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Abstract. A clustering method is presented which can be applied to relational
knowledge bases. It can be used to discover interesting groupings of resources
through their (semantic) annotations expressed in the standard languages em-
ployed for modeling concepts in the Semantic Web. The method exploits a simple
(yet effective and language-independent) semi-distance measure for individuals,
that is based on the resource semantics w.r.t. a number of dimensions correspond-
ing to a committee of features represented by a group of concept descriptions
(discriminating features). The algorithm is an fusion of the classic BISECTING
K-MEANS with approaches based on medoids since they are intended to be ap-
plied to relational representations. We discuss its complexity and the potential
applications to a variety of important tasks.

1 Introduction

In the inherently distributed applications related to the Semantic Web (henceforth SW)
there is an extreme need of automatizing those activities which are more burdensome
for the knowledge engineer, such as ontology construction, matching and evolution.
Such an automation may be assisted by crafting supervised or unsupervised methods
for the specific representations of the SW field (RDF through OWL).

In this work, we investigate on unsupervised learning for knowledge bases ex-
pressed in such standard concept languages. In particular, we focus on the problem of
conceptual clustering of semantically annotated resources. The benefits of conceptual
clustering [12] in the context of semantically annotated knowledge bases are manifold.
Clustering annotated resources enables the definition of new emerging concepts (con-
cept formation) on the grounds of the primitive concepts asserted in a knowledge base;
supervised methods can exploit these clusters to induce new concept definitions or to
refining existing ones ontology evolution; intensionally defined groupings may speed-
up the task of search and discovery; a hierarchical clustering also suggests criteria for
ranking the retrieved resources.

Essentially, many existing clustering methods are based on the application of simi-
larity (or density) measures defined over a fixed set of attributes of the domain objects.
Classes of objects are taken as collections that exhibit low interclass similarity (den-
sity) and high intraclass similarity (density). Often these methods cannot into account
any form of background knowledge that could characterize object configurations by
means of global concepts and semantic relationship. This hinders the interpretation of



the outcomes of these methods which is crucial in the SW perspective which foresees
sharing and reusing the produced knowledge in order to enable forms of semantic in-
teroperability.

Thus, conceptual clustering methods have aimed at defining groups of objects through
conjunctive descriptions based on selected attributes [12]. In the perspective, the ex-
pressiveness of the language adopted for describing objects and clusters (concepts) is
equally important. Alternative approaches, for terminological representations, pursued
a different way for attacking the problem, devising logic-based methods for specific lan-
guages [9, 5]. Yet it has been pointed out that these methods may suffer from noise in
the data. This motivates our investigation on similarity-based clustering methods which
can be more noise-tolerant, and as language-independent as possible. Specifically we
propose a multi-relational extension of effective clustering techniques, which is tailored
for the SW context. It is intended for grouping similar resources w.r.t. a semantic dis-
similarity measure.

In this setting, instead of the notion of means that characterizes the algorithms de-
scending from (BISECTING) K-MEANS [7] originally developed for numeric or ordinal
features, we recur to the notion of medoids (like in PAM [8]) as central individuals in
a cluster. Another theoretical problem is posed by the Open World Assumption (OWA)
that is generally made on the language semantics, differently from the Closed World As-
sumption (CWA) which is standard in machine learning or query-answering. As pointed
out in a seminal paper on similarity measures for DLs [3], most of the existing mea-
sures focus on the similarity of atomic concepts within hierarchies or simple ontologies.
Moreover, they have been conceived for assessing concept similarity, whereas, for other
tasks, a notion of similarity between individuals is required.

Recently, dissimilarity measures for specific DLs have been proposed [4]. Although
they turned out to be quite effective for the inductive tasks, they are still partly based
on structural criteria which makes them fail to fully grasp the underlying semantics and
hardly scale to any standard ontology language. Therefore, we have devised a family of
dissimilarity measures for semantically annotated resources, which can overcome the
aforementioned limitations. Following the criterion of semantic discernibility of indi-
viduals, we present a new family of measures that is suitable a wide range of languages
since it is merely based on the discernibility of the input individuals with respect to a
fixed committee of features represented by concept definitions. As such the new mea-
sures are not absolute, yet they depend on the knowledge base they are applied to. Thus,
also the choice of the optimal feature sets deserves a preliminary feature construction
phase, which may be performed by means of a randomized search procedure based on
simulated annealing.

The remainder of the paper is organized as follows. Sect. 2 presents the basics rep-
resentation and the novel semantic similarity measure adopted with the clustering al-
gorithm. This algorithm is presented and discussed in Sect. 3. Conclusions are finally
examined in Sect. 5.



2 Semantic Distance Measures

One of the strong points of our method is that it does not rely on a particular language
for semantic annotations. Hence, in the following, we assume that resources, concepts
and their relationship may be defined in terms of a generic ontology language that may
be mapped to some DL language with the standard model-theoretic semantics (see the
handbook [1] for a thorough reference).

In this context, a knowledge base K = (7T, A) contains a TBox 7 and an ABox
A. T is a set of concept definitions. A contains assertions (facts, data) concerning the
world state. Moreover, normally the unique names assumption is made on the ABox
individuals' therein. The set of the individuals occurring in A will be denoted with
Ind(A).

As regards the inference services, like all other instance-based methods, our proce-
dure may require performing instance-checking, which amounts to determining whether
an individual, say a, belongs to a concept extension, i.e. whether C'(a) holds for a cer-
tain concept C.

2.1 A Semantic Semi-Distance for Individuals

For our purposes, a function for measuring the similarity of individuals rather than
concepts is needed. It can be observed that individuals do not have a syntactic structure
that can be compared. This has led to lifting them to the concept description level before
comparing them (recurring to the approximation of the most specific concept of an
individual w.r.t. the ABox).

For the clustering procedure specified in Sect. 3, we have developed a new mea-
sure with a definition that totally depends on semantic aspects of the individuals in the
knowledge base. On a semantic level, similar individuals should behave similarly with
respect to the same concepts. We introduce a novel measure for assessing the similar-
ity of individuals in a knowledge base, which is based on the idea of comparing their
semantics along a number of dimensions represented by a committee of concept de-
scriptions. Following the ideas borrowed from ILP [11] and multi-dimensional scaling,
we propose the definition of totally semantic distance measures for individuals in the
context of a knowledge base.

The rationale of the new measure is to compare them on the grounds of their be-
havior w.r.t. a given set of hypotheses, that is a collection of concept descriptions, say
F={F, Fy,..., Fy}, which stands as a group of discriminating features expressed in
the language taken into account.

In its simple formulation, a family of distance functions for individuals inspired to
Minkowski’s distances can be defined as follows:

Definition 2.1 (family of measures). Let K = (7, A) be a knowledge base. Given set
of concept descriptions F = {Fy, Fs, ..., F, }, a family of functions

dr : Ind(A) x Ind(A) — R

! Individuals can be assumed to be identified by their own URL



defined as follows:

m 1/p
Va,b € Ind(A) dF (a,b) (Z | mi(a) — mi(b) |p>

where p > 0 and Vi € {1,...,m} the projection function m; is defined by:

1 K E Fi(x)
Va € Ind(A) mi(a) =4 0 K = —F;(z)
1/2 otherwise

2.2 Discussion

It is easy to prove that these functions have the standard properties for semi-distances:

Proposition 2.1 (semi-distance). For a fixed feature set and p > 0, given any three
instances a,b, ¢ € Ind(\A). it holds that:

1. dp(a,b) >0
2. dp(a,b) =dp(b,a)
3. dy(a,c) < dy(a,b)+ d,(b,c)

Proof. 1. and 2. are trivial. As for 3., noted that
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(dp(a,0))” + (dp(b, ¢))? < (dp(a,b) + dyp(b, )"
then the property follows for the monotonicity of the power function.

It cannot be proved that d,(a,b) = 0 iff a = b. This is the case of indiscernible
individuals with respect to the given set of hypotheses F.

Compared to other proposed distance (or dissimilarity) measures [3], the presented
function does not depend on the constructors of a specific language, rather it requires
only retrieval or instance-checking service used for deciding whether an individual is
asserted in the knowledge base to belong to a concept extension (or, alternatively, if this
could be derived as a logical consequence).

Note that the m; functions (V2 = 1, ..., m) for the training instances, that contribute
to determine the measure with respect to new ones, can be computed in advance thus
determining a speed-up in the actual computation of the measure. This is very important
for the measure integration in algorithms which massively use this distance, such as all
instance-based methods.

The underlying idea for the measure is that similar individuals should exhibit the
same behavior w.r.t. the concepts in F. Here, we make the assumption that the feature-
set F represents a sufficient number of (possibly redundant) features that are able to
discriminate really different individuals.



2.3 Feature Set Optimization

Experimentally, we could obtain good results by using the very set of both primitive
and defined concepts found in the ontology. The choice of the concepts to be included —
feature selection — may be crucial. We have devised a specific optimization algorithms
founded in genetic programming and simulated annealing (whose presentation goes
beyond the scope of this work) which are able to find optimal choices of discriminating
concept committees.

Various optimizations of the measures can be foreseen as concerns its definition.
Among the possible sets of features we will prefer those that are able to discriminate
the individuals in the ABox:

Definition 2.2 (good feature set). Let F = {F|, F5,...,F,,} be a set of concept
descriptions. We call F a good feature set for the knowledge base K = (T, A) iff
Va,b € Ind(A) Ji € {1,...,m}: m(a) # mi(b).

Then, when the function defined above is parameterized on a good feature set, it has the
properties of a distance function.

Namely, since the function is very dependent on the concepts included in the com-
mittee of features F, two immediate heuristics can be derived: 1) control the number
of concepts of the committee, including especially those that are endowed with a real
discriminating power; 2) finding optimal sets of discriminating features, by allowing
also their composition employing the specific constructors made available by the repre-
sentation language of choice.

Both these objectives can be accomplished by means of machine learning tech-
niques especially when knowledge bases with large sets of individuals are available.
Namely, part of the entire data can be drawn in order to learn optimal F sets, in advance
with respect to the successive usage for all other purposes.

We have been experimenting the usage of genetic programming for constructing
an optimal set of features. Yet these are known to suffer from being possibly caught
in local minima. An alternative is employing a different probabilistic search procedure
which aims at a global optimization. Thus we devised a simulated annealing search,
whose algorithm is depicted in Fig. 1.

Essentially the algorithm searches the space of all possible feature committees start-
ing from an initial guess (determined by MAKEINITIALFS(K)) based on the concepts
(both primitive and defined) currently referenced in the knowledge base. The loop con-
trolling the search is repeated for a number of times that depends on the temperature
which gradually decays to 0, when the current committee can be returned. The current
feature set is iteratively refined calling a suitable procedure RANDOMSUCCESSOR().
Then the fitness of the new feature set is compared to that of the previous one deter-
mining the increment of energy AFE. If this is non-null then the computed committee
replaces the old one. Otherwise it will be replaced with a probability that depends on
AEFE.

As regards the FITNESSVALUE(F), it can be computed as the discernibility factor
of the feature set. For example given the whole set of individuals IS = Ind(.A) (or just



FeatureSet OPTIMIZEFEATURESET(IC, AT')
input /C: Knowledge base
AT function controlling the decrease of temperature
output FeatureSet
static currentFS: current Feature Set
nextFS: next Feature Set
Temperature: controlling the probability of downward steps
begin
currentFS < MAKEINITIALFS(K)
for t — 1to oo do
Temperature < Temperature — AT'(t)
if (Temperature =0)
return currentFS
nextFS <« RANDOMSUCCESSOR(currentFS,K)
AFE «— FITNESSVALUE(nextFS) — FITNESSVALUE(currentFS)
if (AE > 0)
currentFS «— nextFS
else //replace FS with given probability
REPLACE(currentFS, nextFS, e2%)
end

Fig. 1. Feature Set optimization based on a Simulated Annealing procedure.

a sample to be used to induce an optimal measure) the fitness function may be:

IF|

FITNESSVALUE(F) = Z Z | mi(a) — m;(b) |

(a,b)eIS? i=1

As concerns finding candidates to replace the current committee (RANDOMSUC-
CESSOR()), the function was implemented by recurring to simple transformations of a
feature set:

— adding (resp. removing) a concept C": nextFS «— currentFS U {C}
(resp. nextFS «— currentFS \ {C})

— randomly choosing one of the current concepts from currentFS, say C;
replacing it with one of its refinements C’ € REF(C)

Refinement of concept description is language specific. E.g. for the case of ALC logic,
refinement operators have been proposed in [10, 6].

3 Grouping Individuals by Hierarchical Clustering

The conceptual clustering procedure implemented in our method works top-down, start-
ing with one universal cluster grouping all instances. Then it iteratively finds two clus-
ters bisecting an existing one up to the desired number of clusters is reached. This
algorithm can be thought as producing a dendrogram levelwise: the number of levels
coincides with the number of clusters. It can be very fast.



3.1 The Algorithm

In particular our algorithm can be ascribed to the category of the heuristic partitioning
algorithms such as K-MEANS and EM [7]. Each cluster is represented by its center. In
our setting we will consider the notion of medoid as representing a cluster center since
our distance measure works on a categorical feature-space. The medoid of a group of
individuals is the individual that has the lowest distance w.r.t. the others. Formally. given
acluster C' = {ay, ag, ..., an}, the medoid is defined:

n
m = medoid(C) = argminz d(a,a;)
a€eC =1

The proposed algorithm can be considered as a hierarchical extension of the PAM
algorithm (Partition Around Medoids [8]): each cluster is represented by one of the
individuals in the cluster, the medoid, i.e., in our case, the one with the lowest average
distance w.r.t. all the others individuals in the cluster. The bi-partition is repeated level-
wise producing a dendrogram.

Fig. 2 reports a sketch of our algorithm. It essentially consists of two nested loops:
the outer one computes a new level of the resulting dendrogram and it is repeated until
the desired number of clusters is obtained (which corresponds to the latest level; the
inner loop consists of a run of the PAM algorithm at the current level.

Per each level, the next worst cluster is selected (selectWorstCluster() function) on
the grounds of its quality, e.g. the one endowed with the least average inner similarity
(or cohesiveness [12]). This cluster is candidate to being parted in two. The partition
is constructed around two medoids initially chosen (selectMostDissimilar() function)
as the most dissimilar elements in the cluster and then iteratively adjusted in the inner
loop. In the end, the candidate cluster is replaced by the newly found parts at the next
level of the dendrogram.

The inner loop basically resembles to a 2-means algorithm, where medoids are con-
sidered instead of means that can hardly be defined in symbolic computations. Then,
the classical two steps are performed in an iteration:

distribution given the current medoids, the first distributes the other individuals in one
of the two partitions under construction on the grounds of their similarity w.r.t.
either medoid;

center re-computation given the bipartition obtained by distribute(), this second step
computes the new medoids for either cluster. These tend to change on each iteration
until eventually they converge to a stable couple (or when a maximum number of
iteration have been performed).

Each node of the tree (a cluster) may be labeled with an intensional concept defini-
tion which characterizes the individuals in the given cluster while discriminating those
in the twin cluster at the same level. Labeling the tree-nodes with concepts can be re-
garded as a number of supervised learning problems in the specific multi-relational
representation targeted in our setting. As such it deserves specific solutions that are
suitable for the DL languages employed.



clusterVector HIERARCHICALBISECTINGAROUNDMEDOIDS(allIndividuals, k, maxlterations)
input alllndividuals: set of individuals

k: number of clusters;

max|terations: max number of inner iterations;
output clusterVector: array [1..k] of sets of clusters

begin

level :=0;

clusterVector[1] := allIndividuals;

repeat
++level;
cluster2split := SELECTWORSTCLUSTER(clusterVector[level]);
iterCount :=0;

stableConfiguration := false;
(newMedoidl,newMedoid2) := SELECTMOSTDISSIMILAR(cluster2split);
repeat
++iterCount;
(medoid1l,medoid2) := (newMedoidl,newMedoid2);
(clusterl,cluster2) := DISTRIBUTE(cluster2split,medoid1,medoid2);
newMedoidl := MEDOID(clusterl);
newMedoid2 := MEDOID(cluster2);
stableConfiguration := (medoidl = newMedoidl) A (medoid2 = newMedoid2);
until stableConfiguration V (iterCount = maxlterations);
clusterVector[level+1] := REPLACE(cluster2split,clusterl,cluster2,clusterVector[level]);
until (level = k);
end

Fig. 2. The HIERARCHICAL BISECTING AROUND MEDOIDS Algorithm.

A straightforward solution may be found, for DLs that allow for the computation
of (an approximation of) the most specific concept (msc) and least common subsumer
(Ics) [1] (such as ALC). This may involve the following steps:
given a cluster of individuals node;

— for each individual a; € node; do
compute M; := msc(a;) w.r.t. A;

- let MSCs; := {M; | a; € node; };

— return lcs(MSCs;)

As an alternative, algorithms for learning concept descriptions expressed in DLs
may be employed [10, 6]. Indeed, concept formation can be cast as a supervised learn-
ing problem: once the two clusters at a certain level have been found, where the mem-
bers of a cluster are considered as positive examples and the members of the dual cluster
as negative ones. Then any concept learning method which can deal with this represen-
tation may be utilized for this new task.



3.2 Discussion

The representation of centers by means of medoids has two advantages. First, it presents
no limitations on attributes types, and, second, the choice of medoids is dictated by the
location of a predominant fraction of points inside a cluster and, therefore, it is lesser
sensitive to the presence of outliers. In K-MEANS case a cluster is represented by its
centroid, which is a mean (usually weighted average) of points within a cluster. This
works conveniently only with numerical attributes and can be negatively affected by a
single outlier.

A PAM algorithm has several favorable properties. Since it performs clustering with
respect to any specified metric, it allows a flexible definition of similarity. This flexi-
bility is particularly important in biological applications where researchers may be in-
terested, for example, in grouping correlated or possibly also anti-correlated elements.
Many clustering algorithms do not allow for a flexible definition of similarity, but allow
only Euclidean distance in current implementations. In addition to allowing a flexi-
ble distance metric, a PAM algorithm has the advantage of identifying clusters by the
medoids. Medoids are robust representations of the cluster centers that are less sensi-
tive to outliers than other cluster profiles, such as the cluster means of K-MEANS. This
robustness is particularly important in the common context that many elements do not
belong exactly to any cluster, which may be the case of the membership in DL knowl-
edge bases, which may be not ascertained given the OWA.

4 Experimental Validation

We propose also a validation index that can be employed to assess the best clustering
level in the dendrogram produced by the hierarchical algorithm. As pointed out in sev-
eral surveys on clustering, it is better to use a different criterion for clustering (e.g. for
choosing the candidate cluster to bisection) and for assessing the quality of a cluster.

To this purpose, we modify a generalization of Dunn’s index [2] to deal with medoids.
Let P = {C4,...,C)} be apossible clustering of n individuals in k clusters. The index
can be defined:

- . . (Sp(Ci,Cj)
VGD(P) o 1I§nil£k 1%1219 { maxi<p<k {AP(C’h)}

i#]

where d,, is the Hausdorff distance for clusters? derived from d, and the cluster diameter
measure 4, is defined:

Ap(Ch) = |027h| (Z dy(c, mh))

ceCy,

which is more noise-tolerant w.r.t. other standard measures.

>The metric &, is defined, given any couple of clusters (C;,C;), §(C;,C;) =
max{dp(Cs, Cj), dp(Cj, Ci) }, where dp (Ci, C) = maxaec; {minsec; {dp(a, b)}}.



Table 1. Ontologies employed in the experiments.

ontology DL f#concepts #obj. prop. F#data prop. #individuals
FSM  SOF(D) 20 10 7 37
S.-W.-M. ALCOF(D) 19 9 1 115
TRANSPORTATION ALC 44 7 0 250
FINANCIAL ALCTIF 60 17 0 652
NTN SHIF(D) 47 27 8 676

The other measures employed are more standard: the mean square error (WSS, a
measure of cohesion) and the silhouette measure [8].

For the experiments, a number of different ontologies represented in OWL were se-
lected, namely: FSM, SURFACE-WATER-MODEL, TRANSPORTATION and NEWTES-
TAMENTNAMES from the Protégé library?®, the FINANCIAL ontology* employed as a
testbed for the PELLET reasoner. Table 1 summarizes important details concerning the
ontologies employed in the experimentation.

For each populated ontology, the experiments have been repeated for varying num-
bers k of clusters (5 through 20). In the computation of the distances between individ-
uals (the most time-consuming operation) all concepts in the ontology have been used
for the committee of features, thus guaranteeing meaningful measures with high redun-
dance. The PELLET reasoner’ was employed to compute the projections. An overall
experimentation of 16 repetitions on a dataset took from a few minutes to 1.5 hours on
a 2.5GhZ (512Mb RAM) Linux Machine.

The outcomes of the experiments are reported in Fig. 3. For each ontology, we report
the graph for Dunn’s, Silhouette and WSS indexes, respectively, at increasing values of
k. Itis possible to note that the two principal measures (Dunn’s and Silhouette) are quite
close to their optimal values (0 and 1, resp.), while the cohesion coefficient WSS may
vary a lot, which gives an hint on possible cut points in the hierarchical clusterings (i.e.
optimal values of k).

5 Conclusions

This work has presented a clustering for (multi-)relational representations which are
standard in the SW field. Namely, it can be used to discover interesting groupings of
semantically annotated resources in a wide range of concept languages. The method
exploits a novel dissimilarity measure, that is based on the resource semantics w.r.t. a
number of dimensions corresponding to a committee of features represented by a group
of concept descriptions (discriminating features). The algorithm, is an adaptation of the
classic bisecting k-means to complex representations typical of the ontology in the SW.

Currently we are investigating evolutionary clustering methods both for performing
the optimization of the feature committee and for clustering individuals automatically
discovering an optimal number of clusters.

*http://protege.stanford.edu/plugins/owl/owl-1library
* http://www.cs.put.poznan.pl/alawrynowicz/financial.owl
>http://pellet.owldl.com
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Fig. 3. Outcomes of the experiments: Dunn’s, Silhouette, and WSS index graphs.



