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ABSTRACT
We present an evolutionary clustering method which can be
applied to multi-relational knowledge bases storing resource
annotations expressed in the standard languages for the Se-
mantic Web. The method exploits an effective and language-
independent semi-distance measure defined for the space of
individual resources, that is based on a finite number of
dimensions corresponding to a committee of discriminating
features (represented by concept descriptions). A maximally
discriminating group of features can be obtained with the
randomized optimization methods described in the paper.
The clustering algorithm represents the possible clusterings
as strings of central elements (medoids, w.r.t. the given met-
ric) of variable length. Hence, the number of clusters is not
required as a parameter since the method is able to find an
optimal choice by means of the evolutionary operators and
of a proper fitness function. We also show how to assign
each cluster with a newly constructed intensional definition
in the employed concept language. An experimentation with
some ontologies proves the feasibility of our method and its
effectiveness in terms of clustering validity indices.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Clustering;
I.5.4 [Pattern Recognition]: Clustering

General Terms
Algorithms, Measurement

Keywords
Conceptual clustering, unsupervised learning, metric learn-
ing, genetic programming, evolutionary algorithms, descrip-
tion logics, randomized optimization

1. INTRODUCTION
In the inherently distributed applications related to the

Semantic Web (henceforth SW) there is an extreme need of
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automatizing those activities which are more burdensome
for the knowledge engineer, such as ontology construction,
matching and evolution. These phases can be assisted by
specific supervised [5, 18, 13] or unsupervised learning meth-
ods [16, 8] crafted for knowledge bases expressed in the stan-
dard representations of the field and complying with their
semantics.

In this work, we investigate on unsupervised learning for
knowledge bases expressed in such standard languages. In
particular, we focus on the problem of conceptual clustering
of semantically annotated resources. The benefits of con-
ceptual clustering [24] in the context of semantically anno-
tated knowledge bases are manifold. Clustering annotated
resources enables the definition of new emerging concepts
(concept formation) on the grounds of the concepts defined
in a knowledge base; supervised methods can exploit these
clusters to induce new concept definitions or to refining ex-
isting ones (ontology evolution); intensionally defined group-
ings may speed-up the task of search and discovery (see [5]
for an application of dissimilarity measures to retrieval); a
clustering may also suggest criteria for ranking the retrieved
resources based on the distance from the centers.

Essentially, most of the clustering methods are based on
the application of similarity (or density) measures defined
over a fixed set of attributes of the domain objects. Classes
of objects are taken as collections that exhibit low interclass
similarity (density) and high intraclass similarity (density).
These methods are rarely able to take into account some
form of background knowledge that could characterize object
configurations by means of global concepts and semantic re-
lationships. This hinders the interpretation of the outcomes
of these methods which is crucial in the SW perspective
which enforces sharing and reusing the produced knowledge
in order to enable forms of semantic interoperability across
different knowledge bases and applications.

Conceptual clustering methods can answer these require-
ments since they have been specifically crafted for defining
groups of objects through (simple) descriptions based on
selected attributes [24]. In the perspective, the expressive-
ness of the language adopted for describing objects and clus-
ters (concepts) is extremely important. Related approaches,
specifically designed for terminological representations (De-
scription Logics [1], henceforth DLs), have recently been
introduced [16, 8]. They pursue logic-based methods for at-
tacking the problem of clustering w.r.t. some specific DL
languages. The main drawback of these methods is that
they are language-dependent, which prevents them to scale
to the standard SW representations that are mapped on



complex DLs. Moreover, purely logic methods can hardly
handle noisy data.

These problems motivate the investigation on similarity-
based clustering methods which can be more noise-tolerant
and language-independent. Specifically, the extension of
distance-based techniques is proposed, which can cope with
the standard SW representations and profit by the bene-
fits of a randomized search for optimal clusterings. Indeed,
the method is intended for grouping similar resources w.r.t.
a notion of similarity, coded in a distance measure, which
fully complies with the semantics knowledge bases expressed
in DLs. The individuals are gathered around cluster centers
according to their distance. The choice of the best centers
(and their number) is performed through an evolutionary
approach [9, 17].

From a technical viewpoint, upgrading existing distance-
based algorithms to work on multi-relational representa-
tions, like the concept languages used in the SW (RDF
through OWL), requires similarity measures that are suit-
able for such representations and their semantics. A the-
oretical problem is posed by the Open World Assumption
(OWA) that is generally made on the language semantics,
differently from the Closed World Assumption (CWA) which
is standard in other contexts. Moreover, as pointed out in
a seminal paper on similarity measures for DLs [3], most
of the existing measures focus on the similarity of atomic
concepts within hierarchies or simple ontologies.

Recently, dissimilarity measures have been proposed for
some specific DLs [5]. Although they turned out to be quite
effective for specific inductive tasks, they were still partly
based on structural criteria which makes them fail to fully
grasp the underlying semantics and hardly scale to more
complex ontology languages. Moreover, they have been con-
ceived for assessing concept similarity, whereas, for other
tasks, a notion of similarity between individuals is required.

Therefore, we have devised a family of dissimilarity mea-
sures for semantically annotated resources, which can over-
come the aforementioned limitations [7]. Following the cri-
terion of semantic discernibility of individuals, a family of
measures is derived that is suitable for a wide range of lan-
guages since it is merely based on the discernibility of the
input individuals with respect to a fixed committee of fea-
tures represented by a set of concept definitions. Hence, the
new measures are not absolute, they rather depend on the
knowledge base they are applied to. Thus, also the choice of
good feature sets deserves a preliminary optimization phase,
which can be performed by means of a randomized search
procedures such as simulated annealing or genetic program-
ming, defining mutation and crossover steps through the re-
finement operators recently proposed in the context of on-
tology evolution [18, 13].

In this setting, instead of the notion of centroid that char-
acterizes the distance-based algorithms descending from k-
means [14], originally developed for numeric or ordinal fea-
tures, we recur to the notion of medoids [15] as central in-
dividuals in a cluster. The proposed clustering algorithm
employs genetic programming as a search schema. The evo-
lutionary problem is modeled by considering populations
made up of strings of medoids with different lengths. The
medoids are computed according to the semantic measure
induced with the methodology mentioned above. On each
generation, the strings in the current population are evolved
by mutation and cross-over operators, which are also able

to change the number of medoids. Thus, this algorithm is
also able to suggest autonomously a promising number of
clusters. Accordingly, the fitness function is based both on
the optimization of a cluster cohesion index and on the pe-
nalization of lengthy medoid strings.

The remainder of the paper is organized as follows. Sect. 2
presents the basics of the target representation and the se-
mantic similarity measure adopted with the clustering algo-
rithm. This algorithm is presented and discussed in Sect. 3.
After Sect. 4 surveying the related work, we report in Sect. 5
an experiment aimed at assessing the validity of the method
on some ontologies available in the Web. Conclusions and
extensions are finally examined in Sect. 6.

2. SEMANTIC DISTANCE MEASURES

2.1 Preliminaries on the Representation
In the following, we assume that resources, concepts and

their relationship may be defined in terms of a generic on-
tology language that may be mapped to some DL language
with the standard model-theoretic semantics (see the DLs
handbook [1] for a thorough reference). As mentioned in
the previous section, one of the advantages of our method is
that it does not depend on a specific language for semantic
annotations.

In the intended framework setting, a knowledge base K =
〈T ,A〉 contains a TBox T and an ABox A. T is a set of
concept definitions. The complexity of such definitions de-
pends on the specific DL language constructors. A contains
assertions (ground facts) on individuals (domain objects)
concerning the current world state, namely:

class-membership C(a), a is an instance of concept C

relations R(a, b), a is R-related to b

The set of the individuals referenced in the assertions ABox
A will be denoted with Ind(A). The unique names assump-
tion can be made on the ABox individuals1 therein.

As regards the required inference services, like all other
instance-based methods, the measure proposed in this sec-
tion requires performing instance-checking, which amounts
to determining whether an individual, say a, belongs to a
concept extension, i.e. whether C(a) holds for a certain con-
cept C. In the simplest cases (primitive concepts) this re-
quires simple lookups, yet for defined concepts the reasoner
may need to perform a number of inferences. Besides, dif-
ferently from the standard DB settings, due to the OWA,
the reasoner might be unable to provide a definite answer.
Hence one has to cope with this form of uncertainty.

2.2 Semantic Similarity between Individuals
For our purposes, we need a function for measuring the

similarity of individuals. It can be observed that individ-
uals do not have a syntactic structure that can be com-
pared. This has led to lifting them to the concept descrip-
tion level before comparing them (recurring to the approx-
imation of the most specific concept of an individual w.r.t.
the ABox) [5].

For clustering procedures, such as the one specified in
Sect. 3, we have developed a new measure with a definition

1Each individual can be assumed to be identified by its own
URI, however this is not bound to be a one-to-one mapping.



that totally depends on semantic aspects of the individuals
in the knowledge base. On a semantic level, similar indi-
viduals should behave similarly with respect to the same
concepts. We have introduced a novel measure for assess-
ing the similarity of individuals in a knowledge base, which
is based on the idea of comparing their semantics along a
number of dimensions represented by a committee of con-
cept descriptions.

Following some techniques for distance induction borrowed
from ILP [23], we propose the definition of totally semantic
distance measures for individuals in the context of a knowl-
edge base which is also able to cope with the OWA.

The rationale of the new measure is to compare individu-
als on the grounds of their behavior w.r.t. a given set of
features, that is a collection of concept descriptions, say
F = {F1, F2, . . . , Fm}, which stands as a group of discrimi-
nating features expressed in the considered DL language.

A family of dissimilarity measures for individuals inspired
to the Minkowski’s distances (Lp) can be defined as fol-
lows [7]:

Definition 2.1 (family of dissimilarity measures).
Let K = 〈T ,A〉 be a knowledge base. Given set of con-
cept descriptions F = {F1, F2, . . . , Fm}, a family of functions
{dF

p}p∈N with

dF
p : Ind(A)× Ind(A) 7→ [0, 1]

is defined as follows:
∀a, b ∈ Ind(A)

dF
p(a, b) :=

Lp(π(a), π(b))

m
=

1

m

(
m∑

i=1

| πi(a)− πi(b) |p
) 1

p

where p > 0 and the i-th projection function πi of vector π,
i ∈ {1, . . . ,m}, is defined by:
∀a ∈ Ind(A)

πi(a) =

 1 K |= Fi(a)
0 K |= ¬Fi(a)

1/2 otherwise

The superscript F will be omitted when the set of features
is fixed.

The case of πi(a) = 1/2 corresponds to the case when a
reasoner cannot give the truth value for a certain member-
ship query. This is due to the OWA normally made in this
context.

2.3 Discussion
Compared to other proposed distance (or dissimilarity)

measures for individuals [5], the presented function does not
depend on the constructors of a specific language, rather it
requires only the instance-checking service used for deciding
whether an individual is asserted in the knowledge base to
belong to a concept extension or, alternatively, if this could
be derived as a logical consequence.

It is easy to see that the functions {dF
p}p∈N are dissimi-

larity measures. Even more so, the standard properties for
semi-distances can be proven [7]:

Proposition 2.1 (semi-distance). For a fixed feature
set and p > 0, given any three instances a, b, c ∈ Ind(A). it
holds that:

1. dF
p(a, b) ≥ 0

2. dF
p(a, b) = dF

p(b, a)

3. dF
p(a, c) ≤ dF

p(a, b) + dF
p(b, c)

The functions are not metrics because it cannot be proved
that if dF

p(a, b) = 0 then a = b (whereas the opposite impli-
cation easily holds). This is the case of indiscernible indi-
viduals with respect to the given set of features F. If the
property were strictly required, a distance could be derived
either by considering equivalence classes [25] or, if the unique
names assumption were made, by introducing equality as a
new meta-feature π0.

Note that the projection functions for the individuals in
the knowledge base can be computed in advance thus de-
termining a speed-up in the actual computation of the mea-
sure. This is very important for the measure integration
in algorithms which massively use this distance, such as all
instance-based methods.

2.4 Optimizing the Feature Set
The underlying idea in the measure definition is that sim-

ilar individuals should exhibit the same behavior w.r.t. the
concepts in F. Here, we make the assumption that the feature-
set F represents a sufficient number of (possibly redundant)
features that are able to discriminate really different indi-
viduals.

Preliminary experiments, where the measure has been ex-
ploited for instance-based classification (Nearest Neighbor
algorithm) and similarity search [25], demonstrated the ef-
fectiveness of the measure using the very set of both primi-
tive and defined concepts found in the knowledge bases.

However, the choice of the concepts to be included in the
committee F is crucial and may be the object of a prelim-
inary learning problem to be solved (feature selection for
metric learning).

Various optimizations of the feature set can be foreseen
as concerns its definition. Among the possible sets of fea-
tures we will prefer those that are able to discriminate the
individuals in the ABox:

Definition 2.2 (good feature set). Let F be a set
of concept descriptions F = {F1, F2, . . . , Fm}. F is a good
feature set for the knowledge base K = 〈T ,A〉 iff ∀a, b ∈
Ind(A), a 6= b, ∃i ∈ {1, . . . ,m} : πi(a) 6= πi(b).

Then, when the previously defined function is parameter-
ized on a good feature set, it has the properties of a metric
function.

Namely, since the function is strictly dependent on the
committee of features F, two immediate heuristics arise:

• the number of concepts of the committee,

• their discriminating power in terms of a discernibility
factor.

Finding optimal sets of discriminating features, should profit
also by their composition employing the specific constructors
made available by the representation language of choice.

These objectives can be accomplished by means of ran-
domized optimization techniques, especially when knowl-
edge bases with large sets of individuals are available. Namely,
part of the entire data can be drawn in order to learn opti-
mal F sets, in advance with respect to the successive usage
for all other purposes.



FeatureSet GPOptimization(K, maxGenerations, fitnessThr)
input:
K: current knowledge base
maxGenerations: maximal number of generations
fitnessThr: minimal required fitness threshold

output:
FeatureSet: set of concept descriptions

static:
currentFSs, formerFSs:

array of current/previous feature sets
currentBestFitness, formerBestFitness = 0:

array of current/previous best fitness values
offsprings: array of generated feature sets
fitnessImproved: improvement flag
generationNo = 0: number of current generation

begin
currentFSs = makeInitialFS(K,INIT CARD)
formerFSs = currentFSs
repeat

fitnessImproved = false
currentBestFitness = bestFitness(currentFSs)
while (currentBestFitness < fitnessThr) and

(generationNo < maxGenerations)
begin
offsprings = generateOffsprings(currentFSs)
currentFSs = selectFromPopulation(offsprings)
currentBestFitness = bestFitness(currentFSs)
++generationNo
end

if (currentBestFitness > formerBestFitness) and
(currentBestFitness < fitnessThr) then
begin
formerFSs = currentFSs
formerBestFitness = currentBestFitness
currentFSs = extendFS(currentFSs)
end

else
fitnessImproved = true

end
until not fitnessImproved
return selectBest(formerFSs)
end

Figure 1: Feature set optimization algorithm based
on genetic programming.

2.4.1 Optimization through Genetic Programming
A specific optimization algorithm founded in genetic pro-

gramming has been devised to find optimal choices of dis-
criminating concept committees. The resulting algorithm is
depicted in Fig. 1. Essentially it searches the space of all
possible feature committees starting from an initial guess
(determined by the call to the makeInitialFS() procedure)
based on the concepts (both primitive and defined) currently
referenced in the knowledge base K, starting with a commit-
tee of a given cardinality (INIT CARD). This initial cardi-
nality may be determined as a function of dlog3(N)e, where
N = |Ind(A)|, as each feature projection can categorize the
individuals in three sets.

The outer loop gradually augments the cardinality of the
candidate committees. It is repeated until the threshold
fitness is reached or the algorithm detects some fixpoint:
employing larger feature committees would not yield a bet-
ter feature set with respect to the best fitness recorded in
the previous iteration (with fewer features). Otherwise, the
extendFS() procedure extends the current for the next gen-
erations by including a newly generated random concept.

The inner while-loop is repeated for a number of gen-
erations until a stop criterion is met, based on the maxi-
mal number of generations maxGenerations or, alternatively,
when a minimal fitness threshold fitnessThr is crossed by
some feature set in the population, which can be returned.

As regards the bestFitness() routine, it computes the
best fitness of the feature sets in the input vector. Fitness
can be determined as the discernibility factor yielded by the
feature set, as computed on the whole set of individuals or
on a smaller sample. For instance, given the fixed set of
individuals IS ⊆ Ind(A) the fitness function may be:

discernibility(F) := ν
∑

(a,b)∈IS2

|F|∑
i=1

| πi(a)− πi(b) |

where ν is a normalizing factor that can depend on the over-
all number of couples involved.

As concerns finding candidate sets of concepts to replace
the current committee (the generateOffsprings() rou-
tine), the function was implemented by recurring to some
transformations of the current best feature sets:

• choose F ∈ currentFSs;

• randomly select Fi ∈ F;

– replace Fi with F ′i ∈ randomMutation(Fi) ran-
domly generated, or

– replace Fi with one of its refinements F ′i ∈ ref(Fi)

The possible refinements of concept description are language-
specific. E.g. for the case of ALC logic, refinement operators
have been proposed in [18, 13].

This is iterated till a suitable number of offsprings is gen-
erated. Then these offspring feature sets are evaluated and
the best ones are included in the new version of the cur-
rentFSs array; the best fitness value for these feature sets is
also computed.

When the while-loop is over the current best fitness is
compared with the best one computed for the former feature
set length; if an improvement is detected then the outer
repeat-loop is continued, otherwise (one of) the former best
feature set(s) is selected and returned as the result of the
algorithm.

2.4.2 Optimization through Simulated Annealing
The randomized optimization algorithm based on genetic

programming just described may suffer from being possi-
bly caught in plateaux or local minima if a limited number
of generations are explored before checking for an improve-
ment. This is likely due to the extent of the search space,
which, in turn, depends on the language of choice. More-
over. maintaining a single best genome for the next genera-
tion may slow down the search process.

To prevent such cases, different randomized search proce-
dures which aim at global optimization should be adopted.
Hence, a method based on simulated annealing [4] has also
been proposed [7], whose algorithm is reported in Fig. 2.

The algorithm searches the space of feature sets starting
from an initial guess (determined by makeInitialFS(K))
based on the concepts (both primitive and defined) currently
referenced in the knowledge base, which can be freely com-
bined to form new descriptions.



FeatureSet SAOptimization(K, ∆T )
input:

K: knowledge base
∆T (): cooling function

output:
FeatureSet: set of concept descriptions

static:
currentFS: current Feature Set
nextFS: new Feature Set
time: time controlling variable
∆E: energy increment
temp: temperature (probability of replacement)

begin
currentFS = makeInitialFS(K)
for time = 1 to ∞ do

temp = temp−∆T (time)
if (temp == 0)

return currentFS
nextFS = randomSuccessor(currentFS,K)
∆E = fitness(nextFS)− fitness(currentFS)
if (∆E > 0)

// replacement
currentFS = nextFS

else
// conditional replacement with given probability

currentFS = replace(nextFS, e∆E/temp)
end

Figure 2: Feature Set optimization procedure based
on simulated annealing.

The loop controlling the search is repeated for a number
of times that depends on the temperature temp controlled
by the cooing function ∆T () which gradually decays to 0,
when the current feature committee can be returned. In
this cycle, the current feature set is iteratively refined call-
ing procedure randomSuccessor() which makes a step in
the space by refining the current set. Then the fitness of
the new feature set is compared to that of the current one
determining the increment of energy ∆E. If this is posi-
tive then the candidate committee replaces the current one.
Otherwise it will (less likely) be replaced with a probability
that depends on ∆E and on the current temperature.

The energy increase ∆E is determined by the fitness()
function applied to the new and current feature sets, which
can be computed as the average discernibility factor, defined
as above.

As concerns finding candidates to replace the current com-
mittee, randomSuccessor() can be implemented by recur-
ring to simple transformations of the feature set:

• add (resp. removing) a concept C:
nextFS← currentFS ∪ {C}
(resp. nextFS← currentFS \ {C})

• randomly choose one of the current concepts from cur-
rentFS, say C;
replace it with one of its refinements C′ ∈ ref(C)

Note that these transformation may change the cardinality
of the current feature set. As mentioned before, refining
concept descriptions is language-dependent. Complete op-
erators are to be preferred to ensure exploring the whole
search space.

Given a suitable cooling schedule, the algorithm is known
to find an optimal solution. To control the complexity of the

process alternate schedules may be preferred that guaran-
tee the construction of suboptimal solutions in polynomial
time [4].

3. EVOLUTIONARY CONCEPTUAL
CLUSTERING PROCEDURE

Many similarity-based clustering algorithms (see [14]) can
be applied to semantically annotated resources stored in a
knowledge base, exploiting the measures discussed in the
previous section.

We focussed on the techniques based on evolutionary meth-
ods which are able to determine also an optimal number of
clusters, instead of requiring it as a parameter (although the
algorithm can be easily be modified to exploit this informa-
tion that greatly reduces the search-space).

Conceptual clustering requires also to provide a defini-
tion for the detected groups, which may be the basis for
the formation of new concepts inductively elicited from he
knowledge base. Hence, the conceptual clustering procedure
consists of two phases: one that detects the clusters in the
data and the other that finds an intensional definition for
the groups of individuals detected in the former phase.

3.1 The Evolutionary Clustering Algorithm
The first clustering phase implements a genetic program-

ming learning scheme, where the designed representation for
the competing genomes is made up of strings (lists) of in-
dividuals of different lengths, with each gene standing as
prototypical for a cluster.

Specifically, each cluster will be represented by its proto-
type recurring to the notion of medoid [15, 14] on a cate-
gorical feature-space w.r.t. the distance measure previously
defined. Namely, the medoid of a group of individuals is the
individual that has the minimal distance w.r.t. the others.
Formally. in this setting:

Definition 3.1 (medoid). Given a cluster of individu-
als C = {a1, a2, . . . , an} ⊆ Ind(A), the medoid of the cluster
is defined:

medoid(C) := argmin
a∈C

n∑
j=1

d(a, aj)

In the proposed evolutionary algorithm, the population
will be made up of genomes represented by a list of medoids
G = {m1, . . . ,mk} of variable lengths. The algorithm per-
forms a search in the space of possible clusterings of the indi-
viduals, optimizing a fitness measure that maximizes the dis-
cernibility of the individuals of the different clusters (inter-
cluster separation) and the intra-cluster similarity measured
in terms of the dF

p pseudo-metric.
On each generation those strings that are considered as

best w.r.t. a fitness function are selected for passing to the
next generation. Note that the algorithm does not prescribe
a fixed length of the genomes (as, for instance in k-means
and its extensions [14]), hence it searches a larger space aim-
ing at determining an optimal number of clusters for the
data at hand.

Fig. 3 reports a sketch of the algorithm, named ECM,
Evolutionary Clustering around Medoids. After the call to
the initialize() function returning (to currentPopulation) a
randomly generated initial population of popLength medoid
strings, it essentially consists of the typical generation loop



medoidVector ECM(maxGenerations)
input:

maxGenerations: max number of iterations;
output:

medoidVector: list of medoids
static:

offsprings: vector of generated offsprings
fitnessVector: ordered vector of fitness values
generationNo: generation number

begin
initialize(currentPopulation,popLength)
generationNo = 0
while (generationNo < maxGenerations)

begin
offsprings = generateOffsprings(currentPopulation)
fitnessVector = computeFitness(offsprings)
currentPopulation = select(offsprings,fitnessVector)
++generationNo
end

return currentPopulation[0] // fittest genome
end

Figure 3: ECM: the Evolutionary Clustering
around Medoids algorithm.

of genetic programming where a new population is computed
and then evaluated for deciding on the best genomes to be
selected for survival to the next generation.

On each iteration new offsprings of current best cluster-
ings in currentPopulation are computed. This is performed
by suitable genetic operators explained in the following. The
fitnessVector recording the quality of the various offsprings
(i.e. clusterings) is then updated, and then the best off-
springs are selected for the next generation.

The fitness of a single genome G = {m1, . . . ,mk} is com-
puted by distributing all individuals among the clusters ide-
ally formed around the medoids in that genome. For each
medoid mi (i = 1, . . . , k), let Ci be such a cluster. Then,
the fitness is computed by the function:

fitness(G) =

λ(k)

k∑
i=1

∑
x∈Ci

dp(x,mi)

−1

The factor λ(k) is introduced in order to penalize those clus-
terings made up of too many clusters that could enforce the
minimization in this way (e.g. by proliferating singletons).
A suggested value may be λ(k) =

√
k + 1 which was used in

the experiments (see Sect. 5).
The loop condition is controlled by the maximal number

of generation (the maxGenerations parameter) ensuring that
eventually it may end even with a suboptimal solution to the
problem. Besides other parameters can be introduced for
controlling the loop based on the best fitness value obtained
so far or on the gap between the fitness of best and of the
worst selected genomes in currentPopulation. Eventually, the
best genome of the vector (supposed to be sorted by fitness
in descending order) is returned.

It remains to specify the nature of the generateOff-
springs procedure and the number of such offsprings, which
may as well be another parameter of the ECM algorithm.
Three mutation and one crossover operators are implemented:

deletion(G) drop a randomly selected medoid:
G := G \ {m},m ∈ G

insertion(G) select m ∈ Ind(A) \G that is added to G:
G := G ∪ {m}

replacementWithNeighbor(G) randomly select m ∈ G
and replace it with m′ ∈ Ind(A) \G such that
∀m′′ ∈ Ind(A) \G d(m,m′) ≤ d(m,m′′):
G′ := (G \ {m}) ∪ {m′}

crossover(GA,GB) select subsets SA ⊂ GA and SB ⊂ GB

and exchange them between the genomes:
GA := (GA \ SA) ∪ SB and GB := (GB \ SB) ∪ SA

A (10+60) selection strategy has been implemented, with
the numbers indicating, resp., the number of parents se-
lected for survival and the number of their offsprings gener-
ated employing the mutation operators presented above.

The representation of centers by means of medoids has two
advantages. First, it presents no limitations on attributes
types, and, second, the choice of medoids is dictated by
the location of a predominant fraction of points inside a
cluster and, therefore, it is less sensitive to the presence
of outliers. In k-means case a cluster is represented by
its centroid, which is a mean (usually weighted average) of
points within a cluster. This works conveniently only with
numerical attributes and can be negatively affected even by
a single outlier.

An algorithm based on medoids has several favorable prop-
erties. Since it performs clustering with respect to any speci-
fied metric, it allows a flexible definition of similarity. Many
clustering algorithms do not allow for a flexible definition
of similarity, but allow only Euclidean distance in current
implementations. In addition, medoids are robust represen-
tations of the cluster centers that are less sensitive to out-
liers than other cluster profiles, such as the cluster means of
k-means. This robustness is particularly important in the
common context that many elements do not belong exactly
to any cluster, which may be the case of the membership
in DL knowledge bases, which may be not ascertained given
the OWA.

3.2 The Supervised Learning Phase
The second phase is more language dependent. The var-

ious cluster can be considered as training examples for a
supervised algorithm aimed at finding an intensional DL
definition for one cluster against the counterexamples, rep-
resented by individuals in different clusters [16, 8].

Each cluster may be labeled with an intensional concept
definition which characterizes the individuals in the given
cluster while discriminating those in other clusters [16, 8].
Labeling clusters with concepts can be regarded as a num-
ber of supervised learning problems in the specific multi-
relational representation targeted in our setting [13]. As
such it deserves specific solutions that are suitable for the
DL languages employed.

A straightforward solution may be found, for DLs that al-
low for the computation of (an approximation of) the most
specific concept (msc) and least common subsumer (lcs) [1]
(such as ALC). The first operator, given the current knowl-
edge base and an individual, provides (an approximation
of) the most specific concept that has the individual as one
of its instances. This would allow for lifting individuals to
the concept level. The second operator computes minimal
generalizations of the input concept descriptions.

Given these premises, the learning process can be de-
scribed through the following steps:



let Cj be a cluster of individuals

• for each individual ai ∈ Cj

do compute Mi := msc(ai) w.r.t. A;

• let mscsj := {Mi | ai ∈ Cj};

• return lcs(mscsj)

As an alternative, other algorithms for learning concept
descriptions expressed in DLs may be employed [18, 13]. In-
deed, concept formation can be cast as a supervised learning
problem: once the two clusters at a certain level have been
found, where the members of a cluster are considered as
positive examples and the members of the dual cluster as
negative ones. Then any concept learning method which
can deal with this representation (and semantics) may be
utilized for this new task.

4. RELATED WORK
The unsupervised learning procedure presented in this pa-

per is mainly based on two factors: the semantic dissimilar-
ity measure and the clustering method. To the best of our
knowledge in the literature there are very few examples of
similar clustering algorithms working on complex represen-
tations that are suitable for knowledge bases of semantically
annotated resources. Thus, in this section, we briefly discuss
sources of inspiration for our procedure and some related ap-
proaches.

4.1 Relational Similarity Measures
As previously mentioned, various attempts to define se-

mantic similarity (or dissimilarity) measures for concept lan-
guages have been made, yet they have still a limited appli-
cability to simple languages [3] or they are not completely
semantic depending also on the structure of the descrip-
tions [5]. Very few works deal with the comparison of indi-
viduals rather than concepts.

In the context of clausal logics, a metric was defined [21]
for the Herbrand interpretations of logic clauses as induced
from a distance defined on the space of ground atoms. This
kind of measures may be employed to assess similarity in
deductive databases. Although it represents a form of fully
semantic measure, different assumptions are made with re-
spect to those which are standard for knowledgeable bases
in the SW perspective. Therefore the transposition to the
context of interest is not straightforward.

Our measure is mainly based on Minkowski’s measures
[25] and on a method for distance induction developed by
Sebag [23] in the context of machine learning, where metric
learning is developing as an important subfield. In this work
it is shown that the induced measure could be accurate when
employed for classification tasks even though set of features
to be used were not the optimal ones (or they were redun-
dant). Indeed, differently from our unsupervised learning
approach, the original method learns different versions of
the same target concept, which are then employed in a vot-
ing procedure similar to the Nearest Neighbor approach for
determining the classification of instances.

A source of inspiration was also rough sets theory [22]
which aims at the formal definition of vague sets by means
of their approximations determined by an indiscernibility
relationship. Hopefully, these methods developed in this
context will help solving the open points of our framework
(see Sect. 6) and suggest new ways to treat uncertainty.

4.2 Clustering Procedures
Our algorithm adapts to the specific representations de-

vised for the SW context a combination of evolutionary clus-
tering and the distance-based approaches (see [14]). Specifi-
cally, in the methods derived from k-means and k-medoids
each cluster is represented by one of its points.

Early versions of this approach are represented by the al-
gorithms PAM, CLARA [15], and CLARANS [20]. They
implement iterative optimization methods that essentially
cyclically relocate points between perspective clusters and
recompute potential medoids. The leading principle for the
process is the effect on an objective function. The whole
dataset is assigned to resulting medoids, the objective func-
tion is computed, and the best system of medoids is retained.
In CLARANS a graph is considered whose nodes are sets of
k medoids and an edge connects two nodes if they differ
by one medoid. While CLARA compares very few neigh-
bors (a fixed small sample), CLARANS uses random search
to generate neighbors by starting with an arbitrary node
and randomly checking maxneighbor neighbors. If a neigh-
bor represents a better partition, the process continues with
this new node. Otherwise a local minimum is found, and the
algorithm restarts until a certain number of local minima is
found. The best node (i.e. a set of medoids) is returned
for the formation of a resulting partition. Ester et al. [6] ex-
tended CLARANS to deal with very large spatial databases.

Our algorithm may be considered an extension of evo-
lutionary clustering methods [11] which are also capable
to determine a good estimate of the number of clusters
[9]. Besides, we adopted the idea of representing cluster-
ings (genomes) as strings of cluster centers [17] transposed
to the case of medoids for the categorical search spaces of
interest.

Other related recent approaches are represented by the
UNC algorithm and its extension to the hierarchical clus-
tering case H-UNC [19]. Essentially, UNC solves a multi-
modal function optimization problem seeking dense areas
in the feature space. It is also able to determine their num-
ber. The algorithm is also demonstrated to be noise-tolerant
and robust w.r.t. the presence of outliers. However, the ap-
plicability is limited to simpler representations w.r.t. those
considered in this paper.

Further comparable clustering methods are those based
on an indiscernibility relationship [12]. While in our method
this idea is embedded in the semi-distance measure (and the
choice of the committee of concepts), these algorithms are
based on an iterative refinement of an equivalence relation-
ship which eventually induces clusters as equivalence classes.

As mentioned in the introduction, the classic approaches
to conceptual clustering [24] in complex (multi-relational)
spaces are based on structure and logics. Kietz & Morik pro-
posed a method for efficient construction of knowledge bases
for the BACK representation language [16]. This method
exploits the assertions concerning the roles available in the
knowledge base, in order to assess, in the corresponding re-
lationship, those subgroups of the domain and ranges which
may be inductively deemed as disjoint. In the successive
phase, supervised learning methods are used on the discov-
ered disjoint subgroups to construct new concepts that ac-
count for them. A similar approach is followed in [8], where
the supervised phase is performed as an iterative refinement
step, exploiting suitable refinement operators for a different
DL, namely ALC.



5. EVALUATION
The feasibility of the clustering algorithm has been eval-

uated with an experimentation on knowledge bases selected
from standard repositories. Note that for testing our algo-
rithm we preferred using populated ontologies (which may
be more difficult to find) rather than randomly generating
assertions for artificial individuals, which might have biased
the procedure.

5.1 Experimental Setup
A number of different populated knowledge bases repre-

sented in OWL were selected from various sources2, namely:
FSM, SurfaceWaterModel, Transportation, NewTes-
tamentNames, and Financial. Table 1 summarizes im-
portant details concerning the ontologies employed in the
experimentation. Of course, the number of individuals gives
only a partial indication of the number of assertions (RDF
triples) concerning them which affects both the complexity
of reasoning and distance assessment.

For each populated knowledge base, the experiments have
been repeated for ten times. In the computation of the dis-
tances between individuals (the most time-consuming oper-
ation) all concepts in the knowledge base have been used
for the committee of features, thus guaranteeing meaning-
ful measures with high redundancy. The Pellet reasoner3

(ver. 1.4) was employed to perform the inferences (instance-
checking) that were necessary to compute the projections.

The experimentation consisted of 10 runs of the algorithm
per knowledge base. The indexes which were chosen for the
experimental evaluation were the following: the generalized
R-Squared (modRS), the generalized Dunn’s index, the aver-
age Silhouette index, and the number of clusters obtained.
In the following explanation of these quality measures, we
will consider a generic partition P = {C1, . . . , Ck} of n in-
dividuals in k clusters.

The R-Squared index [10] is a measure of cluster separa-
tion, ranging in [0,1]. Instead of the cluster means, we gen-
eralize the measure by computing it w.r.t. their medoids,
namely:

RS(P ) :=
SSb(P )

SSb(P ) + SSw(P )

where SSb is the between clusters Sum of Squares defined as
follows:

SSb(P ) :=
k∑

i=1

d(m,mi)
2

where m is the medoid of the whole dataset and SSt is the
within cluster Sum of Squares that is defined:

SSw(P ) :=
k∑

i=1

∑
a∈Ci

d(a,mi)
2

The generalized Dunn’s index is a measure of both com-
pactness (within clusters) and separation (between clusters).
The original measure is defined for numerical feature vectors
in terms of centroids and it is known to suffer from the pres-
ence of outliers. To overcome these limitations, we adopt a

2See the Protégé library: http://protege.stanford.edu/
plugins/owl/owl-library and the website: http://www.
cs.put.poznan.pl/alawrynowicz/financial.owl
3http://pellet.owldl.com

generalization of Dunn’s index [2] that is modified to deal
with medoids. The new index can be defined:

VGD(P ) := min
1≤i≤k

 min
1≤j≤k

i 6=j

{
δp(Ci, Cj)

max1≤h≤k {∆p(Ch)}

}
where δp is the Hausdorff distance for clusters derived4 from
dp, while the cluster diameter measure ∆p is defined:

∆p(Ch) :=
2

|Ch|
∑

c∈Ch

dp(c,mh)

which is more noise-tolerant w.r.t. the original measure. Of
course, this measure, ranging in [0,+∞[, has to be maxi-
mized.

Conversely, the average Silhouette index [15] is a measure
ranging in the interval [-1,1], thus suggesting an absolute
best value for the validity of a clustering. For each individual
xi, i ∈ {1, . . . , n}, the average distance to other individuals
within the same cluster Cj , j ∈ {1, . . . , k}, is computed:

ai :=
1

|Cj |
∑

x∈Cj

dp(ai, x)

Then the average distance to the individuals in other clusters
is also computed:

bi :=
1

|Cj |

h 6=j∑
x∈Ch

dp(ai, x)

Hence, the Silhouette value for the considered individual is
obtained as follows:

si :=
(bi − ai)

max(ai, bi)

Finally, the average Silhouette value s for the whole cluster-
ing is computed:

s :=
1

k

k∑
1=1

si

We also considered the average number of clusters result-
ing from the repetitions of the experiments on each knowl-
edge base. A stable algorithm should return almost the same
number of clusters on each repetition. It is also interesting
to compare this number to the one of the primitive and de-
fined concepts in each ontology (see Tab. 1), although this
is not a hierarchical clustering method.

5.2 Results
As mentioned, the experiment consisted in 10 runs of the

evolutionary clustering procedure with an optimized feature
set (computed in advance). each run took from a few min-
utes to 41 mins on a 2.5GhZ (512Mb RAM) Linux Machine.
Note that these timings include the pre-processing phase,
that was needed to compute the distance values between all
couples of individuals. Indeed, the elapsed time for the core
clustering algorithm is actually very short (max 3 minutes).

The outcomes of the experiments are reported in Tab. 2.
For each for each knowledge base and index, the average
values observed along the various repetitions is considered.

4δp is defined δp(Ci, Cj) := max{dp(Ci, Cj), dp(Cj , Ci)},
where dp(Ci, Cj) := maxa∈Ci{minb∈Cj{dp(a, b)}}.



Table 1: Ontologies employed in the experiments.

Ontology DL lang. # concepts # object prop. # data prop. #individuals
FSM SOF(D) 20 10 7 37

SurfaceWaterModel ALCOF(D) 19 9 1 115
Transportation ALC 44 7 0 331

NewTestamentNames SHIF(D) 47 27 8 676
Financial ALCIF 60 16 0 1000

Table 2: Results of the experiments: for each index, average value (±standard deviation) and [min,max]
interval of values are reported.

Ontology R-Squared Dunn’s Silhouette # clusters

FSM
.39 (±.07) .72 (±.10) .77 (±.01) 4 (±.00)
[.33,.52] [.69,1.0] [.74,.78] [4,4]

SurfaceWaterModel
.45 (±.15) .99 (±.03) .999 (±.000) 12.9 (±.32)
[.28,.66] [.9,1.0] [.999,.999] [12,13]

Transportation
.33 (±.04) .67 (±.00) .975 (±.004) 3 (±.00)
[.26,.40] [.67,.67] [.963,.976] [3,3]

NewTestamentNames
.46 (±.08) .79 (±.17) .985 (±.008) 29.2 (±2.9)
[.35,.59] [.5,1.0] [.968,.996] [25,32]

Financial
.37 (±.06) .88 (±1.16) .91 (±.03) 8.7 (±.95)
[.29,.45] [.57,1.0] [.87,.94] [8,10]

Moreover, the standard deviation and the range of minimum
and maximum values are also reported.

The R-Squared index values denotes an acceptable degree
of separation between the various clusters. We may inter-
pret the outcomes observing that clusters present a higher
degree of compactness (measured by the SSw component).
It should also pointed out that flat clustering penalizes sep-
aration as the concepts in the knowledge base are not nec-
essarily disjoint. Rather, they naturally tend to form sub-
sumption hierarchies. Observe also that the variation among
the various runs is very limited.

Dunn’s index measures both compactness and separation;
the rule in this case is the larger the better. Results are
good for the various bases. These outcomes may serve for
further comparisons to the performance of other clustering
algorithms. Again, note that the variation among the vari-
ous runs is very limited, so the algorithm was quite stable,
despite its inherent randomized nature.

It can be observed that for the average Silhouette measure,
that has a precise range of values, the performance of our
algorithm is generally very good with a degradation with
the increase of individuals taken into account. Besides, note
that the largest knowledge base (in terms of its population)
is also the one with the maximal number of concepts which
provided the features for the metric. Thus in the resulting
search space there is more freedom in the choice of the ways
to make one individual discernible from the others. Surpris-
ingly, the number of clusters is limited w.r.t. the number
of concepts in the KB, suggesting that many individuals
gather around a restricted subset of the concepts, while the
others are only complementary (they can be used to discern
the various individuals). Such subgroups may be detected
extending our method to perform hierarchical clustering.

As regards the overall stability of the clustering proce-
dure, we may observe that the main indices (and the number
of clusters) show very little variations along the repetitions

(see the standard deviation values), which suggests that the
algorithm tends to converge towards clusterings of compa-
rable quality with generally the same number of clusters.
As such, the optimization procedure does not seem to suffer
from being caught in local minima. However, the case needs
a further investigation. Indeed, the optimization performed
by the clustering procedure is two-fold: it does not optimize
the choice of the clustering medoids but also their number,
which is normally considered as a fixed parameter for other
algorithms (see Sect. 4).

Other experiments (whose outcomes are not reported here)
showed that sometimes the initial genome length may have
an impact to the resulting clustering, thus suggesting the
employment of different randomized search procedures (e.g.
again simulated annealing or tabu search) which may guar-
antee a better exploration of the search space.

6. CONCLUSIONS AND FUTURE WORK
This work has presented a framework for evolutionary

conceptual clustering that can be applied to standard re-
lational representations for knowledge bases in the SW con-
text. Its intended usage is for discovering interesting group-
ings of semantically annotated resources and can be applied
to a wide range of concept languages. Besides, the induction
of new concepts may follow from such clusters, which allows
for accounting for them from an intensional viewpoint.

The method exploits a dissimilarity measure, that is based
on the undelying resource semantics w.r.t. a number of di-
mensions corresponding to a committee of features repre-
sented by a group of concept descriptions in the language of
choice. A preliminary learning phase, based on randomized
search, can be exploited to optimize the choice of the most
discriminating features.

The evolutionary clustering algorithm is an extension of
distance-based clustering procedures employing medoids as



cluster prototypes so to deal with complex representations
of the target context. Variable-length strings of medoids
yielding different partitions are searched guided by a fitness
function based on cluster separation. As such the algorithm
can also determine the length of the list, i.e. an optimal
number of clusters.

As for the metric induction part, a promising research
line, for extensions to matchmaking, retrieval and classifi-
cation, is retrieval by analogy [5]: a search query may be
issued by means of prototypical resources; answers may be
retrieved based on local models (intensional concept descrip-
tions) for the prototype constructed (on the fly) based on
the most similar resources (w.r.t. some similarity measure).
The presented algorithm may be the basis for the model
construction activity. The distance measure may also serve
as a ranking criterion.

The natural extensions of the clustering algorithm that
may be foreseen are towards incrementality and hierarchical
clustering. The former may be easily achieved by assigning
new resources to their most similar clusters, and restarting
the whole algorithm when some validity measure crosses a
given threshold. The latter may be performed by wrapping
the algorithm within a level-wise procedure starting with the
whole dataset and recursively applying the partitive method
until a criterion based on quality indices determines the stop.
This may produce more meaningful concepts during the next
supervised phase.

Better fitness functions may be also investigated for both
distance optimization and clustering. For instance, some
clustering validity indices can be exploited in the algorithm
as measures of compactness and separation.
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