the cases are comprised
in the induction rate (17%), leaving a limited margin to residual errors. This cor-
roborates a fact about the NN learners, that is they reaching better performance in
the limit, as long as new training instances become available. Actually, performing
a 10-fold cross validation, the obtained results are almost the same.

The average results obtained by adopting the classification procedure and the
measure based on information content (see Def. are reported in Table . By
analyzing this table it is possible to note that no sensible variation was observed
in the classifications performed using the dissimilarity measure based on overlap.
Particularly, with both measures, the method correctly classified all the individuals,
almost without commission errors. The reason is that, in most of the cases, the
individuals of these ontologies are instances of one concept only and they are involved

153

Table 5.3: Results (average + std-dev.) of the experiments with the method em-
ploying the measure based on information content.

Match Commission Omission Induction

Rate Rate Rate Rate
FAMILY .6084.230 .000£.000 .330+.216 .062+.217
FSM .8994.178 .096+.179 .0004.000 .005+.024
S.-W.-M. .8204+.241 .000£.000 .064+.111 .1164.246
FINANCIAL .807£.091 .0244.076 .0004.001 .1694.046

in a few roles (object properties). Some of the figures are slightly lower than those
observed in the other experiment: this is confirmed by a higher variability.

Surprisingly, the results on larger ontologies (S.-W.-M. and FINANCIAL) per-
fectly match those obtained with the other measure. This is probably due to the
fact that the leave-one-out cross-validation mode has been used, which yielded a
high value for the number k of training instances to consider as neighborhood. It is
well known that the NN procedure becomes more precise as more instances can be
considered. The price to be paid was a longer computation time.

Considered the experimental results, it is possible to assert that the classifier is
really able induce new knowledge that is not logically derivable. Consequently, this
relational classifier can be naturally exploited for predicting/suggesting missing in-
formation about individuals thus enabling a sort of inductive retrieval. Particularly,
an increase in accuracy was observed when the instances increase in number and are
homogeneously spread. Furthermore, the k-NN method in its classical form may
be particularly suitable for the automated induction of missing values for (scalar
or numeric) datatype properties of an individual as an estimate derived from the
values of the datatypes for the surrounding individuals.

Moreover, the realized classifier can be employed to perform the retrieval of
a new query concept, defined by the use of concepts and roles asserted in the con-
sidered ontology. In the following, the experimental evaluation for such a task are
reported. The measure used in this context is the semi-distance measure presented in
Sect. [4.6l The proposed method has been applied to a number of retrieval problems.
To these purpose, besides of the ontologies used in the experimentation aboveﬂ other
two ontologies have also been used: NEWTESTAMENTNAMES and SCIENCE ontol-
ogy, taken from the Protégé library['’, NEWTESTAMENTNAMES ontology describes
facts related to the New Testament. It is a SHZF (D) ontology consisting of 47
concepts, 27 object properties, 676 individual names. SCIENCE ontology describes

9The FAMILY ontology has not been considered because too small.
Ohttp://protege.stanford.edu/plugins/owl/owl-1library

154

http://protege.stanford.edu/plugins/owl/owl-library

Table 5.4: Ontologies employed in the experiments.

ontology DL #concepts #obj. prop #data prop #H#individuals
FSM SOF(D) 20 10 7 37
S.-W.-M. ALCOF(D) 19 9 1 115
SCIENCE ALCZF(D) 74 70 40 331
FINANCIAL ALCIF 60 17 0 652
NTN SHIF(D) 47 27 8 676

scientific facts in ALCZF(D). It is made up of 74 concepts, 70 object properties,
331 individual names. Table [5.4] summarizes all details concerning the ontologies
employed in the experimentation.

In is important to note that, differently from the previous experimentation, in
which measure for ALC have been used, the measure considered in the current exper-
imentation is language independent (see Sect. , hence the entire expressiveness
of each ontology can be considered.

The experiment was quite intensive, involving the classification of all the indi-
viduals in each ontology; namely, the individuals were checked through the inductive
procedure to assess whether they were to be retrieved as instances of a query con-
cept. Therefore, 15 queries were randomly generated by conjunctions/disjunctions
of primitive or defined concepts of each ontology. The performance, as in the previ-
ous case, was evaluated comparing the procedure responses to those returned by a
standard reasoner]| employed as a baseline.

The experiment has been repeated twice adopting different procedures accord-
ing to the size of the corresponding ABox (measured by |Ind(A)|): the leave-one-out
cross validation for the smaller ontologies (FSM and S.-W.-M.) and the ten-fold
cross validation for the larger ones. As for the previous experimentation the amount
of neighbors (k) to select has been set as /|Ind(.4)|. Yet it has been experimentally
found that much smaller values for k£ could be chosen, resulting in the same classifi-
cation. The employed version of the measure formalized in Def. is the simplest
one, namely those obtained by setting p = 1 (Manhattan distance d;), and all the
concepts in the ontology for determining the set F have been used. The classification
evaluation has been performed, as in the previous experimentation, by measuring
for each concept in the ontology: match rate, omission error rate, commission error
rate and induction rate. In the following the average rates obtained over all the

UPELLET: http://pellet.owldl.com

155

http://pellet.owldl.com

Table 5.5: Results (averagetstd-dev.) of the experiments with the method employ-
ing the semi-distance semantic measure.

match COMMISSION 0mMISSION mduction
rate rate rate rate
FSM 97.7 +3.00 2.30 & 3.00 0.00 £ 0.00 0.00 £ 0.00
S.-W.-M. 999 +0.20 0.00£0.00 0.10 & 0.20 0.00 4 0.00
SCIENCE 99.8 + 0.50 0.00 &= 0.00 0.20 £ 0.10 0.00 £ 0.00
FINANCIAL 904 £24.6 940 £24.5 0.10£ 0.10 0.10 &+ 0.20
NTN 999 £0.10 0.00£7.60 0.10=£ 0.00 0.00 + 0.10

concepts in each ontology jointly with their standard deviation are discussed.

By looking at Tab. reporting the experimental outcomes, preliminarily it
is important to note that, as for the previous experimentation, for every ontology,
the commission error was low. This means that the procedure is quite accurate: it
did not make critical mistakes i.e. cases when an individual is deemed as an instance
of a concept while it really is an instance of another disjoint concept.

By comparing these outcomes with those reported for the previous experi-
ments (see Tab. and Tab. [5.3), where the average match rate on the same was
slightly higher than 80%, it is straightforward to note a significant increase of the
performance due to the accuracy of the measure used in the current experiment.
Also, the elapsed time (not reported here) was lowered because, once the values for
the projection functions 7’s (see Def. are pre-computed, the efficiency of the
classification, which depends a lot on the computation of the dissimilarity, gains a
lot of speed-up. Anyways, it is also possible to note a decrease of the induction
rate, with respect to the previous experiment, which means that the semi-distance
measure is highly comparable with a reasoner but less able to induce new knowledge.

The usage of all concepts for the set F made the measure accurate, which is the
reason why the procedure resulted conservative as regards inducing new assertions.
It matched rather faithfully the reasoner decisions. A noteworthy difference was
observed for the case of the FINANCIAL ontology for which the lowest match rate
and the highest variability in the results over the various concepts are found. On
a careful examination of the experimentation with this ontology, it has been found
that the average results were lowered by a concept whose assertions, having been
poorly sampled from the initial ontology, could not constitute enough evidence to
the inductive method for determining the correct classification.

The same problem, to a lesser extent, was found also with the FSM ontology
which was the one with the least number of assertions. This shows that the weaker

156

side of any instance-based procedure results when data are too sparse or non evenly
distributed. Moreover, as mentioned above, it has been also found that a lower
value for k£ could have been chosen, as in many cases the decision on the correct
classification was easy to make even on account of a few (the closest) neighbor
instances.

In the last experiment presented, all concepts involved in an ontology were
used for inclusion in the hypothesis set F, for computing distance values. This is
because the inherent redundancy helps a lot the measure accuracy (see discussion
about the Hypotheses-driven distance in Sect. . Yet larger sets yield more effort
to be made for computing the measures. Nevertheless, it is well known that the NN
approach suffers when lots of irrelevant attributes for describing the instances are
considered. Thus, it has also been tested how the variation of hypotheses (concept
descriptions) belonging to the set F could affect the performance of the measure.
The expected result was that with an increasing number of considered hypotheses
for F, the accuracy of the measure would increase accordingly. To test this claim
experimentally, one of the ontologies used for the previous experiment has been
considered. A leave-one-out cross validation has been performed repeatedly (three
times) with an increasing percentage of concepts randomly selected for F w.r.t. the
overall number of primitive and/or defined concept names in the ontology. The
average results returned by the system are depicted in Fig. [5.1] Numerical details
of such outcomes are given in Table [5.6

As expected, it is possible to note that the accuracy of the decisions (match
rate) is positively correlated with the number of concepts included in F. The same
outcomes were obtained by repeating similar experiments with other ontologies. It
should be observed that in some cases the concepts randomly selected for inclusion
in F actually turned out to be a little redundant (by subsumption or because of a
simple overlap between their extension). This suggests a line of further investigation
that will concern finding minimal subsets of concepts to be used for the measure.

Table 5.6: Average results varying the number of hypotheses in the set F.

match commission omission Induction

% of concepts rate rate rate rate
20% 79.1 20.7 0.00 0.20
40% 96.1 03.9 0.00 0.00
50% 97.2 02.8 0.00 0.00
70% 97.4 02.6 0.00 0.00
100% 98.0 02.0 0.00 0.00

157

1,000

g o — g~ "%

850 -
800 &
750
700
650
600
550
,500
450
400
,350
300
250
,200 H

150 o
100 .
050

=== F———_ E—
000 e e TR T8

20% 40% 50% 70% 100%

=—4#- ' alching rate
— I — Commission rate
- k- Qmission rate
=#= *Induction rate

Figure 5.1: Average results varying the number of hypotheses in the set F.

5.1.2 Concept Retrieval by means of Kernel Methods

In order to make concept retrieval more effective by the use of an inductive classi-
fier, a kernel method, specifically a Support Vector Machine (SVM) has also been
used. The reasons of this choice are many. First of all kernel methods, and par-
ticularly SVMs, are well known efficient inductive learning methods. They can be
developed in a modular way. Indeed two components of kernel methods have to be
distinguished: the kernel machine and the kernel function. The kernel machine en-
capsulates the learning task and the way in which a solution is looked for, the kernel
function encapsulates the hypothesis language, i.e., how the set of possible solutions
is made up. Different kernel functions implement different hypothesis spaces or even
different knowledge representations.

Moving from this consideration, a SVM can be used jointly with the kernel
function for ALC (presented in Sect. in order to perform classification of indi-
viduals asserted in a considered ontology.

From a computational point of view, the attractiveness of kernel methods
comes from the fact that they map, by means of the kernel function, the original
feature space of the considered data set into a high dimensional feature space where
the execution of the learning task is easier. Anyway this is done without suffering

158

f input space k feature space

0 *

llllllllllll-- \
[}]

2 .

Figure 5.2: The idea of SVMs.

the high cost of explicitly computing the mapped data. The kernel trick is to define
a positive definite kernel on any feature set. For such functions it is know that there
exists an embedding of the feature set in a linear space such that the kernel on the
elements of the set corresponds to the inner product in this space.

Particularly, SVMg? are classifiers that, by means of a mapping function ¢,
map the training data into a higher dimensional feature space where they can be
classified using a linear classifier (see Fig. . This is done by constructing a
separating hyperplane with the maximum margin in such new feature space, which
yields a nonlinear decision boundary in input space. By the use of a kernel function™}
it is possible to compute the separating hyperplane without explicitly carrying out
the map into the feature space. In this section two main goals are to be achieved:

e concept retrieval is effectively performed by the use of inductive kernel-based
learning algorithms, namely SVMs

e the ALC kernel function (presented in Sect. is experimentally validated.

In order to reach these goals, a SVM from the LIBSVM library['¥] has been
considered jointly with the the presented kernel ALC. The problem to be solved is
defined as follow.

Given a knowledge base KB = (7, A), let Ind(A) be the set of all individuals
in the ABox A and C' = {C4,...,C,} the set of all concepts (both primitive and
defined) in the TBox 7. The problem to solve is: considered an individual a €
Ind(.A) determine the set of concepts {C1,...,C;} C C to which a belongs to.

1276 give a detailed examination of the kernel methods and particularly of the SVMs is out of
the scope of this thesis. Here only the main idea of the SVMs is given in order to understand the
setting of the used classification method.

13Gee Sect. for more details about kernel functions.

HMSoftware downloadable at http://www.csie.ntu.edu.tw/~cjlin/libsvm

159

http://www.csie.ntu.edu.tw/~cjlin/libsvm

In order to cope with the non-disjointness of the concepts (classes) and the
OWA (see discussion in Sect. for more details about such aspects), the classi-
fication problem has been decomposed in a set of s ternary classification problems,
each one returning a value from the set {—1,0,+1}. Specifically, considered the
query instance z,, for every every concept C; € C the classifier will return +1 if
is an instance of C}, —1 if x, is an instance of =Cj;, and 0 otherwise, namely if no
information is available from the KB. The classification is performed on the ground
of a set of training examples from which such information can be derived.

In the following, how the SVM classifies a single individual w.r.t. a fixed class
will be briefly explained. This is given only for sake of completeness. Indeed, due to
the modularization that characterizes SVMs and more in general kernel methods,
classification can be performed without knowing how the SVM really works.

Given the set of training examples and the kernel function k to be considered,
the SVM builds the Gram Matrix, namely the matrix containing all computed value
k(z;, z;) where x; and z; are training examples. Hence, when z, has to be classified,
the kernel function values k(z4, z;) is computed, where ¢ = {1,...,|Tr|} and Tr is
the set of training examples. At this point the linear classifier is built and the class
of z, is consequently determined.

In the following the experimental evaluation performed by applying the cited
SVM to ontological knowledge, through the developed ALC kernel will be discussed.

Experimental Evaluation

In order to assess the validity of the presented method and particularly the validity
of the presented kernel function for ALC logic (see Sect. [£.5)), the method has been
applied to the instance classification problem. The classification has been performed
on nine different ontologies represented in OWL: FAMILY handmade ontology, FSM,
SURFACE-WATER-MODEL, NEWTESTAMENTNAMES, SCIENCE from the Protégé
librarylr_gl, that are the same ontologies seen for the previous experiments; moreover
the UNIVERSITY (handmade) ontology, PEOPLE, NEWSPAPER and WINES ontolo-
gies (also from from the Protégé library) have been considered. Table[5.7 summarizes
all the details concerning the ontologies employed in the experimentation. Although
they are represented in languages that are different from ALC, further constructors
are simply discarded, in order to be able to apply the kernel function for ALC.

The classification method was applied to all the individuals in each ontology;
namely, the individuals were checked to assess if they were instances of the concepts
in the ontology through the SVM. As in the previous experiments, the performance

15See the webpage: http://protege.stanford.edu/plugins/owl/owl-library

160

http://protege.stanford.edu/plugins/owl/owl-library

Table 5.7: Ontologies employed in the experiments.

ontology DL #concepts #obj. prop #data prop #individuals
PeopLE ALCHIN (D) 60 14 1 21
UNIVERSITY ALC 13 4 0 19
FAMILY ALCF 14 5 0 39
FSM SOF(D) 20 10 7 37
S.-W.-M. ALCOF(D) 19 9 1 115
SCIENCE ALCIF(D) 74 70 40 331
NTN SHZIF(D) 47 27 8 676
NEwSPAPER ALCF (D) 29 28 25 72
WINES ALCZIO(D) 112 9 10 188

was evaluated comparing its responses to those returned by a standard reasone'9]
used as a baseline.

Specifically, for each individual in the ontology the msc is computed and en-
listed in the set of training (or test) examples. Each example is classified applying
the SVM and the ALC kernel function with A =1 (see Def. [£.5.1)). The experiment
has been repeated twice, adopting the leave-one-out cross validation procedure for
less populated ontologies (with less then 50 individuals), while the ten-fold cross
validation procedure has been used for the other ontologies. For each concept in the
ontology, the classification results have been measured by the use of the same rates
in the previous evaluations.

By looking at Tab. [5.8, reporting the experimental outcomes with the ALC
kernel function with A = 1, preliminarily it is important to note that, for every
ontology, the commission error was quite low. This means that the classifier did not
make critical mistakes, i.e. cases when an individual is deemed as an instance of a
concept while it really is an instance of another disjoint concept. Particularly, the
commission error rate is not null mainly in two cases, that are UNIVERSITY and FSM
ontologies. By looking Tab. it is straightforward to note that these ontologies
are those having almost the lowest number of individuals concepts. Specifically, the
number of concepts is almost similar to the number of individuals, this means that
there is not enough information for separating the feature space producing a correct
classification. However, also in this condition the commission error is quite low, the
matching rate is considerably high and the classifier is able to induce new knowledge
(induction rate not null).

Y PELLET: http://pellet.owldl.com

161

http://pellet.owldl.com

Table 5.8: Results (average and range) of the experiments with the SVM employing
the ALC kernel function with A = 1.

ONTOLOGY | measure | match rate induction rate omis. err. rate comm. err. rate

PEOPLE avg. 0.866 0.054 0.08 0.00
range 0.66 - 0.99 0.00 - 0.32 0.00 - 0.22 0.00 - 0.03

UNIVERSITY avg. 0.789 0.114 0.018 0.079
range 0.63 - 1.00 0.00 - 0.21 0.00 - 0.21 0.00 - 0.26

FSM avg. 0.917 0.007 0.00 0.076
range 0.70 - 1.00 0.00 - 0.10 0.00 - 0.00 0.00 - 0.30

FAMILY avg. 0.619 0.032 0.349 0.00
range 0.39 - 0.89 0.00 - 0.41 0.00 - 0.62 0.00 - 0.00

NEWSPAPER avg. 0.903 0.00 0.097 0.00
range 0.74 - 0.99 0.00 - 0.00 0.02 - 0.26 0.00 - 0.00

avg. 0.956 0.004 0.04 0.00

WINES

range 0.65 - 1.00 0.00 - 0.27 0.01-0.34 0.00 - 0.00

SCIENCE avg. 0.942 0.007 0.051 0.00
range 0.80 - 1.00 0.00 - 0.04 0.00 - 0.20 0.00 - 0.00

S -W.-M avg. 0.871 0.067 0.062 0.00
’ o range 0.57 - 0.98 0.00 - 0.42 0.00 - 0.40 0.00 - 0.00

N.T N avg. 0.925 0.026 0.048 0.001
T range 0.66 - 0.99 0.00 - 0.32 0.00 - 0.22 0.00 - 0.03

Moreover, by looking at the outcomes related to the UNIVERSITY and FSM

ontologies, it can be observed that the match rate is the lowest. As for the commis-
sion error, this is probably due to the fact that very few individuals were available
w.r.t. the number of concepts. In general, by jointly analyzing Tab. and Tab.
it is possible to note that the match rate increases with the increase of the number
of individuals in the considered ontology with a consequent strong decrease of the
commission error rate, almost null in such cases. Almost always the classifier is
able to induce new knowledge. Anyway it presents also a conservative behavior,
indeed the omission error rate is very often not null. To decrease the tendency to
a conservative behavior of the classifier, a threshold could be introduced for the
consideration of the "unknown” (namely labeled with 0) training examples.

To evaluate the impact of the parameter A\ in the definition of the kernel
function, the experiment has been repeated by setting A = 0.5 and applying the
leave-one-out procedure to the ontologies with less than 50 individuals (see Tab. ,
and the ten-fold cross validation procedure to the other ontologies. The average
results are reported in Tab.[5.9, From this table and particularly, by looking Fig.

162

Table 5.9: Results (average) of the experiments employing the SVM jointly with the
ALC kernel function with A = 0.5.

match induction omission commission

rate rate rate rate

PEOPLE 86.6 5.4 8.0 0.0
UNIVERSITY 71.1 114 4.4 13.2
FSM 90.3 0.7 0.0 9.0
FAMILY 61.5 3.6 34.9 0.0
NEWSPAPER 90.4 0.0 9.6 0.0
WINES 95.2 0.6 4.2 0.0
SCIENCE 87.7 6.5 5.8 0.0
S.-W.-M. 86.2 8.0 5.8 0.0
NTN 90.5 4.3 4.9 0.3

where the mean rates w.r.t. the various ontology are reported, it is possible to
note that the variation of the A value does not generally influence the classification
results and that sometimes the match rate also decrease (i.e. UNIVERSITY, FSM
and NEWTESTAMENTNAMES) w.r.t. the classification performed using A = 1.

Another experiment has been done, to test the method as a means for per-
forming inductive concept retrieval with respect to new query concepts built from
a considered ontology. Particularly, the method has been executed to perform a
number of retrieval problems applied to the ontologies illustrated in Tab. using
A =1 for the kernel function.

The experiment was quite intensive involving the classification of all the in-
dividuals in each ontology; namely, the individuals were checked through the in-
ductive procedure to assess whether they were retrieved as instances of a query
concept. Therefore, 15 queries were randomly generated by means of conjunc-
tions/disjunctions of primitive and/or defined concepts of each ontology. The clas-
sification performance was evaluated comparing responses to those returned by a
standard reasoner (Pellet) employed as a baseline. For each classified query con-
cept, match rate, omission error rate, commission error rate and induction rate
have been measured.

The experiment has been repeated twice, adopting, as for the previous experi-
ment, the leave-one-out procedure in case of ontologies with less than 50 individuals
and ten-fold cross validation for the others.

The outcomes of the experiment are reported in Tab. [5.10, from which it is
possible to observe that the behavior of the classifier mainly remains the same as in
the experiment whose outcomes are reported in Tab.

163

80 BSg 4
80
TO —
60 —

50 —

40 —] A=1
a0 _ B A=0.5

20 —

10 — 83 B.6
a — ol

I I I
Matching Com- Omission Induction
mision

Figure 5.3: Means of the outcomes of the classification rates with respect to all
considered ontologies. Classification has been performed by the a SVM jointly with
the ALC kernel function with A =1 and A = 0.5

Concluding, it can be asserted that the proposed ALC kernel function can
be effectively used, jointly with a SVM, to perform inductive concept retrieval,
guaranteeing almost null commission error and interestingly the ability to induce
new knowledge. The performance of the classifier increases with the increase of the
number of individuals populating the considered ontology that have to be preferable
homogeneously spread w.r.t. the concept in the ontology.

Table 5.10: Results (average) of the experiments.

Ontology match rate ind. rate omis. err. rate comm. err. rate

PEOPLE 88.6 4.0 7.4 0.0
UNIVERSITY 72.0 16.0 0.9 11.1
FSM 87.8 0.9 0.0 11.4
FAMILY 66.3 4.5 29.2 0.0
NEWSPAPER 77.9 0.0 22.1 0.0
WINES 94.3 0.0 5.7 0.0
SCIENCE 97.8 0.5 1.6 0.0
S.-W.-M. 80.4 13.4 6.2 0.0
NTN 90.6 2.2 7.2 0.0

164

5.2 Improving the Service Discovery and Ranking
Processes

In the last few years, the Web had two revolutionary changes, Web Service technol-
ogy and the Semantic Web technology, that transformed it from a static document
collection into an intelligent and dynamically integrated collection of resources. The
former has allowed uniform access via Web standards to software components resid-
ing on various platforms and written in various programming languages. The latter
has enriched existing Web data with their meaning, logically expressed with formal
descriptions that are machine processable, thus facilitating access and integration.
The major limitation of Web Services is that their retrieval and composition still
require manual effort. To solve this problem, researchers have augmented Web Ser-
vices with a semantic description of their functionality (see Sect. . By reusing
a common vocabulary, service modelers can produce semantic service descriptions
that can be shared and understood on the Web. Such vocabulary is defined by
upper-level ontologies such as OWL-9| and WSMO| for Semantic Web Services
(henceforth SWS).

The definition of SWS descriptions is a complex and time consuming task, that
requires a significant amount of expertise. In this thesis a DLs based framework for
describing services is proposed. It aims at supporting modelers in the service descrip-
tion task and bridging the gap between the formal semantics of service descriptions
and human intuition.

The reasons of the choice of DLs as representation language for describing
SWS are multiple: (1) DLs are endowed by a formal semantics, this allow to guar-
antee expressive service descriptions, besides of precise definition of the semantics
of the service descriptions; (2) DLs are the theoretical foundation of OWL, hence
they ensure compatibility with existing ontology standards; (3) DLs service descrip-
tions could be easily mapped to other largely used representation formalisms for
describing services, such as OWL-S; (4) the service discovery task can be performed
by algorithms defined in terms of standard and non-standard DL inferences. In the
following, moving from these considerations, three different aspects will be analyzed:

e service description distinguishing Hard Constraints and Soft Constraints;
e cfficient service discovery exploiting inductive (conceptual) clustering methods;

e effective ranking of the discovered services by the use of constraint hardness
and semantic (dis-)similarity measures for DLs.

http: / /www.daml.org/services/owl-s/1.0/
Bhttp://wsmo.org

165

5.2.1 Modeling DLs-based Service Descriptions by the use
of Constraint Hardness

In this section a DLs-based framework for describing services is introduced. The
main reason of the attention to service descriptions is the need of automating pro-
cesses such as service discovery and composition@. The use of DLs in service de-
scriptions and discovery task is not new [129, 88 [195] 159 196l 03] 39]. However
in [129] it has been showed that primitives, modeled by DLs, sometimes produce
counterintuitive results. This issue has been analyzed in [93], where preliminary
guidelines for modeling DLs-based service descriptions are presented. The frame-
work proposed here [57] enriches the guidelines of [93] by extending them to the
formalization of Hard and Soft Constraints in service descriptions.

Indeed, in a real scenario it is important to express forms of variability in
service descriptions (and particularly in the service request side), represented by the
optional and the mandatory aspects of a service description. For this reason, the
notion of Hard and Soft Constraints are introduced. Hard Constraints (HC) are
those features of a service description that have to be necessarily satisfied by the
target services, while Soft Constraints (SC) are those features whose satisfaction
is only preferable. To be able to distinguish HC' and SC' is important both for
business-to-consumer interaction and for service discovery task. In fact with respect
to business-to-consumer interaction, HC and SC' allow to express the real necessities
of the user; with respect to the discovery process, the distinction between HC' and
SC' allows to relax some needs, increasing the possibility of satisfying a request. In
the following, a way to express these kind of constraints is showed.

A service description is expressed as a set of constraints that have to be sat-
isfied by the service providers. It can be thought as an abstract class acting as a
template for service instances; to be specific, a service description defines a space
of possible service instances (as in [161]), thus introducing variance [93], namely a
service description usually represents numerous variants of a concrete service.

Thus, variance is the phenomenon of having more than one instance and/or
more than one interpretation for a service description. Following [93], it is possible
to distinguish between variance due to intended diversity and variance due to incom-
plete knowledge. To explain these concepts, the notion of possible worlds (borrowed
from the first-order logic semantics) is used. Under open-world semantics, a modeler
must explicitly state which service instances are not covered by the service descrip-
tion. For each aspect of the service description that is not fully specified there are
several possible worlds, reflecting a way of resolving incompleteness (variance due
to incomplete knowledge). Besides, given a possible world, the lack of constraints

19Gee Sect. for more details about this tasks.

166

possibly allows for many instances satisfying a service description (variance due to
intended diversity). In order to clarify the two different kinds of variance the follow-
ing example is considered in which an informal service description is reported. Here,
a flight service request is specified and some examples of its service instances{ﬂ are
reported.

Flight(flight) and operatedBy(flight,company)and departureTime(flight,time) and ar-
rival Time(flight,time) and from(flight, Germany) and to(flight,Italy)

and the Service instances:

e Flight(0542) and operatedBy(0542,ryanair) and departureTime(0542,8:00) and
arrivalTime(0542,9:40) and from(0542,Hahn) and to(0542,Bari)

e Flight(0721) and operatedBy(0721,hIx) and departureTime(0721,12:00) and ar-
rivalTime(0721,13:10) and from(0721,Cologne) and to(0721,Milan)

e Flight(9312) and operatedBy(9312,airBerlin) and departureTime(9312,17:00) and
arrivalTime(9312,19:30) and from(0721,Berlin) and to(0721,Rome)

The service description reported above represents the request of flights from Ger-
many to Italy, independently of departure and arrival time, company and cities
involved. This lack of constraints, for example about arrival and departure location,
company, arrival and departure time, allows many possible instances (as above),
inducing variance due to intended diversity. Now, the following service instance is
considered:

Flight(512) and operatedBy(512,airBerlin)and departureTime(512,18:00) and arrival-
Time(512,19:30) and from(512,Berlin) and to(512,London)

This is also a correct instance of the service request reported above, because the
fact that London is not an Italian city is left unspecified in the KB. So there can be
a possible world in which London is an Italian city. Here, the absence of constraints
induces variance due to incomplete knowledge.

So, variance due to incomplete knowledge is resolved by allowing many different
possible worlds, each one resolving unspecified issues in a different way. Variance
due to intended diversity is resolved by allowing alternative service instances within
one possible world.

In order to cope with the effects of the variance on the semantics of a service
description, it is necessary to adopt a language for service representation charac-
terized by well-defined semantics. This is one of the peculiarities of the DL family,

2ONote that a service instance contains the exact information about the model expressed by the
service description.

167

from here the choice of Grimm et al. in [93] of representing services by means of
DLs. Such framework is reported in the following, hence an extension for dealing
with the notions of HC' and SC' of a service will be presented.

e A service description is expressed by a set of DL-axioms D = {S, ¢1, ¢2, ..., &n },
where the axioms ¢; impose restrictions on an atomic concept S, which rep-
resents the service to be performed;

e Domain-specific background knowledge is represented by a knowledge base
(KB) that contains all relevant domain-level facts;

e A possible world, resolving incomplete knowledge issues, is represented by a
single DL, model (interpretation) I of KB U D;

e The service instances that are acceptable w.r.t. a service description D, are
the individuals in the extension S’ of the concept S representing the service;

e Variance due to intended diversity is given by S containing different individ-
uals;

e Variance due to incomplete knowledge is reflected by K B LI D having several
models I, I,

The axioms in a service description D constrain the set of acceptable service
instances in S7. These constraints are generally referred to the properties used in a
description. Here, various ways for constraining a property using DL are reported.

Variety: a property can be either restricted to a fixed value or it can range over
instances of a certain class. This is expressed by Vr.i (or 3r.7) and Vr.C' (or
Ir.C"), respectively. For any acceptable service instance, the value of such a
property must either be an individual or a member of a class.

Multiplicity: a property can be either multi-valued, allowing service instances with
several property values, or single-valued, requiring service instances to have at
most one value for the property. By the number restriction < 1 r, a property
is marked as single-valued. Using the restrictions <m r (with m > 2) >n r,
Jr. T, Ir.C', and Vr.C' a property is marked as multi-valued.

Coverage: a property can be explicitly known to cover a range. If a property is
range-covering, the service description enforces that in every possible world,
for any value in the range, there is an acceptable service instance with this
property value. This introduces variance due to intended diversity. This kind
of constraint is expressed by an axiom of the form C' C 9r~.S in D, where the

168

concept C' is the range of the property 7 to be covered?] A non-range-covering
property induces variance due to incomplete knowledge, as in distinct possible
worlds different subsets of the range will be covered.

Example 5.2.1 In order to make more clear the illustrated framework, it is used
for describing the following service request jointly with the reference knowledge base.

D, ={ S, = Company M dpayment.EPayment M 3Jto.{bari} I
M Jfrom.{cologne,hahn} M < 1 hasAlliance N
M VhasFidelityCard.{ milesAndMore};
{cologne,hahn} T 3 from™ .S, }
KB = {cologne:Germany, hahn:Germany, bari:ltaly, milesAndMore:Card}

D, s the requested service, described as a set of axioms that impose restric-
tions on S,, that is the service that has to be performed. Here, the requester asks for
companies that fly from Cologne and Hahn to Bari and accept electronic payment
when selling tickets. Moreover, it is required that a company has at most one al-
liance with another company and, if it has a fidelity program, it has to be ”Miles and
More”. In this service description, several kinds of constraints have been used. Vari-
ety constraints are used with the properties to, from and hasFidelityCard, indeed these
properties are restricted to a fived value. The at-most number restriction (< 1) for
the property hasAlliance is a Multiplicity constraint with which the property hasAl-
liance is declared to be single-value. A Coverage constraint is expressed by the last
axiom in D, which makes explicit the range covered by the property from. Namely,
this axiom asserts that {cologne,hahn} is the range coverage of the property from.

If one rather requires that, for all companies, the payment method is specified
and that the unique method allowed 1is electronic payment, the service description
has to be:

D, ={ S, = Company M Jpayment.EPayment M Ypayment.EPayment N
M Jfrom.{ cologne,hahn} M Fto.{bari} M < 1 hasAlliance N
M VhasFidelityCard.{ milesAndMore};
{cologne,hahn} T 3 from™.S, }

In this way the existence of a payment method has been forced. Moreover it as been
constrained by allowing a unique form of payment, that is electronic payments.O]

The services presented in the example represent relatively simple descriptions.
Indeed, in real scenarios a service request is typically characterized by some needs

21Obtained by transforming the axiom Vx|C(x) — Jy : [r(y,x) A S(y)] into DL by standard
manipulation of first-order formualse.

169

that must be necessarily satisfied and others that may be satisfied (expressing a
preference). The former will be considered as Hard Constraints and the latter as
Soft Constraints. Specifically, HC represent necessary and sufficient conditions for
selecting requested service instances, while SC represent only necessary conditions.
Taking this difference into account makes the service description and management
more complex. A possible solution is to describe services (and particularly service
requests) by the use of two different sets: the HC set and the SC' set, whose elements
are expressed in DLs as seen above.

More formally, let D¢ = {SHC oHC oHCY be the set of HC for a requested
service description D, and let D5¢ = {S5¢ 7% ... 059} be the set of SC for D,.
Every element in D¢ and in D?¢ is expressed as previously seen. The complete
description of D, is given by D, = {S, = SH° 1y S§3¢ ¢ . oHC 5¢ . ¢5¢}. In

this description, new information on constraint hardness has been added.

Example 5.2.2 In order to understand service descriptions by distinguishing be-
tween HC and SC the following example is considered. It is a slightly modified
version of the example [5.2.1]:

D, ={ S, = Flight1 3from.{cologne, hahn, frankfurt} 1 3to.{bari} M
M VhasFidelityCard.{ milesAndMore};
{cologne, hahn, frankfurt} T 3 from™.S,; {bari} T Jto".S, }

where

HC, ={ Flight™ 3to.{bari} M 3from.{cologne, hahn, frankfurt};
{cologne, hahn, frankfurt} T 3 from™.S,; {bari} C 3 to .S, }
SC,. ={ Flight N YhasFidelityCard.{ milesAndMore} };

KB ={ colognehahn,cologne:Germany, bari:ltaly, milesAndMore:Card}

With this service description a requester asks for flights starting from Frankfurt
or Cologne or Hahn and arriving at Bari. The use of ”Miles And More” card would
be preferred. Departure and arrival places are expressed as HC. This means that
provided services must fulfill these constraints. This is understandable thinking, for
instance, of a requester who wants to go from Koblenz to Bari. He/she is interested
in Cologne, Hahn and Frankfurt airports because they have the same distance from
Koblenz, while he/she is not interested in other airports because much more faraway.
Instead, the use of "Miles And More” card is expressed as SC, namely flights that
allow the use of this card are preferred, but the requester accepts also flights that do
not allow the use of this card. This is because the use of Miles and More card is
advantageous for the requester but it is not the primary need; his/her primary need
1s to have a flight for reaching Bari. O

170

This new representation constitutes a flexible framework for service modeling
as it allows to better model the requester’s needs, expressing them as real-life pref-
erences; a feature that is not considered in the original framework [93]. Moreover
expressing SC' allows to have service instances satisfying a request even if part of
the request is ignored; this increases the possibility of having plausible responses.

5.2.2 [Efficient Service Discovery by means of Clustering
Methods

Service Discovery is the task of locating service providers that can satisfy the re-
quester’s needs. It consists of matching the description of a service request to the
descriptions of published service in a registry. Traditionally such match has been
performed on the ground of syntactic characteristics. Namely, it has featured syntax-
based searches taking into account keywords and taxonomies. Specifically, given one
or more keywords, descriptions containing the input keywords are returned as search
results. Anyway, this kind of search can often results poor in performance, because
it can fail to retrieve services described by synonyms (as well as singular/plural) of
the searched string. Then, the requester must select the service which satisfies his
requirements by manually filtering the returned services.

In this scenario, semantic service descriptions can be used to automate the dis-
covery task. Discovery is performed by matching a requested service description to
the service descriptions of potential providers, in order to detect relevant ones. Two
service descriptions match if there is an acceptable instance for both descriptions
[196, [161], 93, [129]. Hence, the service instance provides a basis for a business inter-
action between the provider and the requester. Semantic matching techniques are
analyzed in more details in the following. Considering the framework presented in
Sect. , let D, and D, respectively a requested service description and a provided
service description, expressed as a set of axioms imposing restrictions on the services
that have to be performed, say S, and S, respectively. The matching process (w.r.t.
a K B) can be defined as a boolean function match(K B, D,, D,)) which specifies how
to apply DLs inferences to perform matching. Various matching procedures, based
on DLs inferences, have been proposed [129, 196, T61].

Here, the attention is focussed on the semantic matching process proposed in
[93]. Differently from the others, this procedure is able to treat variance (particularly
variance due to incomplete knowledge) without being too weak or too strong. The
assumption on which the matching procedure is based is that precise control of
variance in service description is crucial to ensure quality of the discovery process.
The other matching procedures [195], 196, 88| consider a match valid if there exists

171

a common instance service at least in one possible world. It can be formalized as:
KBUD,UD,U{3z: S,(z) ASy(z)} is consistent <

< KBUD,UD,U/{i:S,MS,} is satisfiable

This match is called Satisfiability of Concept Conjunction. It is the weakest check
w.r.t. both kinds of variance. Indeed, along the dimension of intended diversity, it
is sufficient to find one common service instance. Along the dimension of incomplete
knowledge, it is sufficient to find one possible world in which such a service instance
exists, regardless of all other possible worlds.

Another type of matching procedure [129, 159, 157] executes the match by
checking for subsumption, either of the requester’s description by the provider’s or
vice versa. It can be formalized as:

KBUD,UD, =V : S.(x) — Sy(z) & KBUD,UD,U{i : (S,M~S,)} is unsatisfiable

It is called Entailment of Concept Subsumption. This check is very strong, since it
requires one of the service descriptions to be more specific than the other, for all
service instances in all possible worlds.

Conversely, a valid match for the procedure in [93] occurs when there ex-
ists a common instance service between a provider’s service description D, and a
requester’s service description D, w.r.t. KB, in every possible world. It can be
formalized as:

KBUD,UD, = 3zS.(x) A Sy(x) & KBUD, UD,U{S, 1S, C L}unsatisfiable

This check is called Entailment of Concept Non-Disjointness. It is stronger than
Satisfiability of Concept Conjunction because checks for an intersection in every
possible world, but it is not as strong as Entailment of Concept Subsumption, because
it does not require one of the sets of acceptable service instances to be fully contained
in the other set. This match increases (w.r.t Entailment of Concept Subsumption)
the possibility to find interesting provided services, decreasing the error due to
variety (more present in Satisfiability of Concept Conjunction). It is important to
note that for this procedure, two service descriptions match if their conjunction is not
subsumed by the bottom concept, hence it is basically grounded on the subsuption
inference service. Consequently, the complexity of the matching procedure depends
from the complexity of the subsumption operator for the chosen DL.

Normally, service discovery is performed by applying the matching procedure
to every provided services. This means that the discovery process has a linear
complexity in the number of the provided services (besides of the complexity of the
matching procedure itself). With the increasing number of available services, this

172

can constitute an efficiency problem. To cope with this problem, here, it is proposed
to apply a (conceptual) clustering method to the available services, in order to obtain
subsets of services, homogeneously grouped and intensionally described. Hence, the
service discovery can be performed by matching the request to the intensional cluster
descriptions rather than to all services, thus decreasing the number of comparison.

As seen in Sect. [1.3.2] many different methods exist in order to solve clustering
problems. Among the others, hierarchical methods have been analyzed, as they are
versatile and suitable for clustering non-large amount of data with few available
information [I08]. They produce a nested series of partitions based on similarity
criteria for merging or splitting clusters; the clustering structure obtained is called
dendmgmm@ that is basically a tree structure.

In the considered DLs-based framework for service description (see Sect.[5.2.1)),
the set of all provided services can be seen as a set of DLs concept descriptions™}
on which a hierarchical clustering method can be applied. A clustering method
generally requires the availability of (dis-)similarity measures able to cope with and
capture the semantics of the objects to cluster (see Sect. for more details). In
Chap. 4| a set of (dis-)similarity measures able to capture the semantics of DL con-
cept descriptions has been presented. Hence, a clustering method could be ”easily”
applied to service descriptions in order to obtain meaningful and homogeneous sub-
sets of services. Specifically, a hierarchical method can be used, obtaining as output
a dendrogram of the provided services, where the actual service descriptions are in
the leaves, while intermediate nodes represent an intensionally described superset
of all service descriptions in the leaves below. Particularly, an inner node groups all
service descriptions below. The root node contains all services. Intensional descrip-
tion of the nodes can be constructed by computing the least common subsumeﬁ
(lcs) of the descriptions belonging to this nodﬂ Once that such dendrogram is
obtained, the matching process can be formalized as in the following [192].

A user request R is formulated as a service description fulfilling the needs of the
requester. Following the Entailment of Concept Non-Disjointness matching process,
a service description D may fulfill the given request if their extensions overlap. In
the dendrogram, each inner node N represents a superset of all service descriptions
below. If RM N C_L, the branch below can be ignored, because there is no match
between R and the underlying service descriptions; otherwise the children node of N

22A dendrogram is a nested grouping of patterns and similarity levels at which grouping change.
The dendrogram could be broken at different levels to yield different clustering of the data.

23Such concept descriptions refer to the same vocabulary, hence they can be seen as concept
definitions in the same ontology.

24Gee Sect. for more details about such non-standard inference service.

25Note that the computation of lcs is constant in time for DLs allowing concept disjunction,
which is realistic to be considered for describing services.

173

are recursively explored, until the leaves of the tree are reached. Hence, following the
path of overlapping nodes leads to the service descriptions that satisfy the request.

In this way, the search space can be drastically reduced, indeed, during the
query processing, matchmaking can be restricted to the branches of the tree where
tree nodes indicate an overlapping between user requests and service descriptions.
Particularly, a good clustering of n available service descriptions may significantly
reduce the number of necessary comparisons for satisfying a request, thus improving
retrieval time from O(n) to O(log n) for concise queries.

Modeling services requires expressive DLs in order to describe their function-
alities in the best possible way. Hence DLs allowing the use of concept disjunctions
have to be realistically considered. However, in this case, the computation of the
lcs of a set of service descriptions (computed for building the intensional cluster de-
scriptions) is simply given by their disjunction (see Sect. . This could provoke
the overfitting phenomenon in generalizing cluster descriptions. In order to avoid
this possible risk, a different generation of the intensional cluster descriptions could
be performed.

Here, service description in ALC logic have been considered. As seen in
Sect. 2.4.4] it is always possible, given an ALC concept description to obtain an
ALE approximation of it. ALE logic is less expressive than ALC, it does not allow
concept disjunction (see Sect. and hence, the lcs is computed in a structural way
(see Sect. 2.4.1)). Considered such theoretical results, a different and more general
intensional cluster description can be generated. Particularly, given an inner node in
the tree, every service description (which is expresses in ALC logic) belonging to it,
can be approximated to an ALE concept description. Hence, such approximations
can be considered for computing the lcs (in ALE). In this way a more general and
compact cluster representation is obtained. Fig. shows a tree (dendrogram) for
four clustered service descriptions.

In the following, the realized clustering methods, applied to DLs knowledge
bases, will be examined in details.

Applying Clustering Methods

Here, the clustering process is performed without the use of any information besides
of the (dis-)similarity values among the service descriptions that have to be clustered.
Neither the number of clusters to generate is known, nor the classes to learn. In
order to cope with this situation, the hierarchical agglomerative clustering approach
has been chosen. As simple-link and complete-link algorithms represent the corner
stones of such an approach (see Sect. , a modified version of such algorithms
has been realized. Main variations regard their applicability to DLs knowledge

174

LCS(LCS(A',B’), LCS(C’,D’))

LCS(A’M \‘l 1}03(0’,0’)

L
A B C D

Figure 5.4: Tree (dendrogram) returned by a hierarchical clustering method applied
to the services A, B, C, and D. For computation of the lcs, which is performed in

ALE, they are mapped from ALC to ALE leading to A’, B’, C’, and D’.

representations and the introduction, at each dendrogram level, of intensional cluster
descriptions, thus obtaining a form of conceptual clustering [146].

Indeed, conceptual clustering is mainly defined as a process of constructing a
concept network characterizing a collection of objects, with nodes marked by con-
cepts describing object classes and links marked by the relationship between the
classes. In the case developed, the links between classes represent generalization-
specialization relationships. Moreover, in conceptual clustering, not only the inher-
ent structure of the data drives cluster formation, but also the description language
which is available to the learner. This aspect has been successfully treated by the
presented measure for DLs (see Chapt. 4] that effectively exploit not only structural
representation of the data, but also their meaning. Moreover such measures are also
context—sensitz’ve@, as they do not consider only object features but also the con-
text of reference, namely the KB. Indeed, because the measures use DLs inference
operator, they also take into account external aspects not directly linked with the
considered element, such as, (assertion of) concept disjunction or subsuption in the
KB. Furthermore, it is important to note that a conceptual clustering in which the
concepts to learn are known (as those proposed by Michalski in [I146]), cannot be
applied in this case because there is no available information. In the following the
realized clustering algorithms are detailed.

Single-Link Algorithm
Let S ={S1,...,5,} aset of available (ALC) service descriptions.

1. Let C = {C4,...,C,} the set of the initial clusters obtained by considering
every service description as a single cluster

26For more details about characteristic of context sensitive measures see Sect. m

175

2. Let C' = {approx acs(CY), ..., approx40e(Cy)} be the ALE approximations of
the descriptions in C

3. For i := 1 to NumberOfClusters - 1 consider cluster C]

(a) For j :=i+ 1 to NumberOfClusters consider cluster C;

i. computem dii(Sik, Sj1) on varying k = {1,..., NumObjOfC]} and
[={1,..., NumObjOfC’}

ii. compute min;; = Milg—1,__ NumobjofC!, l:l,...,NumObjOfCé.{dkl}

4. compute minhk = mini,j:l,.‘.,NumOfClusters minij
where h and k are the clusters with minimum distance

create the intensional cluster description C! = lesace(Ch, Ch)

populate with C}, and Cj,

N«

link C}, to C}, and C,

x

add C}, in C" and delete C} and Cj, from C’
9. if |C'] # 1 go to[3]

Complete-link Algorithm

As seen in Sect. the complete-link algorithm differs from the single link al-
gorithm only for the way of computing cluster distances. This is also valid for the
new modified version of the single and complete link algorithms. The complete-link
algorithm is obtained from the algorithm above, by simply substituting line
with: ”Compute max;; = man:L._.’NumObjofcz{’ l:1,‘..,NumObjOfC;-{dkl}” and line 4
with ”compute ming, = min; j—1,. NumofClusters Max;; where h and £ are the clus-
ters with maximum distance”. Namely the complete link algorithm is obtained by
considering the maximum distance among clusters rather than the minimum one.

The principal source of complexity of these algorithms is represented by the
computation of the matrix containing the dissimilarity values of all elements. Hence,
by first computing such matrix, the algorithms have to mainly compute only the
maximal or the minimum distance among clusters which is a tractable computa-
tional operation. Moreover, the computation of the matrix can be optimized@
Furthermore, it is important to note that in the presented algorithms, the inten-
sional cluster descriptions are built by approximating service descriptions to a less

2THere, one of the measures presented in Chapt. 4fcan be used. Let be assumed that the measure
based on Information Content (see Sect. is applied.

28 As the dissimilarity value of an element w.r.t. itself is null and the measures are symmetric,
only the inferior diagonal of the matrix can be computed.

176

expressive DL, which is ALE, and then computing the structural ALE lcs. If no
concept approximations are performed, the algorithms work as well by computing

ALC lcs.

Even if the presented algorithms realize a form of conceptual clustering, they
are not able to exploit the intensional cluster representation, indeed the criterion
for merging clusters is based on distances among elements belonging to the existing
clusters. The intensional description are only used by the further application (which
is service matchmaking in the presented case). Moreover, the criterion used, by the
single and complete link algorithms, for merging clusters, could sometimes provokes
drawbacks in presence of noisy data (see Sect. . In order to overcome this
limitation and exploit the intensional cluster descriptions, a new clustering algorithm
has been realized, on the ground of single-link and complete link algorithms. This
new algorithm, called lcs-based clustering algorithm is able to exploit the intensional
cluster descriptions during the clustering process and, for this reason, hopefully
it can also overcome the drawbacks. The lcs-based algorithm is detailed in the
following.

Ics-based Clustering Algorithm
Let S = {S1,...,5,} aset of available (ALC) service description.

1. Let C = {C,...,C,} the set of initial clusters obtained by considered every
service description as a single cluster

2. Let C' = {approxacs(C1), . .., approxacs(Cy)} the approximated descriptions
from ALC DL to ALE

3. For i := 1 to NumberOfClusters - 1 consider cluster C;

(a) For j:=i+ 1 to NumerOfClusters consider cluster C'}

i. compute the dissimilarity values d;(Cj, C7)

4. compute ming, = min;j—1. NumOfClusters dij Where h and k are the clusters
with minimum distance

5. create the intensional cluster description C), = lesace(Ch, Cr)
6. link C/, to C; and Cj,

7. add C], in C" and delete C} and C}, from C’

8. if |C'] # 1 go to[3]

177

Differently from the algorithms illustrated above, the lcs-based algorithm uses
the intensional cluster descriptions during the clustering phase. Indeed the two
clusters with minimum distance are found and merged in single cluster. They are
used for the construction of the intensional cluster description, after that they are
discarded. The generated description is considered as a cluster made by a single
element in the next clustering step. These operations are repeated until a single
cluster is obtained. Such algorithm is more expensive than the previous oneﬂ
but it is also more powerful. Indeed, it considers intensional cluster description
during the clustering process rather than representative elements, realizing a really
concept-driven approach.

It is important to note that all the presented algorithms merge, at every step,
two existing clusters into a single one, thus returning a binary tree as result of the
clustering process. Finding a way for merging more than two clusters, at every
step, could be useful to speed up the clustering process and consequently decrease
its complexity. An important result, in this direction, has been reported in [64],
where it is proved that, if the measure used for performing the clustering satisfies
the cluster aggregate inequality property, then a multiple merging of clusters can be
performed at each level. It is easy to verify that this result equally holds for the
les-based clustering algorithm.

All the clustering algorithms proposed here can be used also for clustering
individuals asserted in an ontology. This can be done by firstly computing the
(approximated) msc of the individuals and then by applying the algorithms.

In the following the experimental evaluation of algorithms will be shown. Un-
fortunately, due to lack of data sets regarding SWS, an experimentation regarding
also the matching process has not been performed. Anyway, proved the validity of
the obtained clusters, it is straightforward to understand that the matching process
works as well.

Experimental Evaluation

In order to assess the validity of the presented clustering algorithms and of the used
dissimilarity measure, they have been applied to a conceptual clustering problem.
Namely, concepts asserted in an ontology have been grouped into clusters by the use
of the single-link, the complete-link and the lcs-based algorithm. They have been
used jointly with the dissimilarity measure for ALC concept based on information
content (see Sect. . The clustering process has been performed on 9 ontologies

29Even if all dissimilarity values are pre-computed, at each step the dissimilarity values between
the new element (intensional cluster description) and all remaining not-clustered descriptions have
to be computed.

178

Table 5.11: Ontologies employed in the experiments.

ontology DL #concepts #obj. prop #data prop #individuals
PeopLE ALCHIN (D) 60 14 1 21
UNIVERSITY ALC 13 4 0 19
FAMILY ALCF 14 5 0 39
FSM SOF(D) 20 10 7 37
S.-W.-M. ALCOF(D) 19 9 1 115
SCIENCE ALCIF(D) 74 70 40 331
NTN SHZIF(D) 47 27 8 676
NEwWSPAPER ALCF (D) 29 28 25 72
WINES ALCZIO(D) 112 9 10 188

represented in OWL, analyzed in the previous experiments (see Sect. . Ta-
ble summarizes all details concerning the employed ontologies. Although they
are represented in languages that are different from ALC, these details are simply
discarded, in order to be able to apply the ALC dissimilarity measure.

Given the set of concepts (primitive and defined) in an ontology, they were
clustered using the measure formalized in Def. [4.3.2] No other information was
used, such as: concept labels or number of concepts to learn. Hence, since no
external information (i.e. concept labels) was available, there was no possibility to
evaluate the external clustering quality, namely how well the clustering is working, by
comparing the obtained groups w.r.t. the known classes. Only the internal quality of
the obtained clusters was evaluated. The internal quality of the clusters is generally
measured in terms of the cohesiveness of clusters. It expresses the overall clusters
similarity. One of the most common methods for computing the cluster cohesiveness
is to use the weighted (dis-)similarity of the internal cluster (dis-)similarity [188]. It
can be computed as 1/]5?| D e e;es d(ci, ¢;) where S'is the considered cluster and d
is the used (dis-)similarity measure. Considered a dissimilarity measure, as much
the overall similarity is close to zero, best the quality of the cluster is. As much the
similarity value is close to 1, worst the quality of the cluster is.

The experimentation results are shown in Tab. where the average overall
similarity values have been computed for each ontology w.r.t. the used algorithm.
The results have been summarized in Fig. By looking at the table it is possible
to see that the average of the overall similarity values for all ontologies, and w.r.t. all
three clustering algorithms, are very close to 0; the maximum value is 0.186, reached
for the FAMILY ontology. This means that the clustering methods can be considered

179

Table 5.12: Average overall clusters similarity for each considered ontology and with
respect to the employed clustering algorithm.

single-link complete-link lcs-link

PEOPLE 0.064 0.109 0.061
UNIVERSITY 0.094 0.092 0.159
FSM 0.073 0.076 0.079
FAMILY 0.157 0.171 0.186
NEWSPAPER 0.144 0.134 0.158
WINES 0.055 0.060 0.077
SCIENCE 0.050 0.047 0.053
S.-W.-M. 0.105 0.092 0.157
NTN 0.137 0.105 0.142

valid. Particularly, the highest similarity values are reached for the UNIVERSITY
and FAMILY ontologies, that contain the lowest number of concepts. Hence, it could
be possible to deduce that the overall similarity increases with the increase of the
number of concepts to cluster. Particularly, looking at Fig. it seems that lcs-
based clustering algorithm suffer from the lack of concepts in a particular way, while
it is comparable with complete-link and single-link algorithms in the other cases.

In general, the obtained results confirm the validity of the proposed clustering
methods and hence, they can be effectively used in order to improve the efficiency
of the matching services process.

5.2.3 Effective Service Ranking based on DLs measures and
Constraint Hardness

The provided services, selected by the matching process, are returned to the re-
quester, in order to start the negotiation process{ﬂ between the requester and providers.

Generally, such services are returned in a flat list where no ranking is pro-
vided. However, a ranked list of the selected services is fundamental to decrease the
complexity of the negotiation process. Some proposals for ranking procedures have
been formulated. They are grounded on the subsumption relationship between the
request and the provided service description [93]. Namely services that are more
general w.r.t. the request will be suggested as more adequate for the further nego-
tiation process. This criterion is based on the intuition that more general a service

30The negotiation process is finalized to further refine service parameters. See Sect. for
more details about such process.

180

Average Overall Similalrity Clusters

0,200

0,180

0,160 AN
0,140 / \
0,120 N)

\ Single-link
0.100 === —" |™., Complete-link

o N s
o0 ___/

0,040

0,020

0,000 T T T T T T T 1

Peple Uni- FSM Family MNew- Wines Scien S-W- NTN
versity spaper ce M.

Figure 5.5: Means of the overall clusters similarity computed for every ontology with
respect to the used clustering algorithm.

is, with high probability it will be able to satisfy the request. Even if this criterion
could be adequate, it has to be noted that a general service could be less able to
perform a request w.r.t. a more specific one, that could better match the requested
needs. Moreover this criterion is not able to cope with the notions of HC' and SC.

Here, a ranking procedure is proposed [57]. Based on the use of a semantic
similarity measure for DL descriptions, it is able to manage HC and SC. Particularly,
it assigns higher ranks to services that are more similar to the request and that satisfy
both HC and SC, while services that are less similar and/or satisfy only HC receive
a low rank.

One of the measures for DLs presented in Chap. |4 could be used. Here the
simplest one is considered, that is the semantic similarity measureEr] presented in
Sect. 4.1} This measure is able to assess a similarity value between concepts, in-
dividuals and concept and individual asserted in the same ontology. Considering
Sect. [5.2.1], service descriptions can be viewed as DL descriptions asserted in a TBox
and their instances can be regarded as concept assertions in an ABox, hence the
Canonical Interpretation [§], which maps every service description to its instances,

31This measure has been defined for ALC descriptions. However, as discussed in Sect. it can
be applied to any DLs allowing for the instance checking operator.

181

can be considered. Thus, given a requested service description S, and a provided
service description S, their similarity can be computed as in the following:

s(S,, Sp) = [(S:18p)7| aX(l(srnsp)ﬂ |(Smsp)z|)

(S:U8p)7] ISFl 7 1SED

where ()% returns the concept extension w.r.t. 7

Remember that this measure assigns the maximum value in case of semantic
equivalence of the descriptions. Otherwise it assigns a value in the range [0, 1[. This
value grows with the increase of the cardinality of the set of service instances shared.
The similarity value is computed between a requested service description S, and a
provided service description .S, so the instance checking operator has to compute
the set of instances for them. For every provided service, the set of instances is
known. It is necessary to determine the extension of S,. Note that the measure
is applied after the matching process and that the chosen matching procedure (see
Sect selects all provided services .S, that have at least one instance satisfying
S,. More specifically, the matching process selects all provided services that have
at least one instance satisfying S while SC cannot be also satisfied. So, the
extension of . is given by the union of the provided service instances that satisfy
S,. Namely:

S = Ui {287 (2) A 83 (@)} U UG {=1(S7C M SP9) (@) A Sj(x)}

where n is the number of provided services selected by the matching process.

The rationale of the procedure consists in measuring the similarity between the
requested and the provided services selected during the matching phase: a higher
similarity will result in higher rankings.

The presented measure assigns highest values to services that share most of
the instances with S, so, as in [93], the criterion used is based on variance, namely,
a service is better than another if the variance it provides is greater than the other.
However, differently from [93], this procedure is able to supply a total order of the
provided services (rather than a partial order). Anyway this is not enough for en-
suring that provided services satisfying both HC and SC' of S, will be in the higher
positions, while services satisfying only HC will be in the lower positions. To make
more clear the reason, the following scenario is considered: let S, be the requested
service and let Szl) and S;f two provided services, selected by the matching procedure.
As seen in Sect. [5.2.7] a service is described by the set of HC' and SC. Particularly,
a service can also be described only by H C@ Let S, described by both HC' and
SC. let SIZ) be a provided service whose instances all satisfy only the HC of S,., and
let S]’; be a provided service whose instances all satisfy both HC and SC of S,.. So,

32A service can not be described only by SC because it means ask for a service that contains
only optional constraints and this does not make sense.

182

considered the canonical interpretation, it is easy to see that
Vo : S;,f(x) — Sj)(:p) & (Sfj)l - (SIIJ)I = |(SI§)I| < |(S;))I| = 5(S,,5%) < s(S,,S%).

Ty ™~p ™~p
This is the opposite result w.r.t. the fixed criterion, that is provided services satis-
fying both HC' and SC' of S, and that are more similar to .S, have to be on top of

the ranking. For achieving this goal, the set up ranking procedure is:

given S, = {SH¢ S5} service request; S;(i =1,..,n) provided services selected
by match(K B, D, D});

for i =1,...,n do compute 5; := s(S, S)
let be S"ev = SHC 1 §5¢
for:=1,...,ndo

compute 5; := s(S, S7)

SHC represents the set of HC' of the request, S5¢ the set of SC for the request. For
all S the similarity values §; := s(S7¢,S!) are computed. Hence, a new service
description S™¥ = SHCY 1 §5¢ is considered. It is defined as the conjunction of
HC and SC of S,.. The instances of S satisfy both HC' and SC of S,. So, for
all S! the similarity values 5 := s(S;**, Si) are computed. Note that this value
expresses how many and which provided services satisfy also SC of S, besides of its
HC'. Consequently, it is straightforward to understand that a S; satisfying only HC'
of 5, will has s = 0. For all S}, the final similarity value s; is given by the average
between § and 5. This last value s; is used for setting the rank of the services. In
order to clarify the presented procedure, the following example is considered.

Example 5.2.3 Let D, be a request and let Dé and D’; be two provided services,
selected by the matching process. D]l) and D;f have to be ranked. Here Dll) and D;f
are described specifying their HC and SC. However, the procedure can rank services
even if they are described without any specification about their constraint hardness.

D, ={ S, = Flight YoperatedBy.LowCostCompany M 3to.{ bari} I
M 3 from.{ cologne,hahn} M Yapplicable ToFlight.Card,
{cologne,hahn} T 3 from .S, }

where

HC, ={ Flight™ 3to.{bari} M3 from.{cologne, hahn}
{cologne,hahn} T 3 from .S, }

SC,. ={ FlightM YoperatedBy.LowCostCompany 1 Vapplicable ToFlight.Card };

183

D}, ={ 8! = Flight 1 3to.ltaly 1 3from.Germany;
Germany T 3 from™.S); ltaly & Jto.S) }

where

HC! = { Flightm 3to.ltaly 1 Ifrom.Germany; SCL={}
Germany T 3 from™.S); ltaly & Jto".S) }

={ Sk Flight 1 YoperatedBy.LowCostCompany M Fto.ltaly I
M3from.Germany;,
Germany C 3 from’.S]’f; Italy C 3 to‘.Sj,f}

where

HCY ={ Flight1 3to.ltaly 1 3from.Germany;
Germany C from’.S]’;; Italy T 4 to‘.S;f }

SC’I’;C ={ Flight 1 YoperatedBy.LowCostCompany};

KB ={ cologne hahn:Germany, bari:ltaly, LowCostCompany C_ Company }

Now, S,, Sll) and S;; are considered. Note that S]lj satisfies only HC of S,
while S;f satisfies both HC and SC of S,. It is supposed that the extensions of S:ﬁ,
and SE are: |(SL)T| = 8; [(SF)*| = 5 and that all instances satisfy S,. Note that
Sy C S = (Sk)I C (Sl) . Consequently, |(S,)*| = 8. Furthermore, S, # S} and
S £ Skp It is conszder’ed SHC and S5€. Known that all the instances of Sl cmd Sk
satisfy S and particularly, Sl satisfies only HC of S,.; Sk satisfies both HC and SC
of Sy, it is straightforward to see that [(SHCnSHT =8 and that [(Sper ST = 0.
In the other case, it is known that |(SE)*| = 5 and that S satisfies both HC and
SC of S,.. So, some instances of S;,f can satisfy only HC of S, and others satisfy
both HC and SC (in the better case all instances of S]’; satisfy both HC and SC).
It is supposed that instances of Sjj that satisfy both HC and SC of S,, namely that
satisfy S™v = SHC M S5C are 3. Hence, applying the procedure it has:

_ [(SHCNSL)T| [(SHEMSLYT| |(SHCMSLYT|

S = s(SfC, S;l;) = SHTSP)‘ - max(‘(574{0)5‘) |(S]zp)zf)) = % (% %) =1
_ |(S-MSk)* S-MNSEYI| |(S,-nSk)T

Sp 1= S(SHC,S’“) = —S-Usk;I} max(l(\S,?Ip) l, |(|(S§)§|)) l) 2 max(g g) =0.625

The next step is computing 5; and 5. Considered the observation above it has:

=_0 5. lrenshyr (LSZEnSpT [(Snsply g
L= Sk T (S ushT (ST IS 5

=0.6

max(g, 5)

Hence, the final similarity values are: s; = 0.5 and s = 0.8125, and the ranking of

184

Intended
preferred
service
instances

Relevant, but

non-preferred Irrelevant
service service
mstances instances

Figure 5.6: Common instances between requested service and provided services for
their ranking

the provided services is:

1. Sk Similarity Value 0.6125
2. Sfo Similarity Value 0.5

This result 1s consistent with the goal. Namely, using this procedure, provided ser-
vices are ranked w.r.t. both variance and satisfaction of S,’s SC. O

The rational of the ranking procedure is showed in Fig. [5.6] Since the consid-
ered services have been selected by the matching process, all of them have at least
one instance satisfying S,. In the figure, HC' and SC represent the Hard and Soft
Constraints of the request and S; and S, represent services to rank. All the instances
of S7 or Sy that are in HC' are relevant instance services for S,., because they satisfy
its HC. However they are not the preferred instance services for .S, because they do
not satisfy also SC. For example, if the HC of S, ask for flights from Cologne to
Bari and the SC of S, ask for flights that allow the use of Miles and More card then
all the instances of S; and Sy that are in HC' are all flights from Cologne to Bari
operated by two different company. This instances are relevant because they satisfy
the main need, however flights from Cologne to Bari that allow the use of Miles and
More card will be preferred w.r.t. flights that do not allow the use of this card.
Thus the preferred instance services for S, are all the instances of S; and S, that

185

are in the intersection between HC' and SC. These instances are all the flights from
Cologne to Bari of S7 and S5 that allow for the use of Miles and More Card. The
parts of S; and Sy outside HC' represent all the instances that do not satisfty HC
and thus irrelevant service instances for S,; for example flights having a departure
and/or arrival city different from those requested. In the same way the part of Sy
outside HC' but in SC represents irrelevant service instances for S, because these
instances satisfy SC without satisfying HC'; for example represents flights that allow
the use of Miles and More card but that do not arrive at Bari.

Initially, the procedure ranks provided services that satisfy HC w.r.t. the
variance criterion, indeed provided services that share most of instances with S,
have higher similarity value. Hence SC' are considered. The procedure assigns an
additional similarity value to provided services satisfying also SC. This similarity
value is assigned, again using the variance criterion. Note that in computing the
additional similarity value are not considered all the service instances satisfying SC'
of S, but only the service instances satisfying both HC' and SC' of S,.. This avoid to
have in higher ranking position services that are very similar to SC' but dissimilar
from HC, whose instances are obviously not preferred w.r.t. services mostly similar
to HC. Indeed the latter can have a lot of instances satisfying SC' but that are not
relevant at all for the main request. The realized ranking procedure constitutes a
useful result for improving the discovery and negotiation processes. In the following,
its computational complexity is analyzed.

The dominant operation of the ranking procedure is the computation of the
similarity values, for which the semantic similarity measure (s) is invoked twice for
every matched provided service. Hence, Compl(Rank) = n -2 - Compl(s) where n
is the number of services to rank. The complexity of s (see Sect. [4.1.2)) mainly
depends from the complexity of the instance checking operator (for the considered
DL), used for computing the extensions of the service descriptions and the extension
of their conjunction and disjunction. Substituting the complexity of the measure it
has: Compl(Rank) = n -2 - [4- Compl(IChK)]. Note that the complexity of the
ranking procedure could be decreased by reducing the number of calls to the instance
checking operator, since the extensions of all available services can be computed
beforehand. Consequently, at request-time, only the extension of the requested
service description has to be computed. The extensions of the conjunction and
disjunction of descriptions can be computed by means of set theory applied to the
extensions already determined.

The realized ranking procedure turns out to be useful for supplying to the
requester the most appropriate provided service. To this purpose, the procedure
takes into account the presence of HC' and SC' and the wariance, by exploiting a
measure that assesses the similarity between service descriptions and allows to yield
a total order among the selected services.

186

Chapter 6

Conclusions

This thesis reached two main objectives: the definition of new similarity and dis-
similarity measures applicable to DLs Knowledge Bases and able to assesses the
similarity value between concepts, individuals and between concept and individual
asserted in an ontology; the application of inductive instance based learning methods
in the Semantic Web and Semantic Web Services domains.

Both aspects constitute a novelty in the literature. Indeed, very few measures
exist for DLs and particularly for the most expressive ones. As regard reasoning,
the deductive approach is typically used in the context of the Semantic Web and
Semantic Web Services. However, deduction-based inference services sometimes
require high computational complexity, hence new form of reasoning are necessary.
Inductive reasoning can be helpful in this way, but unfortunately it has not been
deeply investigated. This thesis analyzed the applicability of inductive learning
methods to ontological representation. Specifically, instance-based learning methods
have been set up to improve various tasks such as: concept retrieval (to semi-
automatize the ontology population) and service discovery process.

6.1 Summary of the Thesis

This thesis defined a novel approach for semantic similarity assessment between con-
cepts, individuals and concept and individual asserted in an ontology. This approach
is mainly based on semantics, sometimes used jointly with structural concept infor-
mation. A set of similarity and dissimilarity measures have been defined. They are
characterized by the use of a numeric approach applied to symbolic representations.
Specifically, by recurring to the instance check inference operator, the measures ex-
ploit concept extensions (that constitute the semantics of a concept) to compute

187

commonalities in terms of set theory (numerical approach).

A totally semantic similarity measure w.r.t. ALC KBs was defined (see Sect. .
Anyway, it has been proved that it is mainly language independent, so it can be ap-
plied to KBs described by most expressive DLs. This is because the only requirement
of the measure is the availability of the instance check operator for the chosen DL
(and the computation of the Most Specific Concept in case of similarity assessment
between individuals). Experimental evaluations proved that the measure is suitable
to compute similarity between concepts while it is less able to compute similarity
between individuals, due to the high specificity of the mscs.

This weakness has been solved by other two dissimilarity measures applicable
to ALC KBs (see Sect. and Sect. . One based on the overlap of the concepts
and the other one based on the variation of the Information Content between the
descriptions. The weakness has been overcome by exploiting also the concept struc-
tures, besides of their semantics. Specifically, the dissimilarity value is computed
considering also the dissimilarity of subconcepts that built a concept description.
This is particularly useful when mcss are considered, as they are characterized by
many nested subconcepts. In order to avoid that deeply nested subconcepts mod-
ify the "real” dissimilarity value, a weighted (w.r.t. concept levels) version of both
measures has been formalized. These measures resulted suitable for assessing dis-
similarity value between concepts and individuals. Nevertheless, as they are also
structure-driven, they cannot be used for more expressive DLs than ALC.

Following the same approach presented above, a similarity measure for ALN
logic has been defined (see Sect. [£.4.1). It allows to treat numerical restrictions that
are often present in real-world application problems. As for the previous measures,
such a measure cannot be used for more expressive DLs than ALN..

A kernel function for ALC concept descriptions has been defined (see Sect. ,
with the goal of exploiting the efficiency of kernel methods. Based on the notion
of convolution kernel, it allows to compute the dissimilarity value between concepts
on the ground of a semantic and structure-driven approach. It constitutes a very
interesting result as it is (one of) the first kernel functions defined for an expressive
DL. Experimental evaluation of the function demonstrated that it can be effectively
used in order to assess similarity between concepts, individuals, and concept and
individual. Anyway it cannot be applied to more expressive DLs than ALC.

In order to overcome the limitation of the previous measures, that is their
dependance from a specific representation language, a totally semantic semi-distance
measure has been defined (see Sect. . Based on the principles of the Hypothesis-
driven distance, the measure is able to assess similarity between individuals asserted
in an ontology without recurring to the computation of their mscs. Experimental
evaluations proved that such a measure outperforms the previous ones, anyway, at

188

the moment it cannot be used to determine the similarity value between concepts
asserted in an ontology.

This thesis focused also an the application of inductive learning methods to the
Semantic Web and Semantic Web Services contexts. This is for a double reason: to
evaluate the defined measures in an objective way (the alternative could be to recur
to a subjective human judgement); to show the effective applicability of inductive
learning methods in these contexts, where deductive approach is generally employed.
In order to reach these goals, different instance-based learning methods has been
developed.

The first efforts involved the definition of an instance-based classifier that is
applicable in the Semantic Web context. Specifically, a modified version of the k-
Nearest Neighbor algorithm for DLs KBs has been developed (see Sect. . It
classifies individuals of an ontology w.r.t. the concepts defined therein; moreover it is
able to perform concept retrieval of a new query concept defined, on the fly, by means
of concepts and roles in the reference ontology. The application of such algorithm
to the SW context needed to solve two non trivial issues: 1) classes (concepts) w.r.t.
the classification is performed are not disjoint; 2) the Open World Assumption,
characterizing the SW context, has to be treated. The realized classifier has been
applied, jointly with most of the defined measures, to several (online available)
ontologies, both for classifying individuals and for solving query answering problems.
The experimental evaluations proved that the classification results are comparable
to those returned by a standard deductive-based reasoner; moreover the classifier is
also able to induce new knowledge, not logically derivable. Its performance are less
reliable when ontologies are not homogeneously populated. However this is a well
known drawback of the K-NN algorithm. The realized classifier represents a form
of uncertain reasoning. It can be effectively used to semi-automatize the ontology
population task (nowadays manually made) and to improve the retrieval inference
service.

With the goal of exploiting the well known efficiency of kernel methods and
evaluate the defined ALC kernel function, a classifier has been realized by the use of
a SVM. As for the previous case, the problems of non-disjointeness of the classes and
the Open World Assumption have been solved. The system classifies individuals of
an ontology w.r.t. the concepts therein, as well as it is able to return the extension of
new concepts built on the ground of the reference ontology. Experimental evaluation
showed that it is comparable with a deductive reasoner and moreover it is able to
induce new assertions not logically derivable. It is less reliable in case in which many
concepts have very few assertions.

As regards Semantic Web Services, different aspects have been treated. Firstly,
modeling service descriptions has been analyzed. On the ground of a set of guide-

189

lines suggested by Grimm et al. [93], a DL-based framework for describing services
has been formalized. The main peculiarity of the framework is the possibility to
describe a service by distinguishing between Hard Constraints and Soft Constraints.
This is particularly important when a service request has to be described. Indeed,
by recurring to the distinction between HC and SC, it is possible to distinguish be-
tween the constraints of the request that have to be necessarily satisfied (HC), and
constraints of the request that have to be preferable satisfied, but not necessarily

(SC).

Considered the service descriptions, the service discovery process can be per-
formed by means of a matching procedure grounded on standard and non-standard
DLs inferences. The use of a semantic matching, rather than a syntactic one, en-
sures that the discovered services better satisfy the request. Anyway, in both cases,
the matching is generally performed by checking if every available service is able to
satisfy the request. However, with the increasing amount of available services such
an approach could not be able to guarantee replies in a reasonable time. In order to
improve the efficiency of the service discovery process, various hierarchical agglom-
erative clustering algorithms have been developed. Indeed, the set of all available
services can be firstly grouped into homogeneous clusters, represented by means of
a dendrogram (as the output of a hierarchical agglomerative clustering algorithm)
whose leaves are the available service descriptions. Every cluster can be then inten-
sionally described. Hence, the service discovery, for a given service request, can be
performed by matching the request to intensional cluster descriptions rather than
to each available service, thus heavily reducing the search space. Particularly, in
the best case the complexity of the discovery process can decrease from linear to
logarithmic in the number of the available service descriptions. The experimental
evaluations of the clustering algorithms showed their validity; the obtained clusters
have been measured by the use of the overall clusters similarity.

Moreover, a procedure for returning matched service in a ranked list (with
respect to a fixed criterion) has also been developed. By exploiting the notion of
constraint hardness of a service request and the semantic similarity measures, the
procedure ranks in the highest positions provided services that are able to satisfy
both HC and SC and that are more similar to the request, while provided services
satisfying only HC and/or that are less similar to the service request are ranked in
the lowest positions. The availability of such ranking process allows to improve both
discovery and further negotiation process as increases the probability of finding the
really required service descriptions.

Summarizing, this thesis defined a new approach for assessing similarity among
elements of an ontology, proved the validity of such measures and showed that the
application of inductive learning methods to the Semantic Web and Semantic Web
Services domains can effectively solve many different open problems in such contexts.

190

6.2 Further Work

Considering the novelty of the arguments treated in this thesis, the work done con-
stitutes only the starting point of a more wide research line. Indeed many improve-
ments and open points need to be solved.

Specifically, measures for more expressive DLs (such as ALCN), exploiting a
semantic and structure driven approach, need to be defined. Also kernel functions
for most expressive DLs could be useful, as they allow to treat inductive learning
problems in a efficient way. The availability of measures applicable to more expres-
sive DLs allows to cope with a wide range real life problems. Particularly, an open
issue still remain the treatment of the role. Indeed, they currently are only implic-
itly considered, as part of a concept descriptions. Treating them in an explicit way
could improve the quality of the assessed (dis-)similarity values.

Furthermore, the experimental evaluation of the defined semi-distance mea-
sure showed that it gives the most appropriate dissimilarity values w.r.t. the other
developed measures. Anyway, it can be applied only to assess dissimilarity between
individuals. A formalization of this measure that is able to cope also with concept
descriptions could be very interesting, as it is totally semantic and language inde-
pendent, and so it could be applied to DL KBs. Moreover, further experimentations
of such measure showed that not all concepts of the knowledge base are necessary for
building the set of hypotheses fundamental to compute a dissimilarity value. This
suggest a line of further investigation that will concern finding minimal subsets of
concepts to be used for the measure. This means reducing the number of considered
concepts, saving those that are endowed of a real discriminating power. This could
be also done by learning optimal sets of discriminating features, allowing also their
composition on the ground of the specific constructors of the chosen representation
language. Both these objectives can be accomplished by means of machine learning
techniques.

Another important aspect to solve concerns the applicability of the measures
to concepts and individuals asserted in different ontologies. Indeed, the availability
of such measures could constitute a precious tool for tasks such as ontology matching
and alignment, that are key issues for making systems and KBs really interoperable.

The developed inductive learning methods could be also improved w.r.t. dif-
ferent aspects. Specifically, the realized classifier, based on a modified version of
the k-NN algorithm, could be extended with different (yet still computationally
tractable) answering procedures grounded on statistical inference (non-parametric
tests based on ranked distances) in order to accept answers as correct with a high
degree of confidence. Moreover, it could be extended in a way such that the prob-
ability that an individual belongs to one or more concepts are given. Furthermore,

191

the k-NN method, in its classical form, is particularly suitable for the automated
induction of missing values for (scalar or numeric) datatype properties of an indi-
vidual, as an estimate derived from the values of the datatypes for the surrounding
individuals.

As regards the topic of the service discovery process, many aspects need to
be investigated. First of all, an experimental evaluation of the proposed matching
procedure exploiting clustering methods needs to be performed. This is also in order
to check the opportunity of the usage of intensional cluster descriptions based on
ALE logic rather than ALC.

Moreover, the presented matching process is characterized by a set of open
problems not treated in this thesis. Firstly, an implicit assumption has been made:
a single branch of the tree contains the requested services. Anyway, really, it can
happen that more that one branch satisfies the matching condition. In this case
two different possibilities can be taken into account. One is to consider a search in
the tree that allows backtracking. In this way, all the services satisfying the request
will be found. The other solution consist in a search strategy driven by a heuristic,
used for the choice of the branch to explore. A possible heuristic can be given by
the similarity between the intensional node description and the request. Similarity
can be measured by means of one of the defined measures for DLs.

Furthermore, an incremental clustering process could be considered. Specifi-
cally, after all available services have been clustered, the matching process is applied,
and a set of services satisfying the request is found. All the clusters used for finding
the required services could be updated by adding the description of the request and
updating the intensional cluster descriptions; this is in order to better satisfy the
next requests. Obviously, after a certain number of update, the clusters have to be
re-computed.

Moreover, a new matching process could be useful for further increase the
quality of the discovery process and reduce the noise in the selection of services.

The definition of semantic (dis-)similarity measures for DLs and the application
of inductive learning methods to the Semantic Web domain constitute a very young
line of research. I hope that this thesis will be only the starting point of a more
wide research area in the future.

192

Bibliography

1]
2]

[10]

David W. Aha. Lazy learning. Artificial Intelligence Review, 11:7-10, 1997.

H. Akkermans, Z. Baida, and J. Gordijn. A shared service terminology for
online service provisioning. In Proceedings of the Sixth Intern. Conf. on Elec-
tronic Commerce (ICEC04), pages 1-10, New York, NY, USA, 2004. ACM
Press.

T. Andrews and et al. Business process execution language for web services
(version 1.1), May 2003. .

A. Appice, C. d’Amato, F. Esposito, and D. Malerba. Classification of sym-
bolic objects: A lazy learning approach. Journal of Intelligent Data Analysis,
10:301-324, 2006.

A. Arkin and et al. Web service choreography interface (wsci) version 1.0,
August 2002. http://www.w3.org/TR/wsci/.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American
Mathematical Society., 68, 1950.

K.D. Ashley. Modeling legal argument: Reasoning with cases and hypotheticals.
MIT Press, 1990.

F Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider,
editors. The Description Logic Handbook. Cambridge University Press, 2003.

F. Baader and R. Kiisters. Computing the least common subsumer and the
most specific concept in the presence of cyclic ALN concept descriptions. In
O. Herzog and A. Giienter, editors, Proceedings of the 22th Annual German
Conference on Artificial Intelligence, volume 1504 of LNAI pages 129-140.
Springer, 1998.

F. Baader and R. Kiisters. Matching in description logics with existential
restrictions. In Proceedings of Description Logic Workshop (DL’99), 1999.

193

[11]

[12]

[13]

[14]

[15]

[16]

F. Baader and R. Kiisters. Non-standard inferences in description logics: The
story so far. In D. M. Gabbay, S. S. Goncharov, and M. Zakharyaschev, editors,
Mathematical Problems from Applied Logic 1. Logics for the XXIst Century,
volume 4 of International Mathematical Series, pages 1-75. Springer-Verlag,
2006.

F. Baader, R. Kiisters, and R. Molitor. Computing least common subsumers in
description logics with existential restrictions. In T. Dean, editor, Proceedings
of the 16th International Joint Conference on Artificial Intelligence, pages
96-101. Morgan Kaufmann, 1999.

F. Baader, R. Kiisters, and R. Molitor. Rewriting concepts using terminologies.
In KR, pages 297-308, 2000.

F. Baader and R. Narendran. Unification of concept terms in description
logics. In H. Prade, editor, Proceedings of the 15th European Conference on
Artificial Intelligence (ECAI98), pages 331-335. John Wiley & Sons, 1998.

F. Baader and R. Narendran. Unification of concepts terms in description
logics. Journal of Symbolic Computation, 31(3):277-305, 2001.

F. Baader, R. Sertkaya, and Y. Turhan. Computing least common subsumers
w.r.t. a background terminology. In V. Haarslev and R. Moller, editors, Pro-
ceedings of Proceedings of the 2004 International Workshop on Description
Logics (DL2004). CEUR-WS.org, 2004.

F. Bacchus. Lp, a logic for representing and reasoning with statistical knowl-
edge. Computational Intelligence, 6:209-231, 1990.

R.A. Baeza-Yates. Introduction to data structures and algorithms related to
information retrieval. Information Retrieval: Data Structures and Algorithms,
pages 13-27, 1992.

G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel
approach. Neural Computing, 12(10):2385-2404, 2000.

A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik. Support vector
clustering. Journal of Machine Learning Research, 2:125-137, 2001.

C. Berg, J. Christensen, and P. Ressel. Harmonic Analysis on Semigroups:
Theory of Positive Definite and Related Functions. Springer, 1984.

T. Berners-Lee. Semantic Web talk at xml 2000, 2000.
http://www.dajobe.org/talks/sw-vienna/slide-10.html.

194

23]

[24]

[25]

[26]

[27]

[31]

32]

33]

[34]

T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific
American, 2001.

Y. Bishr. Semantic aspects of interoperable GIS. Technical report, Wageningen
Agricultural University and ITC - Netherland, 1997.

G. Biswas, J.B. Weinberg, and D.H. Fisher. Iterate: A conceptual clustering
algorithm for data mining. IEFE Transaction of System, Man and Cybernetics
(Part C: Applications and Reviews)., 28:100-111, 1998.

H.H. Bock and E. Diday. Analysis of symbolic data : exploratory methods for
extracting statistical information from complex data. Springer-Verlag, 2000.

A. Borgida and R. Kiisters. Whats not in a name: Some properties of a purely
structural approach to integrating large dl knowledge bases. In Proceedings
of the 2000 Description Logic Workshop (DL 2000), volume 33, pages 65-78.
CEUR Electronic Workshop Proceedings, http://ceur-ws.org/, 2000.

A. Borgida and D.L. McGuinness. Asking queries about frames. In Proceed-
ings of the 5th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR96), pages 340-349, 1996.

A. Borgida, T. Walsh, and H. Hirsh. Towards measuring similarity in descrip-
tion logics. In I. Horrocks, U. Sattler, and F. Wolter, editors, Proceedings
of the 2005 International Workshop on Description Logics (DL2005), volume
147 of CEUR Workshop Proceedings. CEUR-WS.org, 2005.

Alexander Borgida and David W. Etherington. Hierarchical knowledge bases
and e?cient disjunctive reasoning. In Ron J. Brachman, Hector J.Levesque,
and Ray Reiter, editors, Proceedings of the 1st Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR89), pages 33-43, 1989.

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal
margin classifiers. In D. Haussler, editor, In Proceeding of the 5th Annual
ACM Workshop on Computing Learning Theory, pages 144-152, 1992.

R.J. Brachman. A structural paradigm for representing knowledge, 1977. PhD
thesis.

R.J. Brachman. Whats in a concept: Structural foundations for semantic
networks. Int. Journal of Man-Machine Studies, 9(2):127-152, 1977.

R.J. Brachman, editor. On the epistemological status of semantic networks.
Academic Press, New York, 1979.

195

[35]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

R.J. Brachman and J. G Schmolze. An overview of the kl-one knowledge
representation systems. Int. Journal of Cognitive Science, 9(2):171-216, 1985.

S. Brandt, R. Kiisters, and A.-Y. Turhan. Approximation and difference in
description logics. In D. Fensel, F. Giunchiglia, D. McGuinness, and M.-A.
Williams, editors, Proceedings of the 8th International Conference on Princi-
ples of Knowledge Representation and Reasoning, KR02, pages 203-214. Mor-
gan Kaufmann, 2002.

M. W. Bright, A. R. Hurson, and Simin H. Pakzad. Automated resolution
of semantic heterogeneity in multidatabases. ACM Transaction on Database
Systems, 19(2):212-253, 1994.

L Cabral, J Domingue, E Motta, T.R. Payne, and F Hakimpour. Approaches
to semantic web services: an overview and comparisons. In Proceedings of
First European Semantic Web Symposium (ESWS), volume 3053 of LNCS,
pages 225-239. Springer, 2004.

Andrea Cali, Diego Calvanese, Simona Colucci, Tommaso Di Noia, and
Francesco M. Donini. A description logic based approach for matching user
profiles. In Description Logics, 2004.

J. D. Carroll and M. Wish. Models and methods for three-way multidimen-
sional scaling. Contemporary developments in mathematical psychology, 2:57—
105, 1974.

OWL-S Coalition. Owl-s 1.1 release, 2004.
http://www.daml.org/services/owl-s/1.1/.

William W. Cohen, Alexander Borgida, and Haym Hirsh. Computing least
common subsumers in description logics. In Proceeding of AAAI pages 754—
760, 1992.

W.W. Cohen and H. Hirsh. Learning the CLASSIC description logic: Theo-
retical and experimental results. In P. Torasso, J. Doyle, and E. Sandewall,
editors, Proceedings of the 4th International Conference on the Principles of

Knowledge Representation and Reasoning, pages 121-133. Morgan Kaufmann,
1994.

Christine Collet, Michael N. Huhns, and Wei-Min Shen. Resource integration
using a large knowledge base in carnot. IEEE Computer, 24(12):55-62, 1991.

A. Collins and M. Quillian. Retrieval time from semantic memory. Journal of
Verbal Learning and Verbal Behavior., 8:240-247, 1969.

196

[46] M. Collins and N. Duffy. Convolution kernels for natural language. In T. G.
Dietterich, S. Becker, and Z. Ghahramani (Eds.), editors, Advances in Neural
Information Processing Systems, volume 14. MIT Press, 2002.

[47] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Trans-
actions on Information Theory, 13:21-27, 1967.

[48] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Ma-

chines (and other kernel-based learning methods). Cambridge University Press,
2000.

[49] C. d’Amato and N. Fanizzi. Lazy learning from terminological knowledge
bases. In In F. Esposito, Z. W. Ras, D. Malerba, and G. Semeraro (Eds.),
editors, Proceedings of the 16th International Symposium on Methodologies for
Intelligent Systems, ISMIS2006, volume 4203 of Lecture Notes in Computer
Science, pages 570-579, Bari, Italy, 2006. Springer.

[50] C. d’Amato, N. Fanizzi, and F. Esposito. A dissimilarity measure for con-
cept descriptions in expressive ontology languages. In H. Alani, C. Brewster,
N. Noy, and D. Sleeman, editors, Proceedings of the KCAP2005 Ontology Man-
agement Workshop, Banft, Canada, 2005.

[51] C. d’Amato, N. Fanizzi, and F. Esposito. A dissimilarity of ALC concept
descriptions. In SWAP 2005, the 2nd Italian Semantic Web Workshop, Trento,
Italy, 2005. CEUR. onlind]

[52] C. d’Amato, N. Fanizzi, and F. Esposito. A semantic dissimilarity measure
for concept descriptions in ontological knowledge bases. In M. Ackermann,
B. Berendt, M. Grobelnik, and V. Svtek (Eds.), editors, Proceedings of the
second International Workshop on Knowledge Discovery and Ontologies (at
ECML/PKDD 2005), Porto, Portugal, 2005.

[53] C. d’Amato, N. Fanizzi, and F. Esposito. A semantic similarity measure for
expressive description logics. In A. Pettorossi, editor, Proceedings of Convegno
Italiano di Logica Computazionale, CILC05, Rome, Italy, 2005. electronic
edition availabld?l

[54] C. d’Amato, N. Fanizzi, and F. Esposito. Analogical reasoning in description
logics. In Proceedings of the Second ISWC Workshop on Uncertainty Reasoning
for the Semantic Web., Athens, Georgia (USA), 2006. CEUR. onlineﬂ

'http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS//Vol-166/19.pdf
’http://www.disp.uniroma2.it/CILC2005/downloads/papers/15.dAmato_CILCO5.pdf
Shttp://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS//Vol-218/paper4.pdf

197

[55]

[56]

[60]

C. d’Amato, N. Fanizzi, and F. Esposito. A dissimilarity measure for ALC
concept descriptions. In Proceedings of the 21st Annual ACM Symposium of
Applied Computing, SAC2006, Dijon, France, 2006. ACM Press.

C. d’Amato, N. Fanizzi, and F. Esposito. Reasoning by analogy in description
logics through instance-based learning. In Proceedings of SWAP 2006, the 3rd
Italian Semantic Web Workshop, Pisa, Italy, 2006. CEUR. onlindﬂ

C. d’Amato and S. Staab. Modelling, matching and ranking services based on
constraint hardness. In In J. Eder and S. Dustdar (Eds.), editors, Proceeding
of Advances in Semantics for Web services Workshop (at BPMO06)., volume
4103 of Lecture Notes in Computer Science, pages 471-482, Vienna, Austria,
2006. Springer.

M. d’Aquin, J. Lieber, and A. Napoli. Decentralized case-based reasoning
for the Semantic Web. In Y. Gil, V. Motta, E. Benjamins, and M. A.
Musen, editors, Proceedings of the 4th International Semantic Web Confer-
ence, ISWC2005, number 3279 in LNCS, pages 142-155. Springer, 2005.

B. Dasarathy. Nearest Neighbor(NN) Norms: NN Pattern Classi
cation Techniques. IEEE Computer Society Press, 1991.

S. de Battle and et al. Semantic web service ontology (swso), September 2005.
http://www.w3.org/Submission/SWSF-SWSO/.

[61] j. de Bruijn and et al. Web service modeling ontology (wsmo), June 2005.

[62]

http://www.w3.org/Submission/ WSMO/.

K. Dellschaft and S. Staab. On how to perform a gold standard based eval-
uation of ontology learning. In I. Cruz, S. Decker, D. Allemang, C. Preist,
D. Schwabe, P. Mika, M. Uschold, and L. Aroyo, editors, Proceedings of the
5th International Semantic Web Conference (ISWC-2006), volume 4273 of
Lecture Notes in Computer Science. Springer, 2006.

E. Diday and J.C. Simon. Clustering analysis. Digital Pattern Recognition,
pages 47-94, 1976.

Chris H. Q. Ding and Xiaofeng He. Cluster aggregate inequality and multi-
level hierarchical clustering. In Alipio Jorge, Luis Torgo, Pavel Brazdil, Rui
Camacho, and Joao Gama, editors, Proceeding of the 9th European Conference
on Principles and Practice of Knowledge Discovery in Databases, PKDD, vol-
ume 3721 of Lecture Notes in Computer Science, pages 71-83. Springer, 2005.

‘http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS//Vol-201/25.pdf

198

[65]

[66]

[67]

[68]

[69]

[75]

F. M. Donini, B. Hollunder, M. Lenzerini, A. Marchetti Spaccamela, D. Nardi,
and W. Nutt. The complexity of existential quantification in concept lan-
guages. Int. Journal of Artificial Intelligence, 2(3):309-327, 1992.

F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept
languages. Information and Computation, 134(1):1-58, 1997.

F.M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. An epistemic operator for
description logics. Artificial Intelligence, 100(1-2):225-274, 1998.

F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Deduction in concept
languages: From subsumption to instance checking. Int. Journal of Logic and
Computation, 4(4):423-452, 1994.

C. Dorai and A.K. Jain. Shape spectra based view grouping for free-form
objects. In In Proceeding of the International Conference on Image Processing
(ICIP-95), pages 240-243, 1995.

R. Duda and P. Hart. Pattern classification and scene analysis. New York:
John Wiley & Sons., 1973.

M. Egenhofer and D. Mark. Spatial information theory - a theoretical basis for
geographic information systems. In A. Frank and W. Kuhn, editors, Proceed-
ings of the International Conference COSIT 95, pages 1-14. Springer-Verlag,
1995.

W. Emde and D. Wettschereck. Relational instance-based learning. In [
proceeding of the 15th International Conference on Machine Learning (ICML),
pages 122-130, 1996.

F. Esposito, N. Fanizzi, L. Iannone, I. Palmisano, and G. Semeraro.
Knowledge-intensive induction of terminologies from metadata. In In F. van
Harmelen, S. Mcllraith, and D. Plexousakis Eds., editors, In Proceeding of the
the 3rd International Semantic Web Conference, volume 3298 of LNCS, pages
441-455. Springer, 2004.

F. Esposito, D. Malerba, and G. Semeraro. Classification in noisy environment
using a distance measure between structural symbolic descriptions. [IEEE
Transaction on Pattern Analysis and Machine Intelligence., 14(3):390-402,
1992.

N. Fanizzi and C. d’Amato. A declarative kernel for ALC concept descrip-
tions. In F. Esposito, Z. W. Ras, D. Malerba, and G. Semeraro (Eds.), editors,

199

[76]

[77]

78]

[79]

[81]

[82]

[83]

In Proceedings of the 16th International Symposium on Methodologies for In-
telligent Systems., volume 4203 of Lecture Notes in Computer Science, pages
322-331. Springer, 2006.

N. Fanizzi and C. d’Amato. A similarity measure for the aln description logic.
In Proceedings of Convegno Italiano di Logica Computazionale, CILC05, Bari,
Italy, 2006. onlind}

D.H. Fisher, H. Douglas, and M.J. Pazzani. Concept Formation: Knowledge
and Experience in Unsupervised Learning. Morgan Kaufmann, 1991.

T. Gartner. Exponential and geometric kernels for graphs. In In NIPS Work-
shop on Unreal Data: Principles of Modeling Nonvectorial Data, 2002.

T. Gartner. A survey of kernels for structured data. SIGKDD FExplorations,
5(1):49-58, 2003.

T. Gartner, K. Driessens, and J. Ramon. Graph kernels and gaussian processes
for relational reinforcement learning. In In Proceedings of the 13th Interna-
tional Conference on Inductive Logic Programming, 2003.

T. Gartner, P.A. Flach, and S. Wrobel. On graph kernels: Hardness results
and efficient alternatives. In Proceedings of the 16th Annual Conference on
Computational Learning Theory and the 7th Kernel Workshop, 2003.

T. Gartner, JJW. Lloyd, and P.A. Flach. Kernels for structured data. In
S. Matwin and C. Sammut, editors, Proceedings of 12th International Con-
ference on Inductive Logic Programming, ILP2002, volume 2583 of LNCS.
Springer, 2002.

T. Gartner, J.W. Lloyd, and P.A. Flach. Kernels and distances for structured
data. Machine Learning, 57(3):205-232, 2004.

D. Gentner. Structure-mapping: A theoretical framework for analogy. Cogni-
tive Science, 7:155-170, 1983.

R. L. Goldstone. Similarity, interactive activation, and mapping. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 20:3-28, 1994.

R. L. Goldstone. Similarity, 2005. In K. Holyoak and R. Morrison (Eds.).
Cambridge Handbook of Thinking and Reasoning. Cambridge: Cambridge
University Press: p. 13-36.

Shttp://cilc2006.di.uniba.it/download/camera/15 Fanizzi CILCO6.pdf

200

[87]

[90]

[91]

[92]

93]

[94]

[95]

[96]

[97]

A. Gomez Perez and V.R. Benjamins. Overview of knowledge sharing and
reuse components: Ontologies and problem-solving methods. In Proceedings
of Ontology and Problem-Solving Methods: Lesson learned and Future Trends,
Workshop at IJCAI volume 18, pages 1.1-1.15. CEUR Pubblications, Ams-
terdam, 1999.

J Gongzales-Castillo, D Trastour, and C. Bartolini. Description logics for
matchmaking of services. In Proceedings of the KI-2001 Workshop on Ap-
plications of Description Logics, volume 44, 2001.

G. Gora and A. Wojna. Riona: A classifier combining rule induction and k-nn
method with automated selection of optimal neighbourhood. In Proceedings
of the Thirteenth European Conference on Machine Learning, ECML 2002,
Lecture Notes in Artificial Intelligence, pages 111-123. Springer-Verlag, 2002.

K. C. Gowda and E. Diday. Symbolic clustering using a new dissimilarity
measure. [EEFE Transaction of System, Man and Cybernetics., 22:368-378,
1992.

K.C. Gowda and G. Krishna. Agglomerative clustering using the concept of
mutual nearest neighborhood. Pattern Recognition., (10):105-112, 1977.

K.C. Gowda and G. Krishna. Disaggregative clustering using the concept of
mutual nearest neighborhood. IEEFE Transaction of System, Man and Cyber-
netics., SMC-8(12):888-894, 1978.

S. Grimm, B. Motik, and C. Preist. Variance in e-business service discov-
ery. In Proceedings of the ISWC Workshop on Semantic Web Services, 2004.
http://www-106.ibm.com/developerworks/library /ws-bpel.

T.R. Gruber. A translation approach to portable ontology specifications, 1993.

N. Guarino, C. Masolo, and G. Verete. Ontoseek: Content-based access to the
web. IEEFE Intelligent Systems, 3(14):70-80, 1999.

Volker Haarslev and Ralf Moller. RACER system description. In Proceeding of
Automated Reasoning, International Conference, IJCAR 2001, volume 2083,
pages 701-705, 2001.

P. Haase, F. van Harmelen, Z. Huang, H. Stuckenschmidt, and Y. Sure.
A framework for handling inconsistency in changing ontologies. In Y. Gil,
V. Motta, E. Benjamins, and Mark A. Musen, editors, Proceedings of the 4th
International Semantic Web Conference, ISWC2005, number 3279 in LNCS,
pages 353-367, Galway, Ireland, November 2005. Springer.

201

[98] U. Hahn and K. Schnattinger. Toward text knowledge engineering. In Pro-
ceeding of the 15th National Conference on Articial Intelligence (AAAI-98),
1998.

[99] D. Haussler. Convolution kernels on discrete structures. Technical Report
UCSC-CRL-99-10, Department of Computer Science, University of California
— Santa Cruz, 1999.

[100] P. Hitzler and D. Vrandecic. Resolution-based approximate reasoning for owl
dl. In Y. Gil, E. Motta, V. R Benjamins, and M. A. Musen, editors, In
Proceeding of the 4th International Semantic Web Conference, volume 3729 of
Lecture Notes in Computer Science, pages 383-397. Springer, 2005.

[101] K. Holyoak and P. Thagard. Analogical mapping by constraint satisfaction.
Cognitive Science, 13:295-355, 19809.

[102] I Horrocks, P. Patel-Schneider, and F. van Harmelen. From SHZQ and RDF
to OWL: The making of a web ontology language. Journal of Web Semantics,
1(1):7-26, 2003.

[103] I. Horrocks, P.F. Patel-Schneider, S. Bechhofer, and D. Tsarkov. Owl rules:
A proposal and prototype implementation. Web Semantics, (3):23-40, 2005.

[104] Tan Horrocks. The fact system. In Harrie de Swart, editor, Proceeding of Au-
tomated Reasoning with Analytic Tableaux and Related Methods, International
Conference, TABLEAUX 98, volume 1397 of Lecture Notes in Computer Sci-
ence, pages 307-312. Springer, 1998.

[105] L. Iannone. Machine learning for ontology engineering, April 2006. PhD.
Thesis.

[106] M. Ichino and H. Yaguchi. Generalized minkowski metrics for mixed feature-
type data analysis. System, Man and Cybernetics, 24(4):698-708, 1994.

[107] A.K. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice-Hall,
1988.

[108] A.K. Jain, M.N. Murty, and P.J. Flynn. Data clustering: A review. ACM
Computing Surveys, 31(3):264-323, 1999.

[109] J. Jang and D. Conrath. Semantic symilarity based on corpus statistic and
lexical taxonomy. In Proceedings of the International Conference on Compu-
tational Linguistics, 1997.

202

[110]

[111]

[112]

[113]

114]

[115]

[116]

[117]

[118]

[119]

[120]

K. Janowicz. Sim-dl: Towards a semantic similarity measurement theory for
the description logic alenr in geographic information retrieval. In R. Meersman,
7. Tari, and P. Herrero et al., editors, Proceedings of OTM Workshops at
SeBGIS 2006, volume 4278 of Lecture Notes in Computer Science, pages 1681
— 1692. Springer, 2006.

R.A. Jarvis and E.A. Patrick. Clustering using a similarity method based
on shared near neighbors. Pattern Analysis and Machine Intelligence. PAMI,
C-22(11):1025-1034, 1973.

T. Joachims. Learning to Classify Text using Support Vector Machines. Kluwer
Academic Publishers, 2002.

I. Jonyer, D.J. Cook, and L.B. Holder. Graph-based hierarchical conceptual
clustering. Journal of Machine Learning Research., 2:19-43, 2001.

H. Kashima and A. Inokuchi. Kernels for graph classification. In In ICDM
Workshop on Active Mining, 2002.

H. Kashima and T. Koyanagi. Kernels for semistructured data. In C. Sam-
mut and A. Hoffmann (Eds.), editors, Proceedings of the 19th International
Conference on Machine Learning. Morgan Kaufmann, 2002.

H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled
graphs. In T. Fawcett and N. Mishra, editors, Proceedings of International
Conference on Machine Learning, ICML2003, pages 321-328. AAAI Press,
2003.

N. Kavantzas, D. Burdett, and G. Ritzinger. Web service
choreography description language version 1.0, 27 April 2004.
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427 /.

D. Kibler and D. Aha. Learning representative exemplar of concepts: An
initial case study. In Proceeding of the Fourth International Workshop on
Machine Learning, pages 24-30. Morgan Kaufmann, 1987.

J.-U. Kietz. Learnability of description logic programs. In S. Matwin and
C. Sammut, editors, Proceedings of the 12th International Conference on In-
ductive Logic Programming, volume 2583 of LNAI, pages 117-132, Sydney,
2002. Springer.

B. King. Step-wise clustering procedures. Journal of the American Statistical
Association., 69:86-101, 1967.

203

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]
[132]

[133]

D. Koller, A. Levy, and A. Pfeffer. P-classic: a tractable probabilistic descrip-
tion logic. In In Proceeding of AAAI 1997, 1997.

C. Krumhansl. Data: The interrelationship between similarity and spatial
density. Psycological Review, 85(5):445-463, 1978.

R. Kiisters and R. Molitor. Approximating most specific concepts in descrip-
tion logics with existential restrictions. In F. Baader, G. Brewka, and T. Eiter,

editors, Proceedings of the Joint German/Austrian Conference on Artificial
Intelligence, KI/OGAIO1, volume 2174 of LNCS, pages 33-47. Springer, 2001.

R. Kiisters and R. Molitor. Computing least common subsumers in ALEN'.
In editor B. Nebel, editor, In Proceeding of the International Joint Conference
on Artificial Intel ligence, IJCAI2001, pages 219-224, 2001.

Ralf Kiisters. Non-Standard Inferences in Description Logics, volume 2100 of
Lecture Notes in Computer Science. Springer, 2001.

J. Lee, M. Kim, and Y. Lee. Information retrieval based on conceptual distance
in is-a hierarchies. Journal of Documentation, 2(49):188-207, 1993.

C. Leslie, E. Eskin, and W. Noble. The spectrum kernel: A string kernel
for svm protein classification. In In Proceedings of the Pacific Symposium on
Biocomputing, pages 564-575, 2002.

V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady Akademii Nauk SSSR, 10(8):707-710, 1966.

L Li and I Horrocks. A software framework for matchmaking based on semantic
web technology. In Proceedings of the Twelfth World Wide Web Conference,
2003.

D. Lin. An information-theroretic defintion of similarity. In Proceedings of
the International Conference on Machine Learning, pages 296-304. Morgan
Kaufmann, 1998.

J. W. Lloyd. Logic for Learning. Springer-Verlag, 2002.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text
classification using string kernels. Journal of Machine Learning Research,
2:419-444, 2002.

Alexander Maedche and Steffen Staab. Measuring similarity between ontolo-
gies. In Asuncion Gomez-Pérez and V. Richard Benjamins, editors, EKAW,
volume 2473 of Lecture Notes in Computer Science, pages 251-263. Springer,
2002.

204

[134] T. Mantay. Commonality-based ABox retrieval. Technical Report FBI-HH-
M-291/2000, Department of Computer Science, University of Hamburg, Ger-
many, 2000.

[135] A. B. Markman and D. Gentner. Splitting the differences: A structural align-
ment view of similarity. Journal of Memory € Language, 32:517-535, 1993.

[136] A. B. Markman and D. Gentner. Structural alignment during similarity com-
parisons. Cognitive Psychology, 25:431-467, 1993.

[137] A. B. Markman and D. Gentner. Commonalities and differences in similarity
comparisons. Memory €& Cognition, 24:235-249, 1996.

[138] D. Maynard, W. Peters, and Y. Li. Metrics for evaluation of ontology-based
information extraction. In Proceeding of the EON 2006 Workshop, 2006.

[139] D.L. McGuinness and A. Borgida. Explaining subsumption in description
logics. In Proceedings of the 14th Int. Joint Conf. on Artificial Intelligence
(IJCAI95), pages 816-821, 1995.

[140] Sheila A. Mcllraith and David L. Martin. Bringing semantics to web services.
IEEFE Intelligent Systems, 18(1):90-93, 2003.

[141] J. McQueen. Some methods for classification and analysis of multivariate
observations. In In Proceeding of the 5th Berkley Symposium on Mathematical
Statistics and Probability, pages 281-297, 1967.

[142] R. Michalski, R.E. Stepp, and E. Diday. Automated construction of classifica-
tion: conceptual clustering versus numerical taxonomy. Pattern Analysis and
Machine Intelligence. PAMI, 5:396-409, 1983.

[143] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell. Machine Learning: An
artificial Intelligence Approach. Tioga, 1983.

[144] R.S. Michalski. Knowledge acquisition through conceptual clustering: A theo-
retical framework and an algorithm for partitioning data into conjunctive con-
cepts. Policy Analysis and Information Systems (A Special Issue on Knowledge
Acquisition and Induction), 4(3):219-244, 1980.

[145] R.S. Michalski and R.E. Stepp. Concept-based clustering versus numerical
taxonomy, 1981. Technical Report No. 1073.

[146] R.S. Michalski and R.E. Stepp. Automated construction of classifications: con-
ceptual clustering versus numerical taxonomy. IEFE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 5:219-243, 1983.

205

[147]

[148]

[149]
[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.-R. Miiller. Fisher dis-
criminant analysis with kernels. In in Y.H. Hu, J. Larsen, E. Wilson, and
S. Douglas (Eds.), editors, In Proceeding of the IXth Neural Networks for Sig-
nal Processing, pages 41-48. Piscataway, NJ: IEEE, 1999.

G. Miller and W. Charles. Contextual correlates of semantic similarity. Lan-
guage and Cognitive Processes, 6(1):1-28, 1991.

M. Minsky. A framework for representing knowledge., 1975.
Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

R. Molitor. Structural subsumption for ACN . Technical Report LTCS-98-03,
LuFg Theoretical Computer Science, RWTH Aachen, Germany, 1998.

K. R. Miiller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf. An introduction
to kernel-based learning algorithms. [EEE Transaction on Neural Networks,
2(2), 2001.

F. Murtagh. A survey of recent advances in hierarchical clustering algorithms
which use cluster centers. The Computer Journal., 26:354—359, 1984.

M.N. Murty and G. Krishna. A computationally efficient technique for data
clustering. Pattern Recognition, 12:153-158, 1980.

G. Nagy. State of the art in pattern recognition. Proceeding of the IEEFE,
56(5):836-863, 1968.

B. Nebel. Terminological reasoning is inherently intractable. Artificial Intel-
ligence, 43:235-249, 1990.

T. Di Noia, E. Di Sciascio, F.M. Donini, and M. Mongiello. A system for
principled matchmaking in an electronic marketplace. In WWW, pages 321—
330, 2003.

G. Paass, E. Leopold, M. Larson, J. Kindermann, and S. Eickeler. Svm classi-
fication using sequences of phonemes and syllables. In In T. Elomaa, H. Man-
nila, and H. Toivonen (Eds.), editors, In Proceedings of the 6th European
Conference on Principles of Data Mining and Knowledge Discovery, pages
373-384. Springer-Verlag, 2002.

M Paolucci, T. Kawamura, T. Payne, and K.P Sycara. Semantic mathcing
of web service capabilities. In Proceedings of the Intern. Semantic Web Conf.
(ISWC), page 333347, 2002.

206

[160]

[161]

[162]

163

164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]
[172]

M Paolucci and K.P Sycara. Autonomous semantic web services. IEFE In-
ternet Computing, 7(5):34-41, 2003.

Chris Preist. A conceptual architecture for semantic web services. In Proceed-
ings of the 3rd Intern. Semantic Web Conf. (ISWC), volume 3298 of LNCS.
Springer, 2004.

W.V. Quine. Ontological Relativity and Other Essays. New York, Columbia
University Press, 1969.

R. Rada, H. Mili, E. Bicknell, and M. Blettner. Development and applica-
tion of a metric on semantic nets. IEEE Transactions on System, Man, and
Cybernetics, 19(1):17-30, 1989.

L. De Raedt. Attribute-value learning versus inductive logic programming:
the missing links. In D. Page, editor, In Proceeding of the Sth International
Conference on Inductive Logic Programming, volume 1446 of Lecture Note in
Artificial Intelligence, pages 1-8. Springer-Verlag, 1998.

J. Ramon. Clustering and instance based learning in first order logic, 2002.
PhD. Thesis.

P. Resnik. Using information content to evaluate semantic similarity in a
taxanomy. In Proceeding of the International Joint Conference for Artificial
Intelligence (IJCAI-95), pages 448-453, 1995.

P. Resnik. Semantic similarity in a taxonomy: An information-based measure
and its application to problems of ambiguity in natural language. Journal of
Artificial Intelligence Research, 11:95-130, 1999.

M. Andrea Rodriguez and Max J. Egenhofer. Determining semantic simi-
larity among entity classes from different ontologies. IEEE Transaction on
Knowledge and Data Engineering, 15(2):442-456, 2003.

M.A. Rodriguez. Assessing semantic similarity between spatial entity classes.
PhD thesis, University of Maine, 1997.

E. Rosch. Cognitive representations of semantic categories. Journal of Fxper-
imental Psychology., 104:192-233, 1975.

S. Ross. A First Course in Probability. Macmillan, New York, 1976.
C. Rouveirol and V. Ventos. Towards learning in CARIN-ALN . In J. Cussens

and A. Frisch, editors, Proceedings of the 10th International Conference on
Inductive Logic Programming, volume 1866 of LNAI pages 191-208. Springer,
2000.

207

[173]

[174]

[175]

[176]

[177]

178

[179]

[180]
[181]

[182]

[183]

[184]

[185]

[186]
[187]

S. Saitoh. Theory of Reproducing Kernels and Its Applications. Longman,
Harlow, U.K., 1988.

G. Salton. Developments in automatic text retrieval. Science., 253:974-980,
1991.

A. Schaerf. Reasoning with individuals in concept languages. Int. Journal of
Data and Knowledge Engineering, 13(2):141-176, 1994.

M Schmidt-Schaufland G Smolka. Attributive concept descriptions with com-
plements. Int. Journal of Artificial Intelligence, 48(1):1-26, 1991.

B. Scholkopf. Support Vector Learning. Oldenbourg-Verlag, Munich, Germany,
1997.

B. Schélkopf, C. J. C. Burges, and A. J. Smola. Advances in Kernel Method-
sSupport Vector Learning. MIT Press, Cambridge, MA, 1999.

B. Scholkopf, A. J. Smola, and K.-R. Miiller. Nonlinear component analysis
as a kernel eigenvalue problem. Neural Computing, 10:1299-1319, 1998.

B. Schélkopf and A.J. Smola. Learning with Kernels. The MIT Press, 2002.

J. Schiirmann. Pattern Classification: A Unified View of Statistical and Neural
Approaches. Wiley, New York, 1996.

M. Sebag. Distance induction in first order logic. In Nada Lavrac and Saso
Dzeroski, editors, Proceeding of Inductive Logic Programming, 7th Interna-
tional Workshop, ILP-97, volume 1297 of Lecture Notes in Computer Science,
pages 264-272. Springer, 1997.

M. Sebag and M. Schoenauer. A rule-based similarity measure. In S. Wess,
K. D. Althoff, and M M. Richter, editors, Selected papers of Topics in Case-
Based Reasoning, First European Workshop, EWCBR-93, volume 837 of Lec-

ture Notes in Computer Science, pages 119-131. Springer, 1993.

Evren Sirin and Bijan Parsia. Pellet: An owl dl reasoner. In Proceeding of In-
ternational Workshop on Description Logics, volume 104 of CEUR Workshop
Proceedings. CEUR-WS.org, 2004.

G. Smolka. A feature logic with subsorts. Technical Report 33, IWBS, IBM
Deutschland, 1998.

P.H. Sneath and R.R. Sokal. Numerical Tazonomy. Freeman, 1973.

J. Sowa, editor. Semantic Networks. Wiley, New York, 1992.

208

[188]

[189)]

[190]

191]

[192]

193]

[194]

[195]

[196]

197]

198

199

200]

201]

M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clus-
tering techniques., 2000. Technical Report No. 00-034.

M. Sussna. Word sense disambiguation for free-text indexing using a mas-
sive semantic network. In Proceedings of the 2nd International Conference on
Information Knowledge Management, CIKM’93, pages 67-74, 1993.

K. Sycara, R. Guttal, J. Koning, S. Narasimhan, and D. Navinchandra. Cadet:
A case-based synthesis tool for engineering design. International Journal of
FEzpert Systems, 4(2):157-188, 1992.

L. Talavera and J. Bjar. Generality-based conceptual clustering with proba-
bilistic concepts. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence (PAMI)., 23:196-206, 2001.

B. Taush, C. d’Amato, S. Staab, and N. Fanizzi. Efficient service matchmaking

using tree-structured clustering. In Poster proceedings of 5th International
Semantic Web Conference (ISWC), 2006.

W. S. Torgerson. Theory and methods of scaling. Wiley, New York, 1958.

W. S. Torgerson. Multidimensionsal scaling of similarity. Psychometrika,
30:379-393, 1965.

D Trastour, C. Bartolini, and J. Gonzales-Castillo. A semantic web approach
to service description for matchmaking of services. In Proceedings of the First
Semantic Web Working Symposium, 2001.

D Trastour, C. Bartolini, and C. Preist. Semantic web support for the business-
to-business e-commerce lifecycle. In Proceedings of the Eleventh Intern. Conf.
on World Wide Web, page 8998, 2002.

A. Tversky. Features on similarity. Psycological Review, 84(4):327-352, 1977.

S. Ullman. High-level vision: object recognition and wvisual cognition. MIT
Press, London, 1996.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,
New York, 1995.

V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

V. N. Vapnik and A. Y. Chervonenkis. Theory of Pattern Recognition. Nauka,
Moscow, Russia, 1974.

209

[202]

203]
204]

[205]

[206]

1207]

208]

209]

M. M. Veloso. Planning and Learning by Analogical Reasoning. Springer-
Verlag New York, Inc., 1994.

E. Voorhees. WordNet: An Electronic Lexical Database. MIT Press, 1998.

J.H. Ward. Hierarchical grouping to optimize an objective function. Journal
of the American Statistical Association., 58:236-244, 1963.

C. Watkins. Kernels from matching operations. Technical report, Department
of Computer Science, Royal Holloway, University of London, 1999.

D. Wettschereck. A study of distance-based machine learning algorithms, 1994.
PhD thesis.

D.R. Wilson and T.R. Martinez. Improved heterogeneous distance functions.
Journal of Artificial Intelligence Research, (6):1-34, 1997.

C.T. Zahn. Graph-theoretical methods for detecting and describing gestalt
clusters. IEEE Transactions on Computers., C-20:68-86, 1971.

K. Zhang. Algorithms for the constrained editing distance between ordered
labeled trees and related problems. Pattern Recognition., (28):463-474, 1995.

210

Appendix A

The K-Nearest Neighbor
Algorithm

The most basic instance-based method is the k-NEAREST NEIGHBOR algorithm
[47, [70, 150] that is a classifier that inputs a query instance x, and outputs a
prediction for its class. A classifier’s performance objective is to minimize expected
loss, or misclassification risk, for each class ¢; € C.

In the classical setting, the k-NEAREST NEIGHBOR algorithm assumes each
training instance = {21, z9,...,7p } to correspond to a point in multidimensional
space defined by a feature set F', whose class ¢; is a member of a set of classes
C. Classification is performed, firstly, by selecting the nearest neighbors of an
instance query x4, namely by selecting the k& most similar training examples to z,.
The similarity values are computed by the use of a distance/dissimilarity function
(typically the Euclidean distance). Once that the neighbors have been selected, the
algorithm assigns to x,, the most common class value among the k nearest training
examples. Formally, the algorithm can be described as follow.

Input: query instance z, Output: the class ¢; € C' to which z, belongs to

Training algorithm:

e For each training example (z, h(z)), where h(x) represents the class to which
x belongs to, add the example to the list training-examples

Classification algorithm:

e Given a query instance z, to be classified,

— Let z1,...,x; denote the k instances from training-examples nearest to
x4, selected by means of a dissimilarity function d

211

— return

k

(A.1) h(z,) — argmax Z d(c, h(x;))

ceC i—1

where ¢ is the Kronecker delta and is defined: §(a,b) = 1 if a = b;
d(a,b) = 0 otherwise.

Here, the target function to learn is given by h : RI¥l — C where C is the finite
set {c1,...,cs} of distinct classes for the classification. The k-NEAREST NEIGH-
BOR learning task consists in approximating the discrete-valued target function h.
Such approximation his given by computing the most common value of h among the
k training examples nearest to x,. Note that the values of h for the training exam-
ples are known because they represents the classes to which the training examples
belong to.

As the k-NEAREST NEIGHBOR is a lazy learning algorithm, it never forms
an explicit general hypothesis h regarding the target function h. It simply computes
the classification of each new query instance by adopting a majority voting criterion
with respect to the classes to which the selected k training examples belong to. The
inductive bias of this algorithm corresponds to an assumption that the classification
of an instance x, will be most similar to the classification of the other instances
that are nearby w.r.t. the chosen dissimilarity/distance function. Hence, the cru-
cial aspects to ensure good accuracy of the k-NEAREST NEIGHBOR algorithm
are: 1) the determined value for the parameter k; 2) the effectiveness of the used
dissimilarity measure.

One obvious refinement to the presented algorithm is to weight the contribution
of each of the £ neighbors according to their distance to the query point z,, giving
greater weight to closer neighbors [I50]. Hence, the presented algorithm can be sim-
ply modified by substituting eq. with: h(z,) «— argmax,co S0, w; - 8(c, h(x;))
where w; = 1/d(x,,z;)?. This means to weight the vote of each neighbor accord-
ing to the inverse square of its distance from z,. To accommodate the case where
the query point z, exactly matches one of the training instances x; (in which case
d(zg4,z;) = 0) it can be assign to iL(Iq) := h(x;). If there are several such train-
ing examples, the value assigned to B(mq) will be the majority classification among
them.

212

Appendix B

The Single and the Complete-Link
Algorithms

The Single-Link and the Complete-Link clustering algorithms are hierarchical ag-
glomerative clustering algorithms generally applied to feature-vector representa-
tions. They are called agglomerative because the clustering process begins con-
sidering each pattern in a distinct cluster. Successively clusters are merged until
a stopping criterion is satisfied. In the following the algorithmic description of the

Single-Link and Complete link is given.

Single-Link Algorithm

(1) Place each pattern in a cluster.
Build a list of inter-pattern distances
for all distinct unordered pairs of pat-
terns, and sort it in ascending order
(2) Step through the sorted list, form-
ing, for each dissimilarity value dy a
graph on the patterns where pairs of
patterns closer than dj are connected
by a graph edge. If all the patterns are
members of a connected graph, stop.
Otherwise, repeat this step.

(3) The output of the algorithm is a
nested hierarchy of graphs which can
be cut at a desired dissimilarity level
forming a partition (clustering) identi-
fied by simply connected components
in the corresponding graph.

Complete-Link Algorithm

(1) Place each pattern a cluster. Build
a list of inter-pattern distances for all
distinct unordered pairs of patterns,
and sort it in ascending order

(2) Step through the sorted list, form-
ing, for each dissimilarity value d; a
graph on the patterns where pairs of
patterns closer than dy are connected
by a graph edge. If all the patterns
are members of a completely connected
graph, stop.

(3) The output of the algorithm is a
nested hierarchy of graphs which can
be cut at a desired dissimilarity level
forming a partition (clustering) iden-
tified by completely connected compo-
nents in the corresponding graph.

213

Figure B.1: Clustering process per- Figure B.2: Clustering process per-

formed by the single-link algorithm. formed by the complete-link algorithm.
Cluster distances are given by the min- Cluster distances are given by the max-
imum distance among their elements. imum distance among their elements.

These two algorithms differ in the way they characterize the similarity between
a pair of clusters. In the single-link algorithm, the distance between two clusters
is the minimum of the distances between all pairs of patterns drawn from the two
clusters (one pattern from the first cluster, the other from the second). Conversely,
in the complete-link algorithm, the distance between two clusters is the maximum
of all pairwise distances between patterns in the two clusters. This difference can
be more clear by looking at Fig/B.I] and Fig. [B.2] In both cases, two clusters are
merged to form a larger one on the ground of the minimum distance criteria.

Besides of the way in which single-link and complete-link algorithms charac-
terize the similarity between a pair of clusters, the other main difference between
the two algorithms is given by the results they return. The complete link algorithm
produces tightly bound or compact clusters (see [18] for more details) while the sin-
gle link suffers from a chaining effect (see [I55] for more details), it has a tendency
to produce clusters that are straggly or elongated. This phenomenon is illustrated
in Fig. and in Fig. [B.4] Here, two clusters are separated by a ”bridge” of noisy
patterns. The clusters returned by the complete-link algorithm (Fig. are more
compact than those returned by the single-link (Fig. . The cluster labeled ”17,
obtained using the single-link, is elongated due to the noisy patterns labeled ”*”.

In general, the single link-algorithm is more versatile than the complete link.
For example the single-link algorithm can extract concentric clusters has those ones
shown in Fig. [B.5 while the complete-link is not able to do this. On the contrary it
has been observed that the complete link algorithm produces more useful hierarchies
in many applications than the single-link algorithm [107]. Hence, the choice of the
right algorithm strictly depends from the knowledge about the data distribution.

214

X, X,

Figure B.3: A single-link clustering of Figure B.4: A complete-link clustering

a pattern set containing two classes (1 of a pattern set containing two classes
and 2) connected by a chain of noisy (1 and 2) connected by a chain of noisy
patterns (indicated by 7*7). patterns (indicated by 7*7).

[
[
]

Figure B.5: Two concentric clusters

215

	Preface
	Introduction
	Semantic Web
	Ontology: Meaning, Usage and Representation
	The Semantic Web Architecture

	Semantic Web Services
	From Web Services to Semantic Web Services
	The Semantic Web Services Infrastructure

	Inductive Learning for the Semantic Web
	Instance Based Learning Methods
	Cluster Analysis

	Objectives of the Dissertation
	Chapter Summaries

	Description Logics
	Knowledge Representation in DL
	Syntax and Semantics
	Standard Inference Services
	TBox Reasoning
	ABox Reasoning

	Non-Standard Inference Services
	The Least Common Subsumer
	The Realization Problem and the Most Specific Concept
	Computing Unification and Matching of Concept Descriptions
	Concept Rewriting and Approximation across DLs

	Similarity and Dissimilarity Measures: Related Work
	Defining Similarity and Dissimilarity Measures
	Similarity and Dissimilarity Measures in the Propositional Setting
	Measures based on Geometric Model
	Kernel Functions
	Measures Based on Feature Matching Model

	Similarity and Dissimilarity Measures in Relational Setting
	Measures based on Semantic Relations
	Measures based on Information Content
	Measures in Context-based Model
	Measures Based on Alignment and Transformational Models
	Miscellaneous Approaches
	Relational Kernel Functions
	Measures for Simple Description Logics

	Similarity and Dissimilarity Measures for Description Logics
	A Semantic Similarity Measure for ALC
	Derived Similarity Measure Involving Individuals
	Computational Complexity

	A Semantic and Structure driven Dissimilarity measure for ALC
	Overlap Function
	Defining the Dissimilarity Measure
	Computational Complexity
	A Weighted Dissimilarity Measure for ALC

	An Information Content based Dissimilarity Measure for ALC
	Measuring the IC Gap between Concepts
	Information Content based Dissimilarity Measure
	Computational Complexity

	A Semantic and Structure driven Similarity Measure for ALN
	Measure Definition
	Discussion

	A Relational Kernel Function for ALC
	Kernel Function Definition
	Discussion
	A Distance Induced from the Kernel Function

	A Semantic Semi-Distance for Individuals in Any DLs Knowledge Base
	Measure Definition
	Discussion

	Applying the Measures: Classification and Clustering in the Semantic Web Domain
	Analogy Reasoning to Improve Concept Retrieval and Induce New Knowledge
	Relational K-Nearest Neighbor
	Concept Retrieval by means of Kernel Methods

	Improving the Service Discovery and Ranking Processes
	Modeling DLs-based Service Descriptions by the use of Constraint Hardness
	Efficient Service Discovery by means of Clustering Methods
	Effective Service Ranking based on DLs measures and Constraint Hardness

	Conclusions
	Summary of the Thesis
	Further Work

	Bibliography
	The K-Nearest Neighbor Algorithm
	The Single and the Complete-Link Algorithms

