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Abstract. This work presents a clustering method which can be ap-
plied to relational knowledge bases. Namely, it can be used to discover
interesting groupings of semantically annotated resources in a wide range
of concept languages. The method exploits a novel dissimilarity measure
that is based on the resource semantics w.r.t. a number of dimensions cor-
responding to a committee of features, represented by a group of concept
descriptions (discriminating features). The algorithm is an adaptation of
the classic Bisecting k-Means to complex representations typical of
the ontology in the Semantic Web. We discuss its complexity and the
potential applications to a variety of important tasks.
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1 Introduction

In the inherently distributed applications related to the Semantic Web (hence-
forth SW) there is an extreme need of automatizing those activities which are
more burdensome for the knowledge engineer, such as ontology construction,
matching and evolution. An automatization of these activities may be achieved
through the implementation of supervised or unsupervised inductive methods. In
this work, we investigate on unsupervised learning for knowledge bases expressed
in the standard ontological languages. In particular, we focus on conceptual clus-
tering of semantically annotated resources.

Essentially, clustering methods are based on the application of similarity (or
density) measures, defined over a fixed set of attributes of the domain objects,
with the goal of creating classes, namely homogeneous data subgroups. Classes
of objects are taken as collections that exhibit low interclass similarity (density)
and high intraclass similarity (density). Often these methods cannot take into
account any form of background knowledge that could characterize object con-
figurations by means of global concepts and semantic relationship. This hinders
the interpretation of the outcomes of these methods which, on the contrary, is
crucial in the SW perspective that foresees sharing and reusing the produced
knowledge in order to enable semantic interoperability. Alternative approaches,
particularly suitable for concept languages and terminological representations,
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have pursued a different way for attacking the problem, devising logic-based
methods [7, 4]. Yet it has been pointed out that these methods may suffer from
noise in the data.

This motivates our investigation on similarity-based clustering methods which
may be more noise-tolerant, still saving the advantages of conceptual clustering.
We propose an extension of effective clustering techniques to a multi-relational
setting. Specifically, our relational method derives from the Bisecting k-means
algorithm [5], a well-known partitional clustering method, and it is tailored for
the SW context (see Sect.3). It is intended for grouping similar resources w.r.t.
a semantic dissimilarity measure which allows for discovering new concepts. As
for the original method, one may fix a given number k of clusters of interest,
yet this may be hard when scarce knowledge about the domain is available. As
an alternative, a partitional method like ours may be employed up to reaching a
minimal threshold value for cluster quality (many measures have been proposed
in the literature [5]) which makes any further bisection useless. Moreover, in-
stead of the notion of means, that characterizes the algorithms descending from
k-means and EM [5] developed for numeric (or just ordinal) features, in our case
we recur to the notion of medoids (like in algorithm PAM [6] or CLARANS
[8]) as central individuals in a cluster.

From a technical viewpoint, upgrading existing algorithms to work on multi-
relational representations, like the concept languages used in the SW, requires
novel similarity measures that are suitable for such representations. The notion of
similarity to be employed has to deal with the rich representations of semantically
annotated resources. Therefore, we developed a measure which could be used
specifically for the SW standard representations (see below).

As pointed out in a seminal paper [2] on similarity measures for Description
Logics (DLs), most of the existing measures focus on the similarity of atomic
concepts within hierarchies or simple ontologies. Hence, they have been con-
ceived for assessing concept similarity. Nevertheless, for our purposes, a notion
of similarity between individuals is required.

Recently, dissimilarity measures for specific DLs have been proposed [3]. Al-
though they turned out to be quite effective for the inductive tasks, they are
still partly based on structural criteria which determine their main weakness:
they are hardly scalable to deal with standard languages used in the current
knowledge management frameworks. Therefore, we have devised a new semantic
dissimilarity measure for semantically annotated resources (see Sect.2), which
can overcome the aforementioned limitations.

Following some ideas introduced in [9], we present a new family of measures
that is suitable for a wide range of ontology languages (RDF through OWL)
since it is merely based on the discernibility of the input individuals with respect
to a fixed set of features represented by concept definitions. As such, the new
measures are not absolute, yet they depend on the knowledge base they are
applied to.
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2 Concept Similarity and Semantic Distance Measures

One of the strong points of our method is that it does not rely on a particu-
lar language for semantic annotations. Hence, in the following, we assume that
resources, concepts and their relationship may be defined in terms of a generic
ontology language that may be mapped to some description logic with the stan-
dard model-theoretic semantics (see the handbook [1] for a thorough reference).
In order to exploit the method, the underlying application needs only to model
the knowledge base according to this ontology language. Thus, for instance, a
SW service may be searched in a registry, provided that services are described
in the standard representations defined on top of OWL (e.g. OWL-S or WSML).

In the SW context, a knowledge base K = 〈T ,A〉 contains a TBox T and an
ABox A. T is a set of concept definitions. A contains assertions (facts, data)
concerning the world state. Normally the unique names assumption is made on
the individuals1 in the ABox. The set of the individuals occurring in A will be
denoted by Ind(A).

As regards the inference services, like all other instance-based methods, our
procedure may require performing instance-checking, which amounts to deter-
mining whether an individual, say a, belongs to a concept extension, i.e. whether
C(a) holds for a certain concept C.

Since the main goal of the proposed method is to make clusters of individuals
(asserted in an ontology), for our purposes, we need of a function for measuring
the similarity of individuals rather than concepts. Anyway individuals do not
have a syntactic structure that can be compared. This has led to lifting them to
the concept description level before comparing them (recurring to the approxi-
mation of the most specific concept of an individual w.r.t. the ABox). Hence, for
the clustering procedure specified in Sect. 3, we have developed a new measure
whose definition totally depends on semantic aspects of the individuals in the
knowledge base.

2.1 The Measure

On a semantic level, similar individuals should behave similarly with respect to
the same concepts. On the ground of such an intuition, we introduce a novel
measure for assessing the similarity of individuals in a knowledge base, which is
based on comparing their semantics along a number of dimensions represented
by a committee of concept descriptions. Following the ideas borrowed from ILP
[9] and multi-dimensional scaling, we propose the definition of totally semantic
distance measures for individuals in the context of a knowledge base.

The rationale of the new measure is to compare individuals on the grounds
of their behavior w.r.t. a given set of hypotheses, that is a collection of concept
descriptions, say F = {F1, F2, . . . , Fm}, which stands as a group of discriminating
features expressed in the language taken into account.

In its simple formulation, a family of distance functions for individuals in-
spired to Minkowski’s distances can be defined as follows:
1 Individuals can be assumed to identified by their own URI.
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Definition 1 (family of semi-distance measures). Let K = 〈T ,A〉 be a
knowledge base. Given set of concept descriptions F = {F1, F2, . . . , Fm}, a family
of semi-distance functions dF

p : Ind(A)× Ind(A) 7→ IR defined as follows:

∀a, b ∈ Ind(A) dF
p(a, b) :=

1
m

[
m∑

i=1

| πi(a)− πi(b) |p
]1/p

where p > 0 and ∀i ∈ {1, . . . ,m} the projection function πi is defined by:

∀a ∈ Ind(A) πi(a) =

 1 Fi(x) ∈ A
0 ¬Fi(x) ∈ A

1/2 otherwise

The superscript F will be omitted when the set of hypotheses is fixed.
As an alternative, the definition of the measures can be made more accurate

by considering entailment rather than the simple ABox look-up, when determin-
ing the values of the projection functions:

∀a ∈ Ind(A) πi(a) =

 1 K |= Fi(x)
0 K |= ¬Fi(x)

1/2 otherwise

In particular, for the sake of saving computational resources, we have con-
sidered the following measures in the experiments: ∀a, b ∈ Ind(A)

d1(a, b) :=
1
m

m∑
i=1

| πi(a)− πi(b) | or d2(a, b) :=
1
m

√√√√ m∑
i=1

(πi(a)− πi(b))
2

2.2 Discussion

It is easy to prove that these functions have the standard properties for semi-
distances:

Proposition 1 (semi-distance). For a fixed feature set and p > 0, given any
three instances a, b, c ∈ Ind(A). it holds that:

1. dp(a, b) > 0
2. dp(a, b) = dp(b, a)
3. dp(a, c) ≤ dp(a, b) + dp(b, c)

It cannot be proved that dp(a, b) = 0 iff a = b. This is the case of indiscernible
individuals with respect to the given set of hypotheses F.

Compared to other proposed distance (or dissimilarity) measures [2], the
presented function does not depend on the constructors of a specific language,
rather it requires only retrieval or instance-checking service used for deciding
whether an individual is asserted in the knowledge base to belong to a concept
extension (or, alternatively, if this could be derived as a logical consequence).
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Note that the πi functions (∀i = 1, . . . ,m) for the training instances, that
contribute to determine the measure with respect to new ones, can be computed
in advance thus determining a speed-up in the actual computation of the mea-
sure. This is very important for the measure integration in algorithms which
massively use this distance, such as all instance-based methods.

The underlying idea for the measure is that similar individuals should ex-
hibit the same behavior w.r.t. the concepts in F. Here, we make the assumption
that the feature-set F represents a sufficient number of (possibly redundant)
features that are able to discriminate really different individuals. The choice
of the concepts to be included – feature selection – is beyond the scope of this
work. Experimentally, we could obtain good results by using the very set of both
primitive and defined concepts found in the ontology.

3 Hierarchical Clustering around Medoids

The conceptual clustering procedure implemented in our method works top-
down, starting with one universal cluster grouping all instances. Then it itera-
tively finds two clusters bisecting an existing one up to the desired number of
clusters is reached. This algorithm can be thought as producing a dendrogram
levelwise: the number of levels coincides with the number of clusters. It can be
very fast.

In particular our algorithm can be ascribed to the category of the heuristic
partitioning algorithms such as k-means and EM [5]. Each cluster is represented
by the center of the cluster. In our setting we will consider the notion of medoid
as a notion of cluster center since our distance measure works on a categorical
feature-space. In particular it can be seen as a hierarchical extension of the
PAM algorithm (Partition Around Medoids [6]): each cluster is represented by
one of the individuals in the cluster, the medoid, i.e., in our case, the one with
the lowest average distance w.r.t. all the others individuals in the cluster. The
bi-partition is repeated level-wise producing a dendrogram.

Fig. 1 reports a sketch of our algorithm. It essentially consists of two nested
loops: the outer one computes a new level of the resulting dendrogram and it
is repeated until the desired number of clusters is obtained (which corresponds
to the latest level; the inner loop consists of a run of the PAM algorithm at the
current level.

Per each level, the next worst cluster is selected (selectWorstCluster() func-
tion) on the grounds of its quality, e.g. the one endowed with the least average
inner similarity (or cohesiveness [10]). This cluster is candidate to being parted
in two. The partition is constructed around two medoids initially chosen (select-
MostDissimilar() function) as the most dissimilar elements in the cluster and
then iteratively adjusted in the inner loop. In the end, the candidate cluster is
replaced by the newly found parts at the next level of the dendrogram.

The inner loop basically resembles to a 2-means (or EM) algorithm, where
medoids are considered instead of means which can hardly be defined in symbolic
computations. Then, the classical two steps are performed in an iteration:
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clusterVector HierarchicalBisectingAroundMedoids(allIndividuals, k, maxIterations)
input allIndividuals: set of individuals

k: number of clusters;
maxIterations: max number of inner iterations;

output clusterVector: array [1..k] of sets of clusters

begin
level := 0;
clusterVector[1] := allIndividuals;
repeat

++level;
cluster2split := selectWorstCluster(clusterVector[level]);
iterCount := 0;
stableConfiguration := false;
(newMedoid1,newMedoid2) := selectMostDissimilar(cluster2split);
repeat

++iterCount;
// E step
(medoid1,medoid2) := (newMedoid1,newMedoid2);
(cluster1,cluster2) := distribute(cluster2split,medoid1,medoid2);
// M step
newMedoid1 := medoid(cluster1);
newMedoid2 := medoid(cluster2);
stableConfiguration := (medoid1 = newMedoid1) ∧ (medoid2 = newMedoid2);

until stableConfiguration ∨ (iterCount = maxIterations);
clusterVector[level+1] := replace(cluster2split,cluster1,cluster2,clusterVector[level]);

until (level = k);
end

Fig. 1. The Hierarchical Bisecting around Medoids Algorithm.

E step given the current medoids, the first distributes the other individuals in
one of the two partitions under construction on the grounds of their similarity
w.r.t. either medoid;

M step given the bipartition obtained by distribute(), this second step com-
putes the new medoids for either cluster. These tend to change on each iter-
ation until eventually they converge to a stable couple (or when a maximum
number of iteration have been performed).

The medoid of a group of individuals is the individual that has the lowest distance
w.r.t. the others. Formally. given a cluster C = {a1, a2, . . . , an}, the medoid is
defined:

m = medoid(C) = argmin
a∈C

n∑
j=1

d(a, aj)

Each node of the tree (a cluster) may be labeled with an intensional concept
definition which characterizes the individuals in the given cluster while discrim-
inating those in the twin cluster at the same level. Labeling the tree-nodes with
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concepts can be regarded as a number of supervised learning problems in the spe-
cific multi-relational representation targeted in our setting. As such it deserves
specific solutions that are suitable for the DL languages employed.

A straightforward solution may be found, for DLs that allow for the computa-
tion of (an approximation of) the most specific concept (msc) and least common
subsumer (lcs) [1] (such as ALC). This may involve the following steps:
given a cluster of individuals nodej

– for each individual ai ∈ nodej do
compute Mi := msc(ai) w.r.t. A;

– let MSCsj := {Mi | ai ∈ nodej};
– return lcs(MSCsj)

As an alternative, algorithms for learning concept descriptions expressed in
DLs may be employed [4]. Indeed, concept formation can be cast as a supervised
learning problem: once the two clusters at a certain level have been found, the
members of a cluster are considered as positive examples and the members of
the dual cluster as negative ones. Then any concept learning method which can
deal with this representation may be utilized for this new task.

The representation of centers by means of medoids has two advantages. First,
it presents no limitations on attributes types, and, second, the choice of medoids
is dictated by the location of a predominant fraction of points inside a cluster
and, therefore, it is lesser sensitive to the presence of outliers. In k-means case, a
cluster is represented by its centroid, which is a mean (usually weighted average)
of points within a cluster. This works conveniently only with numerical attributes
and can be negatively affected by a single outlier.

A PAM algorithm has several favorable properties. Since it performs cluster-
ing with respect to any specified metric, it allows a flexible definition of similar-
ity. This flexibility is particularly important in biological applications where re-
searchers may be interested, for example, in grouping correlated or possibly also
anti-correlated elements. Many clustering algorithms do not allow for a flexible
definition of similarity, but allow only Euclidean distance in current implementa-
tions. In addition to allowing a flexible distance metric, a PAM algorithm has the
advantage of identifying clusters by the medoids. Medoids are robust represen-
tations of the cluster centers that are less sensitive to outliers than other cluster
profiles, such as the cluster means of k-means. This robustness is particularly
important in the common context that many elements do not belong exactly to
any cluster, which may be the case of the membership in DL knowledge bases,
which may be not ascertained given the OWA.

The benefits of conceptual clustering [10] in the context of semantically an-
notated knowledge bases are manifold:

– concept formation: clustering annotated resources enables the definition of
new emerging concepts on the grounds of the primitive concepts asserted in
a knowledge base;

– evolution: supervised methods can exploit these clusters to induce new con-
cept definitions or to refining existing ones;
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– discovery and ranking : intensionally defined groupings may speed-up the
task of search and discovery; a hierarchical clustering suggests criteria for
ranking the retrieved resources.

4 Conclusions

This work has presented a clustering for (multi-)relational representations which
are standard in the SW field. Namely, it can be used to discover interesting
groupings of semantically annotated resources in a wide range of concept lan-
guages. The method exploits a novel dissimilarity measure, that is based on
the resource semantics w.r.t. a number of dimensions corresponding to a com-
mittee of features represented by a group of concept descriptions (discriminating
features). The algorithm, is an extension of the classic bisecting k-means to com-
plex representations typical of the SW ontology languages. We have discussed
its complexity and the potential applications to a variety of important tasks.
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