Machine Learning for the Semantic Web: filling the gaps in Ontology Mining

Claudia d'Amato

Department of Computer Science University of Bari

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

900

Semantic Web goal: making data on the Web machine understandable

• ontologies act as a *shared vocabulary for assigning data* semantics

Examples of existing real ontologies

- Schema.org
- Gene Ontology
- Foundational Model of Anatomy ontology
- Financial Industry Business Ontology (by OMG Finance Domain Task Force)
- GoodRelations

• • • •

C. d'Amato (UniBa)

EGC 2017 2 / 56

Reasoning on Description Logics Ontologies

OWL adopted \Rightarrow **Description Logics** theoretical foundation

Reasoning on Description Logics Ontologies

OWL adopted \Rightarrow **Description Logics** theoretical foundation

Ontologies are equipped with deductive reasoning capabilities \Rightarrow allowing to make explicit, knowledge that is implicit within them

Deduction: "Crédit du Nord", "Crédit Agricole" are also Company

Introduction & Motivation

Reasoning on Description Logics Ontologies

< ■> ■ のへの EGC 2017 4 / 56

Introduction & Motivation

Reasoning on Description Logics Ontologies

< ■> ■ のへの EGC 2017 5 / 56

Introduction & Motivation

Reasoning on Description Logics Ontologies

▲ E → A ○
 EGC 2017 6 / 56

Reasoning on Description Logics Ontologies

Question: would it be possible to discover new/additional knowledge by exploiting *the evidence coming from the assertional data*?

- 4 同 1 4 日 1 4 日 1

Reasoning on Description Logics Ontologies

Question: would it be possible to discover new/additional knowledge by exploiting *the evidence coming from the assertional data*?

Idea: exploiting **Machine Learning methods** for **Ontology Mining** related tasks [d'Amato et al. @SWJ'10]

C. d'Amato (UniBa)

Machine Learning for the Semantic Web

EGC 2017 6 / 56

Definition (Ontology Mining)

All activities that allow for

discovering hidden knowledge from

ontological knowledge bases

Definition (Ontology Mining)

All activities that allow for

discovering hidden knowledge from ontological knowledge bases

Machine Learning (ML) methods

 focus on the development of methods and algorithms that can teach themselves to grow and change when exposed to new data

Special Focus on:

- (similarity-based) inductive learning methods
 - use specific examples to reach general conclusions
 - are known to be very efficient and fault-tolerant

Induction vs. Deduction

Deduction (Truth preserving)

Given:

- a set of general axioms
- a proof procedure

Draw:

 correct and certain conclusions Induction (Falsity preserving)

Given:

• a set of examples

Determine:

- a *possible/plausible* generalization covering
 - the given examples/observations
 - new and not previously observed examples

イロト イポト イヨト イヨト

EGC 2017 8 / 56

DQR

Ontology Mining Tasks

- Instance Retrieval (Instance Level)
- Concept Drift and Novelty Detection (Ontology Dynamic)
- Ontology Enrichment (Schema/Instance Level)

from an inductive perspective

Focus on: similarity-based methods

Ontology Mining Tasks

- Instance Retrieval (Instance Level)
- Concept Drift and Novelty Detection (Ontology Dynamic)
- Ontology Enrichment (Schema/Instance Level)

from an inductive perspective

<ロト <部ト <注入 <注下 = 正

990

Introducing Instance Retrieval I

Instance Retrieval \rightarrow Finding the extension of a query concept

• Instance Retrieval (Bank) = {"Crédit du Nord", "Crédit Agricole"}

Introducing Instance Retrieval I

Problem: Instance Retrieval in incomplete/inconsistent/noisy ontologies

Introducing Instance Retrieval II

Problem: Instance Retrieval in incomplete/inconsistent/noisy ontologies

Introducing Instance Retrieval III

Problem: Instance Retrieval in incomplete/inconsistent/noisy ontologies

Issues & Solutions I

IDEA

Casting the problem as a Machine Learning classification problem

assess the class membership of individuals in a Description Logic (DL) KB w.r.t. the query concept

State of art classification methods cannot be straightforwardly applied

- generally applied to *feature vector* representation
 - \rightarrow upgrade DL expressive representations
- implicit Closed World Assumption made in ML
 - \rightarrow cope with the Open World Assumption made in DLs
- classes considered as *disjoint*
 - ightarrow cannot assume disjointness of all concepts

Issues & Solutions II

Adopted Solutions:

- Defined new semantic similarity measures for DL representations
 - to cope with the high expressive power of DLs
 - to deal with the semantics of the compared objects (concepts, individuals, ontologies)
 - to convey the underlying semantics of KB
- Formalized a set of criteria that a similarity function has to satisfy in order to be defined *semantic* [d'Amato et al. @ EKAW 2008]
- Definition of the classification problem taking into account the OWA
- Multi-class classification problem decomposed into a set a smaller classification problems

EGC 2017 16 / 56

Definition (Problem Definition)

Given:

- ullet a populated ontological knowledge base $\mathit{KB} = (\mathcal{T}, \mathcal{A})$
- a query concept Q
- a training set with $\{+1, -1, 0\}$ as target values

Learn a classification function f such that: $\forall a \in Ind(A)$:

- f(a) = +1 if a is instance of Q
- f(a) = -1 if a is instance of $\neg Q$
- f(a) = 0 otherwise (unknown classification because of OWA)

Dual Problem

- given an individual $a \in Ind(A)$, tell concepts C_1, \ldots, C_k in KB it belongs to
- the multi-class classification problem is *decomposed* into a set of *ternary classification problems* (one per target concept)

Developed methods

Pioneering the Problem

• relational K-NN for DL KBs [d'Amato et al. ESWC'08]

Improving the efficiency

• kernel functions for kernel methods to be applied to DLs KBs [Fanizzi, d'Amato et al. @ ISMIS'06, JWS 2012; Bloehdorn and Sure @ ISWC'07]

Scaling on large datasets

• Statistical Relational Learning methods for large scale and data sparseness [Huang et al. @ ILP'10, Minervini et a. @ ICMLA'15]

EGC 2017 18 / 56

Example: Nearest Neighbor Classification

query concept: Bank k = 7 target values standing for the class values: $\{+1, 0, -1\}$

 $class(x_q) \leftarrow ?$

Example: Nearest Neighbor Classification

query concept: Bank k = 7 target values standing for the class values: $\{+1, 0, -1\}$

 $class(x_q) \leftarrow +1$

On evaluating the Classifier

Problem: How evaluating classification results?

- Inductive Classification compared with a standard reasoner (Pellet)
- Query concepts from ontologies publicly available considered
- Registered *mismatches*: <u>Induction</u>: $\{+1, -1\}$ <u>Deduction</u>: no results
- Evaluated as mistake if precision and recall were used while it could turn out to be a correct inference when judged by a human

Defined new metrics to distinguish induced assertions from mistakes

			Reasoner	
		+1	0	-1
INDUCTIVE	+1	М	1	С
Classifier	0	0	Μ	0
	-1	С	1	М

M Match Rate C Commission Error Rate O Ommission Error Rate

/ Induction Rate

C. d'Amato (UniBa)

Machine Learning for the Semantic Web

EGC 2017 21 / 56

∃ nar

Lesson Learnt from experiments I

- Commission error almost zero on average
- Omission error rate very low and only in some cases
 - Not null for ontologies in which disjoint axioms are missing
- Induction Rate not zero
 - new knowledge (not logically derivable) induced ⇒ can be used for semi-automatizing the ontology population task
 - induced knowledge ⇒ individuals are instances of many concepts and homogeneously spread w.r.t. the several concepts.

	match	commission	omission	induction
SWM	97.5 ± 3.2	0.0 ± 0.0	2.2 ± 3.1	0.3 ± 1.2
LUBM	99.5 ± 0.7	0.0 ± 0.0	0.5 ± 0.7	0.0 ± 0.0
NTN	97.5 ± 1.9	0.6 ± 0.7	1.3 ± 1.4	0.6 ± 1.7
FINANCIAL	99.7 ± 0.2	0.0 ± 0.0	0.0 ± 0.0	0.2 ± 0.2

Ontology Mining Tasks

- Instance Retrieval (Instance Level)
- **Concept Drift and Novelty Detection** (Ontology Dynamic)
- Ontology Enrichment (Schema/Instance Level)

from an inductive perspective

<ロト <部ト <注入 <注下 = 正

500

Concept Drift and Novelty Detection

- Ontologies evolve over the time \Rightarrow *New assertions* added.
- Concept Drift
 - change of a concept towards a more general/specific one w.r.t. the evidence provided by new annotated individuals
 - almost all Worker work for more than 10 hours per days \Rightarrow <code>HardWorker</code>

Novelty Detection

- isolated cluster in the search space that requires to be defined through new emerging concepts to be added to the KB
 - subset of Worker *employed* in a company \Rightarrow Employee
 - subset of Worker *working for* several companies \Rightarrow Free-lance

Concept Drift and Novelty Detection

- Ontologies evolve over the time \Rightarrow *New assertions* added.
- Concept Drift
 - change of a concept towards a more general/specific one w.r.t. the evidence provided by new annotated individuals

Novelty Detection

• isolated cluster in the search space that requires to be defined through new emerging concepts to be added to the KB

Question: would it be possible to *automatically capture* them by analyzing the data configuration/distribution?

IDEA

Exploiting (Conceptual) clustering methods for the purpose

C. d'Amato (UniBa)

Machine Learning for the Semantic Web

EGC 2017 24 / 56

Basics on Clustering Methods

Clustering methods: unsupervised inductive learning methods that organize a collection of unlabeled resources into meaningful clusters such that

- intra-cluster *similarity* is high
- inter-cluster *similarity* is low

Basics on Clustering Methods

Clustering methods: unsupervised inductive learning methods that organize a collection of unlabeled resources into meaningful clusters such that

- intra-cluster *similarity* is high
- inter-cluster *similarity* is low

Basics on Clustering Methods

Clustering methods: unsupervised inductive learning methods that organize a collection of unlabeled resources into meaningful clusters such that

- intra-cluster *similarity* is high
- inter-cluster *similarity* is low

Clustering Individuals of An Ontology: Developed Methods

Purely Logic-based

- KLUSTER [Kietz & Morik, 94]
- CSKA [Fanizzi et al., 04]
 - Produce a *flat output*
 - *Suffer from noise* in the data

Similarity-based \Rightarrow noise tolerant

- Evolutionary Clustering Algorithm around Medoids [Fanizzi et al. @ IJSWIS 2008]
 - automatically assess the best number of clusters
- k-Medoid (hierarchical and fuzzy) clustering algorithm [Fanizzi et al. @ ESWC'08, Fundam. Inform.'10]
 - number of clusters required
- Terminological Cluster Trees [Rizzo et al. @ URSW'16]
 - extension of terminological decision trees
 - automatic number of clusters

Machine Learning for the Semantic Web

EGC 2017 28 / 56

Automated Concept Drift and Novelty Detection 1/3

- - A

► < ∃ ►</p>

Automated Concept Drift and Novelty Detection 2/3

- The new instances are considered to be a *candidate* cluster
 - An evaluation of it is performed for assessing its nature

Automated Concept Drift and Novelty Detection 2/3

• The new instances are considered to be a *candidate* cluster

Automated Concept Drift and Novelty Detection 3/3

Lesson Learnt from Experiments

Clustering algorithms

- applied on ontologies publicly available
- *evaluated by the use of standard validity clustering indexes* (e.g. Generalized Dunns index, cohesion index, Silhouette index)

Necessity of a domain expert/gold standard particularly for validating the concept novelty/drift

・ロト ・伺下 ・ヨト ・ヨト

Ontology Mining Tasks

- Instance Retrieval (Instance Level)
- Concept Drift and Novelty Detection (Ontology Dynamic)
- Ontology Enrichment (Schema/Instance Level)

from an inductive perspective

<□> <@> < ≥> < ≥> < ≥</p>

500

Ontology enrichment as a Concept Learning Problem

<□> <@> < E> < E> E

990

On Learning Concept Descriptions I

- Discovered clusters are only extensionally defined
- Having an intensional description for them could allow to enrich the ontology at terminological level

Question: How to learn concept descriptions automatically, given a set of individuals?

IDEA

Regarding the problem as a *supervised concept learning* task

Supervised Concept Learning:

- Given a training set of positive and negative examples for a concept,
- *construct* a *description* that will accurately classify whether future examples are positive or negative.

C. d'Amato (UniBa)

EGC 2017 35 / 56

イロト 不得下 イヨト イヨト

On Learning Concept Descriptions II

Definition (Problem Definition)

- Given
 - $\bullet\,$ the KB ${\cal K}$ as a background knowledge
 - individuals in a cluster C as positive examples
 - the individuals in the other clusters as negative examples

Learn

- a DL concept description D so that
- the individuals in the target cluster *C* are instances of *D* while those in the other clusters are not

Developed Methods for Supervised Concept Learning

- For DLs that allow for (approximations of) the msc and lcs, (e.g. \mathcal{ALC} or \mathcal{ALE}):
 - given a cluster C_j ,
 - $\forall a_i \in C_j$ compute $M_i := msc(a_i)$ w.r.t. the ABox \mathcal{A}
 - let $MSCs_j := \{M_i | a_i \in node_j\}$
 - C_j intensional description lcs(MSCs_j)
- Separate-and-conquer approach
 - YinYang [lannone et al. @ Appl. Intell. J. 2007]
 - DL-FOIL [Fanizzi et al. @ ILP 2008]
 - DL-Learner [Lehmann et al. @ MLJ 2010, SWJ 2011]
- Divide-and-conquer approach
 - TermiTIS [Fanizzi et al. @ ECML 2010, Rizzo et al. @ ESWC 2015]

イロト イポト イヨト イヨト

Separate and Conquer: Example

 $C_1 = \texttt{MasterStudent}$ $C_2 = \texttt{BachelorStudent}$

 $C_1' = ext{MasterStudent} \sqcap \exists ext{worskIn}. op$ nt $C_2' = ext{BachelorStudent} \sqcap \exists ext{worskIn}. op$

Examples of Learned Concept Descriptions with DL-FOIL

```
BIOPAX
induced:
Or( And( physicalEntity protein) dataSource)
original:
Or( And( And( dataSource externalReferenceUtilityClass)
ForAll(ORGANISM ForAll(CONTROLLED phys icalInteraction)))
protein)
NTN
induced:
Or( EvilSupernaturalBeing Not(God))
original:
Not(God)
FINANCIAL
induced:
Or( Not(Finished) NotPaidFinishedLoan Weekly)
original:
Or( LoanPayment Not(NoProblemsFinishedLoan))
    C. d'Amato (UniBa)
                       Machine Learning for the Semantic Web
                                                         EGC 2017
                                                                  39 / 56
```

Ontology enrichment as a Pattern Discovery Problem

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ = □

900

Research Idea

Idea: exploiting the evidence coming from the assertional data for *discovering hidden knowledge patterns* to be used for

- Obtaining new/additional assertional knowledge
- suggesting new knowledge <u>axioms</u> (schema level)
- extending existing ontologies <u>with rules</u>
 - while maintaining the decidability of the reasoning operators

Research Direction: discovering hidden knowledge patterns *in the form of relational association rules* (ARs) *[d'Amato et al. @ SAC 2016]*

イロト 不得下 イヨト イヨト

Developed Methods

RDF data

- performing descriptive and predictive task
- no background knowledge and reasoning capability exploited [Völker & Niepert @ ESWC'11; Galárraga et al. @ WWW'13, VLDB J.'15]
- association rules exploited for performing RDF data compression [Joshi, Hitzler et al. @ ESWC 2013]

Hybrid source of Knowledge

• discovering frequent patterns from DB plus ontology [Lisi @ IJSWIS 7(3), 2011, Józefowskaet al. @ TPLP 10(3), 2010, d'Amato et al. @ URSW (LNCS Vol.)'14]

Ontological Knowledge Bases (focused)

- performing descriptive and *predictive task*
- background knowledge and reasoning capability exploited [d'Amato et al. @ SAC'16, EKAW'16]

C. d'Amato (UniBa)

EGC 2017 42 / 56

Definition (Problem Definition)

Given:

- \bullet a populated ontological knowledge base $\mathcal{K}{=}$ $(\mathcal{T},\mathcal{A})$
- a minimum "frequency threshold" (fr_thr)

Discover:

 all frequent hidden patterns, with respect to fr_thr, in the form of relational association rules *that may induce new assertions* for K.

Definition (Relational Association Rule)

Given

 \bullet a populated ontological knowledge base $\mathcal{K}{=}$ $(\mathcal{T},\mathcal{A}),$

a **relational association rule** r for \mathcal{K} is a horn-like clause of kind $body \rightarrow head$

where:

- body represents an abstraction of a set of assertions in ${\cal K}$ co-occurring with respect to fr_thr
- \bullet head represents a possibly new assertion induced from ${\cal K}$ and body

SWRL [Horrocks et al.@ WWW'04] is adopted as representation language.

- allows to extends the OWL axioms of an ontology with Horn-like rules
- The result is a KB with an enriched expressive power.

イロト イポト イヨト イヨト 二日

Discovering *SWRL* rules of the form:

 $C_1(x) \land R_1(x, y) \land \dots \land C_n(z) \land R_l(z, a) \to R_k(y, z)$ $C_1(x) \land R_1(x, y) \land \dots \land C_n(z) \land R_l(z, a) \to C_h(y)$

 C_i and R_i are concept and role names of the ontological KB

Examples:

- $Person(x) \land hasWellPayedJob(x, y) \Rightarrow Manager(x)$
- Employee(x) ∧ worksAt(x, z) ∧ workForPrject(x, y) ∧ projectSupervisor(y, x) ⇒ isCompanyManagerOf(z, x)

Language Bias (ensuring decidability)

- safety condition : all variables in the head must appear in the body
- connection : atoms share at least one variable or constant
- interpretation under *DL Safety* condition: all variables in the rule bind only to known individuals in the ontology
- Non Redundancy: there are no atoms that can be derived by other atoms

Example (Redundant Rule)

Given \mathcal{K} made by the TBox $\mathcal{T} = \{ \texttt{Father} \sqsubseteq \texttt{Parent} \}$ and the rule $r := \texttt{Father}(x) \land \texttt{Parent}(x) \rightarrow \texttt{Human}(x)$

r redundant since Parent(x) is entailed by Father(x) w.r.t. \mathcal{K} .

イロト 不得下 イヨト イヨト

The General Approach

- Inspired to the general framework for discovering frequent DATALOG patterns [*Dehaspe et al.*'99; *Goethals et al.*'02]
- Grounded on a level-wise *generate-and-test* approach
 - <u>Start:</u> initial general pattern i.e. a concept name (jointly with a variable name) or a role name (jointly with variable names)
 - Proceed: at each level with
 - specializing the pattern by the use of suitable operators
 - evaluate the generated specializations for possible pruning
 - Stop: stopping criterion met
- A rule is a list of atoms (interpreted as a conjunction) where the first one represents the head [Galarraga et al.@WWW'13]
- The specialization operators represent the way for exploring the search space.

イロト イポト イヨト イヨト

Pattern Specializations

- For a given pattern all possible specializations are generated by applying the operators:
 - Add a concept atom : adds an atom with a concept name as a predicate symbol and an *already appearing* variable as argumentAdd a role atom : adds an atom with a role name as a predicate symbol; *at least one variable already appears* in the pattern
- The Operators are applied so that always *connected and non-redundant rules* are obtained
- Additional operators for tanking into account constants could be similarly considered

(日) (同) (三) (

Pattern Specializations: Examples

Pattern to be Specialized $C(x) \wedge R(x, y)$

Non Redundant Concept D

Refined Patterns

C(x) ∧ R(x, y) ∧ D(x)
 C(x) ∧ R(x, y) ∧ D(y)

Non Redundant Role *S* Fresh Variable *z*

Refined Patterns

- $C(x) \wedge R(x,y) \wedge S(x,z)$
- $c(x) \wedge R(x,y) \wedge S(z,x)$
- $C(x) \wedge R(x,y) \wedge S(y,z)$
- $C(x) \wedge R(x,y) \wedge S(z,y)$

Non Redundant Role *S* All Variables Bound Refined Patterns $C(x) \land R(x, y) \land S(x, x)$ $C(x) \land R(x, y) \land S(x, y)$ $C(x) \land R(x, y) \land S(y, x)$

•
$$C(x) \wedge R(x,y) \wedge S(y,y)$$

• □ ▶ • • □ ▶ • □ ▶ •

Exploitation of the Relational Association Rules and Utility

• ABox completion

• rules may fire new assertions

• Ontology Enrichment

- A rule may suggest an <u>inclusion axiom</u> that is missing in the ontology e.g. Car(x) ⇒ Vehicle(x)
- A rule may suggest a disjointness axiom axiom that is missing in the ontology Man(x) ⇒ ¬Woman(x)
- A rule may suggest symmetry for a role that is missing in the ontology $isFriendOf(x, y) \Rightarrow \overline{isFriendOf}(y, x)$
- A rule may suggest transitivity for a role that is missing in the ontology isTopicRelatedTo(x, y) ∧ isTopicRelatedTo(y, z) ⇒ isTopicRelatedTo(x, z)
- Creating Ontology with Enriched expressive power
 - discovered rules can be straightforwardly integrated with the existing ontology

EGC 2017 50 / 56

イロト 不得下 イヨト イヨト 二日

On Evaluating the Pattern Discovery Method

GOALS:

- assessing the *ability of the discovered rules to predict* new assertional knowledge
- Showing the value added of exploiting background knowledge and reasoning capabilities when extracting rules

Publicly available ontologies used

- - E + - E +

GOAL 1: Results/Lesson Learnt

Ontology	Sample	Match	Comm.	Ind.	Precision	Tot. nr.
Ontology		Rate	Rate	Rate		Predictions
Financial	20%	0.81	0	0.19	1.0	947
	30%	0.81	0	0.19	1.0	1890
	40%	0.82	0	0.18	1.0	2960
BioPAX	20%	1.0	0	0	1.0	669
	30%	1.0	0	0	1.0	1059
	40%	1.0	0	0	1.0	1618
NTMerged	20%	0.94	0	0.06	1.0	9085
	30%	0.9	0	0.1	1.0	9756
	40%	0.94	0	0.06	1.0	10418

Note: Precision (does not considered induced results)

- high match rate values ⇒ rules are able to predict new assertional knowledge
- null commission rate ⇒ no contradicting knowledge predicted
- induction rate not null ⇒ the developed method is able to induce new knowledge not logically derivable

イロト 不得下 イヨト イヨト

GOAL 2: Results/Lesson Learnt I

- system compared with AMIE [Galarraga et al.@WWW'13]
 - no use of background knowledge and reasoning capabilities
- compared *number of discovered rules*

Ontology	Samp.	# Rules		Тор			
Ontology		Ours	AMIE	n	# Predictions	# Predictions	
					Ours	#AMIE	
Financial	20%	177	2	2	29	208	
	30%	181	2	2	57	197	
	40%	180	2	2	85	184	
BioPax	20%	298	8	8	25	2	
	30%	283	8	8	34	2	
	40%	272	0	8	50	0	
NTMerged	20%	243	1129	10	620	420	
	30%	225	1022	10	623	281	
	40%	239	1063	10	625	332	

• outperformed the number of rules for Financial and BioPax

- our system output rules having both concept and role atoms as head
- our system can prune redundant and inconsistent rules and rules

• reason why AMIE registered a larger number of rules for NTNMerged.

イロト イポト イヨト イヨト

Issues/Lessons Learnt

Develop a scalable algorithm

• Exploiting Evolutionary-based approaches for outperforming the exploration of the search space [d'Amato et al. @ EKAW 2016]

Other directions

- *additional heuristics for reducing* the exploration of *the search space* and/or possible optimizations
- (New) metrics for the evaluation of the *interestingness of the discovered rules* (potential inner and post pruning)

EGC 2017 54 / 56

・ロト ・伺下 ・ヨト ・ヨト

Conclusions

Machine Learning methods

- could be usefully exploited for ontology mining
- suitable in case of incoherent/noisy KBs
- can be seen as an additional layer on top of deductive reasoning for realizing *new/additional forms of approximated reasoning capabilities*

Future directions:

- Semi-Supervised Learning methods particularly appealing for LOD
- Special focus on scalability issues
- Frequent Graph Patterns mining methods for the SW needs to be investigated

EGC 2017 55 / 56

イロト 不得下 イヨト イヨト

That's all!

Thank you

Nicola Fanizzi

Steffen Staab

Andrea Tettamanzi

Fabien Gandon

?

Floriana Esposito

Tran Duc Minh

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで