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Abstract. The paper presents a clustering method which can be applied to pop-
ulated ontologies for discovering interesting groupings of resources therein. The
method exploits a simple, yet effective and languageindependent, semi-distance
measure for individuals, that is based on their underlying semantics along with a
number of dimensions corresponding to a set of concept descriptions (discrimi-
nating features committee). The clustering algorithm is a partitional method and
it based on the notion of medoids w.r.t. the adopted semi-distance measure. Even-
tually, it produces a hierarchical organization of groups of individuals. A final ex-
periment demonstrates the validity of the approach using absolute quality indices.
We propose two possible exploitations of these clusterings: concept formation
and detecting concept drift or novelty.

1 Introduction

In the perspective of automatizing the most burdensome activities for the knowledge
engineer, such as ontology construction, matching and evolution, they may be assisted
by supervised or unsupervised methods crafted for the standard representations adopted
in the Semantic Web (SW) context and founde®@scription LogicgDLS).

In this work, we investigate on unsupervised learning for populated ontologies.
Specifically, we focus on the problem afnceptual clustering?7] of semantically an-
notated resources, that amounts to group them into clusters according to some criteria
(e.g. similarity). The benefits of conceptual clustering in the context of knowledge bases
maintenance are manifold. Clustering resources enables the definition of new emerging
concepts¢oncept formationon the grounds of those already defined (intensionally or
extensionally) in the knowledge base; supervised methods can then exploit these clus-
ters to induce new concept definitions or to refining existing ooe®{ogy evolutio)y
intensionally defined groupings may speed-up the task of searciscalvery[6]; a
hierarchical clustering also suggests criteriarborkingthe retrieved resources.

Essentially, most of the existing clustering methods are based on the application
of similarity (or density) measures defined over a fixed set of attributes of the domain
objects. Classes of objects are taken as collections that exhibit low interclass similarity
(density) and high intraclass similarity (density). More rarely these methods are able to
exploit account (declarative) forms pfior or background knowledg® characterize
the clusters with intensional definitions. This hinders the interpretation of the outcomes
of these methods which is crucial in the SW perspective that should enforce semantic



interoperability through knowledge sharing and reuse. Thus, specific conceptual clus-
tering methods have to be taken into account, such as those focussing on the definition
of groups of objects through conjunctive descriptions based on selected attributes [27].
More recent related works are based on similarity measures for clausal spaces [18], yet
the expressivity of these representations is incomparable w.r.t. DLs [3]. Also the under-
lying semantics is different since tli@pen World AssumptiofOWA) is made on DL
languages, whereas ti@osed World AssumptiofCWA) is the standard in machine
learning and data mining.

Regarding dissimilarity measures in DL languages, as pointed out in a seminal pa-
per [4], most of the existing measures focus on the similarity of atomic concepts within
hierarchies or simple ontologies. Moreover, they have been conceived for assessing
conceptsimilarity, whereas for accomplishing inductive tasks, such as clustering, a no-
tion of similarity betweerindividualsis required. Recently, dissimilarity measures for
specific DLs have been proposed [5]. Although they turned out to be quite effective for
the inductive tasks, they are still partly based on structural criteria which makes them
fail to fully grasp the underlying semantics and hardly scale to more complex ontology
languages that are commonly adopted in the SW context.

Therefore, we have devised a family of dissimilarity measures for semantically an-
notated resources, which can overcome the aforementioned limitations. Namely, we re-
cur to a new family of measures [8] that is suitable for a wide range of languages since
it is merely based on the discernibility of the individuals with respect to a fixed set of
features (henceforth @mmitteg represented by concept definitions. These measures
are not absolute, yet they depend on the knowledge base they are applied to. Thus, the
choice of the optimal feature sets may require a preliminary feature construction phase.
To this purpose we have proposed randomized procedures bagguhetic program-
mingor simulated annealingg, 9].

Regarding conceptual clustering, the expressiveness of the language adopted for
describing objects and clusters is equally important. Former alternative methods de-
vised for terminological representations, pursued logic-based approaches for specific
languages [17, 10]. Besides of the language-dependency limitation, it has been pointed
out that these methods may suffer from noise in the data. This motivates our investi-
gation on similarity-based clustering methods which should be more noise-tolerant and
language-independent.

Thus we propose a multi-relational extension of effective clustering techniques,
which is tailored for the SW context. It is intended for grouping similar resources w.r.t.
the novel measure. The notionmieanscharacterizing partitional algorithms descend-
ing from (BISECTING) K-MEANS [15] originally developed for numeric or ordinal fea-
tures, is replaced by the notionmiedoid416] as central individuals in a cluster. Hence
we propose &ISECTING AROUND MEDOIDSalgorithm, which exploits the aforemen-
tioned measures [8].

The clustering algorithm produces hierarchies of clusters. An evaluation of the
method applied to real ontologies is presented based on internal validity indices such as
the silhouette measure [16]. Then, we also suggest two possible ways for exploiting the
outcomes of clustering: concept formation and detect concept drift or novelty detection.
Namely, existing concept learning algorithms for DLs [14, 20] can be used to produce



new concepts based on a group of examples (i.e. individuals in a cluster) and coun-
terexamples (individuals in disjoint clusters, on the same hierarchy level). Besides, we
provide also a method to detect interesting cases of concept that are evolving or novel
concepts which are emerging based on the elicited clusters.

The paper is organized as follows. Sect. 2 recalls the basics of the representation
and the distance measure adopted. The clustering algorithm is presented and discussed
in Sect. 3. After Sect. 4, concerning the related works, we present an experimental
evaluation of the clustering procedure in Sect. 5. Conclusions are finally examined in
Sect. 6.

2 Semantic Distance Measures

In the following, we assume that resources, concepts and their relationship may be de-
fined in terms of a generic ontology represenation that may be mapped to some DL
language with the standard model-theoretic semantics (see the handbook [1] for a thor-
ough reference).

In this context, a&knowledge bas& = (7,.4) contains aTBox7 and anABox
A. T is a set of concept definitionsl contains assertions (facts, data) concerning the
world state. Moreover, normally thenigue names assumptiésm made on the ABox
individuals' therein. The set of the individuals occurring .l will be denoted with
Ind(A). As regards the inference services, like all other instance-based methods, our
procedure may require performingstance-checkingvhich amounts to determining
whether an individual, say, belongs to a concept extension, i.e. whethés) holds
for a certain concept'.

2.1 A Semantic Semi-Distance for Individuals

For our purposes, a function for measuring the similarity of individuals rather than
concepts is needed. It can be observed that individuals do not have a syntactic structure
that can be compared. This has led to lifting them to the concept description level before
comparing them (recurring to the approximation of thest specific concepf an
individual w.r.t. the ABox) [5].

We have developed a new measure whose definition totally depends on semantic
aspects of the individuals in the knowledge base [8]. On a semantic level, similar indi-
viduals should behave similarly with respect to the same concepts. The computation of
the similarity of individuals is based on the idea of comparing their semantics along a
number of dimensions represented by a committee of concept descriptions. Following
the ideas borrowed from ILP [25], we propose the definition of totally semantic distance
measures for individuals in the context of a knowledge base.

The rationale of the new measure is to compare individuals on the grounds of their
behavior w.r.t. a given set of hypotheses, that is a collection of concept descriptions, say
F={F,Fs,...,Fy}, which stands as a group of discriminatiiegturesexpressed in
the language taken into account.

! Individuals can be assumed to be identified by their own URI.



In its simple formulation, a family of distance functions for individuals inspired to
Minkowski’s distances can be defined as follows:

Definition 2.1 (family of measures)Let K = (7, .A) be a knowledge base. Given a
set of concept descriptiofis= { F}, F», ..., F,,, }, a family of functions

dy, : Ind(A) x Ind(A) — [0,1]

is defined as follows:

1/p
Va,b € Ind(A) dF(a,b) (Z | 75(a) — i ( )|P>

wherep > 0 andVi € {1,...,m} theprojection functionr; is defined by:
Va € Ind(A) mi(a) =4 0 K = —F;(z)

1/2 otherwise

Itis easy to prove that these functions have the standard properties for semi-distances:

Proposition 2.1 (semi-distance)For a fixed feature set angd > 0, d,, is a semi-
distance, i.e. given any three instanees, ¢ € Ind(.A), it holds that:

1. d,(a,b) > 0anddy(a,b) =0ifa =10
2. dp(a,b) = dp(b,a)
3. dp(a,c) < dp(a,b) +dy(b, c)

It cannot be proved that,(a,b) = 0 iff @ = b. This is the case dhdiscernible
individuals with respect to the given set of hypotheBSes

Compared to other proposed distance (or dissimilarity) measures [4], the presented
function does not depend on the constructors of a specific language, rather it requires
only retrieval or instance-checking service used for deciding whether an individual is
asserted in the knowledge base to belong to a concept extension (or, alternatively, if this
could be derived as a logical consequence).

In the perspective of integrating the measure in ontology mining algorithms which
massively use it, such as all instance-based methods, it should be noted that the
functions §i = 1,...,m) can be computed in advance for the training instances, thus
determining a speed-up in the overall computation.

2.2 Feature Set Optimization

The underlying idea for the measure is that similar individuals should exhibit the same
behavior w.r.t. the concepts l Here, we make the assumption that the featurd-set
represents a sufficient number of (possibly redundant) features that are able to discrim-
inate really different individuals.

Experimentally, we could obtain good results by using the very set of both primitive
and defined concepts found in the ontology (see Sect. 5). However, the choice of the



concepts to be includedfeature selectior may be crucial, for a good committee may
discern the individuals better and a possibly smaller committee yields more efficiency
when computing the distance.

We have devised a specific optimization algorithms foundegeimetic program-
mingandsimulated annealingvhose presentation goes beyond the scope of this work)
which are able to find optimal choices of discriminating concept committees. Namely,
since the function is very dependent on the concepts included in the committee of fea-
turesF, two immediate heuristics can be derived: 1) control the number of concepts
of the committee, including especially those that are endowed with a real discriminat-
ing power; 2) finding optimal sets of discriminating features, by allowing also their
composition employing the specific constructors made available by the representation
language of choice.

3 Hierarchical Clustering for Individuals in an Ontology

The conceptual clustering procedure that we propose can be ascribed to the category of
the heuristic partitioning algorithms suchesvEANS [15]. For the categorical nature

of the assertions on individuals the notion of mean is replaced by the one of medoid,
as in PAM (artition Around Medoid$16]). Besides the procedure is crafted to work
iteratively to produce a hierarchical clustering.

The algorithm implements a top-down bisecting method, starting with one universal
cluster grouping all instances. Iteratively, it creates two new clusters by bisecting an
existing one and this continues until the desired number of clusters is reached. This
algorithm can be thought as levelwise producing a dendrogram: the number of levels
coincides with the number of clusters.

Each cluster is represented by one of its individuals. As mentioned above, we con-
sider the notion of medoid as representing a cluster center since our distance mea-
sure works on a categorical feature-space. The medoid of a group of individuals is the
individual that has the lowest dissimilarity w.r.t. the others. Formally. given a cluster
C ={ay,as,...,a,}, the medoid is defined:

m = medoidC) = argmin» _ d(a, a;)
acC =1
The proposed method can be considered as a hierarchical extension of PAM. A bi-
partition is repeated level-wise producing a dendrogram. Fig. 1 reports a sketch of our
algorithm. It essentially consists of two nested loops: the outer one computes a new
level of the resulting dendrogram and it is repeated until the desired number of clusters
is obtained (which corresponds to the final level; the inner loop consists of a run of the
PAM algorithm at the current level.
Per each level, the next worst cluster is selecssl ECTWORSTCLUSTER() func-
tion) on the grounds of its quality, e.g. the one endowed with the least average inner
similarity (or cohesiveness [27]). This cluster is candidate to being splitted. The parti-
tion is constructed around two medoids initially chossBLECTM OSTDISSIMILAR()
function) as the most dissimilar elements in the cluster and then iteratively adjusted in



clusterVector HIERARCHICALBISECTINGAROUNDM EDOIDS(allindividuals, k, maxlterations)
input allindividuals: set of individuals

k: number of clusters;

maxlterations: max number of inner iterations;
output clusterVector: array|[1..k] of sets of clusters

begin
level — 0O;
clusterVector[1] < allindividuals;
repeat
++level;
cluster2split < SELECTWORSTCLUSTER(clusterVector[level]);
iterCount « O;
stableConfiguration < false
(newMedoidl,newMedoid2) < SELECTMOSTDISSIMILAR(cluster2split);
repeat
++iterCount;
(medoid1,medoid2) — (newMedoidl,newMedoid2);
(clusterl,cluster2) < DISTRIBUTE(cluster2split, medoid1,medoid2);
newMedoidl < MEDOID(clusterl);
newMedoid2 < MEDOID(cluster2);
stableConfiguration « (medoidl = newMedoidl) A (medoid2 = newMedoid2);
until stableConfiguration Vv (iterCount = maxliterations);
clusterVector[level+1] — REPLACHcluster2split,clusterl,cluster2,clusterVector[level]);
until (level = k);
end

Fig. 1. The HERARCHICAL BISECTING AROUND MEDOIDS Algorithm.

the inner loop. In the end, the candidate cluster is replaced by the newly found parts at
the next level of the dendrogram.

The inner loop basically resembles to av2ANS algorithm, where medoids are
considered instead of means that can hardly be defined in symbolic computations. Then,
the standard two steps are performed iteratively:

distribution given the current medoids, distribute the other individuals to either parti-
tion on the grounds of their distance w.r.t. the respective medoid,;

medoid re-computation given the bipartition obtained liy'STRIBUTE(), compute the
new medoids for either cluster.

The medoid tend to change at each iteration until eventually they converge to a stable
couple (or when a maximum number of iterations have been performed).

An adaptation of a PAM algorithm has several favorable properties. Since it per-
forms clustering with respect to any specified metric, it allows a flexible definition of
similarity. This flexibility is particularly important in biological applications where re-
searchers may be interested, for example, in grouping correlated or possibly also anti-
correlated elements. Many clustering algorithms do not allow for a flexible definition
of similarity, but allow only Euclidean distance in current implementations.



In addition to allowing a flexible distance metric, a PAM algorithm has the advan-
tage of identifying clusters by the medoids. Medoids are robust representations of the
cluster centers that are less sensitive to outliers than other cluster profiles, such as the
cluster means ok-MEANS. This robustness is particularly important in the common
context that many elements do not belong exactly to any cluster, which may be the case
of the membership in DL knowledge bases, which may be not ascertained given the
OWA.

The representation of centers by means of medoids has two advantages. First, it
presents no limitations on attributes types, and, second, the choice of medoids is dictated
by the location of a predominant fraction of points inside a cluster and, therefore, it is
lesser sensitive to the presence of outlierk{MEANS case a cluster is represented by
its centroid, which is a mean (usually weighted average) of points within a cluster. This
works conveniently only with numerical attributes and can be negatively affected by a
single outlier.

3.1 Evolution: Automated Concept Drift and Novelty Detection

As mentioned in the introduction conceptual clustering enables a series of further activ-
ities related to dynamic settings: 1) concept drift [28]: i.e. the change of known concepts
w.r.t. the evidence provided by new annotated individuals that may be made available
over time; 2) novelty detection [26]: isolated clusters in the search space that require to
be defined through new emerging concepts to be added to the knowledge base.

The algorithms presented above are suitable for an online unsupervised learning
implementation. Indeed as soon as new annotated individuals are made available these
may be assigned to tl@osestclusters (where closeness is measured as the distance to
the cluster medoids or to the minimal distance to its instances). Then, new runs of the
clustering algorithm may yield a modification of the original model (clustering) both in
the clusters composition and in their number.

Following [26], the model representing the starting concepts is built based on the
clustering algorithm. For each cluster, the maximum distance between its instances and
the medoid is computed. This establishes a decision boundary for each cluster. The
union of the boundaries of all clusters is the global decision boundary which defines the
current model.

A new unseen example that falls inside this global boundary is consistent with the
model and therefore consideraedrmat otherwise, a further analysis is needed. A sin-
gle such individual should not be considered as novel, since it could simply represent
noise. Due to lack of evidence, these individuals are stored in a short-term memory,
which is monitored for the formation of new clusters that might indicate two condi-
tions: novelty and concept drift.

Using the clustering algorithm on individuals in the short-term memory generales
candidate clusters. For a candidate cluster to be considered valid, i.e. likely a concept
in our approach, the algorithm in Fig. 2 can be applied.

The candidate cluste@andCluster is considered valiifor drift or novelty detec-
tion when the average mean distance between medoids and the respective instances for

2 This aims at choosing clusters whose density is not lower than that of the model.



(decision,NewClustering) DRIFT_NOVELTY_DETECTION(Model, CCluster)
input: Model: current clustering;

CandCluster: candidate cluster;
output: (decision, NewClustering);

begin
mcc := medoid CandCluster);
for each C; € Model| do m; := medoidC;);
doverall = chjgﬂ ZCjGModel ﬁ ZaGCj d(a7 m]))v
deandidate = Tcamativster] DacCCluster 4@ MCC);
if doverall > deandidate then // valid candidate cluster
begin
m := medoid{m; | C; € Model}); // global medoid
dimax = MaXy, ; eModel (T2, M;5);
if d(m, mcc) < dmax then
return (drift, replaceflodel,CandCluster))
else return (novelty, Model U CandCluster)
end
else return (normal, integrateflodel,CandCluster))
end

Fig. 2. Concept drift and novelty detection algorithm.

all clusters of the current model is greater than the average distance of the new instances
to the medoid of the candidate cluster. Then a threshold for distinguishing between con-
cept drift and novelty is computed: the maximum distance between the medoids of the
model and the global ofe

When the distance between overall medoid and the medoid of the candidate cluster
exceeds the maximum distance then the case is of concept drift and the candidate cluster
is merged with the current model. Otherwise (novelty case) the clustering is simply
extended. Finally, when the candidate cluster is made up of normal instances these can
be integrated by assigning them to the closest clusters.

The main differences from the original method [26], lie in the different represen-
tational setting (simple numeric tuples were considered) which allows for the use of
off-the-shelf clustering methods such asmkaANs [15] based on a notion of centroid
which depend on the number of clusters required as a parameter. In our categorical
setting, medoids substitute the role of medoids and, more importantly, our method is
able to detect an optimal number of clusters autonomously, hence the influence of this
parameter is reduced.

3 Clusters which are closer to the boundaries of the model are more likely to appear due to a
drift occurred in the normal concept. On the other hand, a validated cluster appearing far from
the normal concept may represent a novel concept.



3.2 From Clusters to Concepts

Each node of the tree (a cluster) may be labeled with an intensional concept definition
which characterizes the individuals in the given cluster while discriminating those in the
twin cluster at the same level. Labeling the tree-nodes with concepts can be regarded
as solving a number of supervised learning problems in the specific multi-relational
representation targeted in our setting. As such it deserves specific solutions that are
suitable for the DL languages employed.

A straightforward solution may be found, for DLs that allow for the computation
of (an approximation of) thenost specific conceginsc) andleast common subsumer
(Ics) [1], such asALN, ALE or ALC. This may involve the following steps:
given a cluster of individualsode;;

— for eachindividual a; € node; do
computeM; «— msc(a;) W.r.t. A;

— letMSCs; «— {M; | a; € node;};

— return lcs(MSCs;)

As an alternative, algorithms for learning concept descriptions expressed in DLs
may be employed [19, 14]. Indeed, concept formation can be cast as a supervised learn-
ing problem: once the two clusters at a certain level have been found, where the mem-
bers of a cluster are considered as positive examples and the members of the dual cluster
as negative ones. Then any concept learning method which can deal with these repre-
sentations may be utilized for this new task.

4 Related Work

The unsupervised learning procedure presented in this paper is mainly based on two
factors: the semantic dissimilarity measure and the clustering method. To the best of
our knowledge in the literature there are very few examples of similar clustering al-
gorithms working on complex representations that are suitable for knowledge bases of
semantically annotated resources. Thus, in this section, we briefly discuss sources of
inspiration for our procedure and some related approaches.

4.1 Relational Similarity Measures

As previously mentioned, various attempts to define semantic similarity (or dissimi-
larity) measures for concept languages have been made, yet they have still a limited
applicability to simple languages [4] or they are not completely semantic depending
also on the structure of the descriptions [5]. Very few works deal with the comparison
of individuals rather than concepts.

In the context of clausal logics, a metric was defined [23] for the Herbrand interpre-
tations of logic clauses as induced from a distance defined on the space of ground atoms.
This kind of measures may be employed to assess similaritgdoctive databaseAl-
though it represents a form of fully semantic measure, different assumptions are made



with respect to those which are standard for knowledgeable bases in the SW perspective.
Therefore the transposition to the context of interest is not straightforward.

Our measure is mainly based on Minkowski’'s measures [29] and on a method for
distance induction developed by Sebag [25] in the contertathine learningwhere
metric learningis developing as an important subfield. In this work it is shown that
the induced measure could be accurate when employed for classification tasks even
though set of features to be used were not the optimal ones (or they were redundant).
Indeed, differently from our unsupervised learning approach, the original method learns
different versions of the same target concept, which are then employed in a voting
procedure similar to the Nearest Neighbor approach for determining the classification
of instances.

A source of inspiration was alsough setgheory [24] which aims at the formal def-
inition of vague sets by means of their approximations determined by an indiscernibility
relationship. Hopefully, these methods developed in this context will help solving the
open points of our framework (see Sect. 6) and suggest new ways to treat uncertainty.

4.2 Clustering Procedures

Our algorithm adapts to the specific representations devised for the SW context a combi-
nation of the distance-based approaches (see [15]). Specifically, in the methods derived
from K-MEANS andk-MEDOIDS each cluster is represented by one of its points.

PAM, CLARA [16], and CLARANS [22] represent early systems adopting this
approach. They implement iterative optimization methods that essentially cyclically
relocate points between perspective clusters and recompute potential medoids. Ester
et al. [7] extended CLARANS to deal with very large spatial databases.

Further comparable clustering methods are those based iodiaoernibility rela-
tionship[13]. While in our method this idea is embedded in the semi-distance measure
(and the choice of the committee of concepts), these algorithms are based on an it-
erative refinement of an equivalence relationship which eventually induces clusters as
equivalence classes.

Alternatively evolutionary clustering approaches may be considered [9] which are
also capable to determine a good estimate of the number of clusters [11, 12]. The UNC
algorithm is a more recent related approach which was also extended to the hierarchical
clustering case H-UNC [21].

As mentioned in the introduction, the classic approaches to conceptual clustering
[27] in complex (multi-relational) spaces are based on structure and logics. Kietz &
Morik proposed a method for efficient construction of knowledge bases for the BACK
representation language [17]. This method exploits the assertions concerning the roles
available in the knowledge base, in order to assess, in the corresponding relationship,
those subgroups of the domain and ranges which may be inductively deemed as dis-
joint. In the successive phase, supervised learning methods are used on the discovered
disjoint subgroups to construct new concepts that account for them. A similar approach
is followed in [10], where the supervised phase is performed as an iterative refinement
step, exploiting suitable refinement operators for a different DL, natd€lg.

System OLINDDA [26] is one of the first methods exploiting clustering for detect-
ing concept drift and novelty. Our method improves on it both in the representation of



Table 1.Ontologies employed in the experiments.

ontology DL #concepts #obj. prop. #data prop. #individuals
FSM  SOF(D) 20 10 7 37
S.-W.-M. ALCOF(D) 19 9 1 115
TRANSPORTATION ALC 44 7 0 250
FINANCIAL ALCTIF 60 17 0 652
NTN SHIF(D) 47 27 8 676

the instances and in being based on an original clustering method which is not parame-
terized on the number of clusters.

5 Experimental Evaluation of the Clustering Procedure

An experimental session was planned in order to prove the method feasible. It could

not be a comparative experimentation since, to the best of our knowledge no other

hierarchical clustering method has been proposed which is able to cope with DLs rep-

resentations (on a semantic level) except [17, 10] which are language-dependent and
produce non-hierarchical clusterings.

For the experiments, a number of different ontologies represented in OWL were se-
lected, namely: FSM, $RFACE-WATER-MODEL, TRANSPORTATIONand NEWTES-
TAMENTNAMES from the Proggg library*, the FNANCIAL ontology employed as a
testbed for the PLLET reasoner. Table 1 summarizes important details concerning the
ontologies employed in the experimentation. For each individual, a variable number of
assertions was available in the KB.

As pointed out in several surveys on clustering, it is better to use a different crite-
rion for clustering (e.g. for choosing the candidate cluster to bisection) and for assessing
the quality of a cluster. For the evaluation we employed standard validity measures for
clustering: the mean square error (WSS, a measure of cohesion) agilththuettemea-
sure [16]. Besides, we propose a the extension of Dunn’s validity index for clusterings
produced by the hierarchical algorithm [2]. Namely, we propose a modified version of
Dunn’s index to deal with medoids. L&t = {C1, ..., Cy} be a possible clustering of
n individuals ink clusters. The index can be defined:

5p(Ci, Cj) }

P) = mi i
Vap(P) = min 1g12k{1naX1<h<k{Ap(Ch)}

1<i<k
i#j

4 http://protege.stanford.edu/plugins/owl/ow!-library
5 http://lwww.cs.put.poznan.pl/alawrynowicz/financial.owl



wheres,, is the Hausdorff distance for clustéderived fromd,, and the cluster diameter
measurej,, is defined:

Ay(Ch) = ﬁ (Z dy(c; mh))

ceClh

which is more noise-tolerant w.r.t. other standard measures.

For each populated ontology, the experiments have been repeated for varying num-
bersk of clusters (5 through 20). In the computation of the distances between individ-
uals (the most time-consuming operation) all concepts in the ontology have been used
for the committee of features, thus guaranteeing meaningful measures with high redun-
dance. The BLLET reasoner was employed to compute the projections. An overalll
experimentation of 16 repetitions on a dataset took from a few minutes to 1.5 hours on
a 2.5Ghz (512Mb RAM) Linux Machine.

The outcomes of the experiments are reported in Fig. 3. For each ontology, we report
the graph for Dunn'’s, Silhouette and WSS indexes, respectively, at increasing values of
k (number of clusters searched, which determines the stopping condition).

Particularly, the decay of Dunn’s index may be exploited as a hint on possible cut
points (theknee$in the hierarchical clusterings (i.e. optimal valueg:pf

It is also possible to note that the silhouette values, as absolute clustering quality
measures, are quite stably close to the top of the scale (1). This gives a way to assess
the effectiveness of our algorithms w.r.t. others, although applied to different represen-
tations.

Conversely, the cohesion coefficient WSS may vary a lot, indicating that for some
level the clustering found by the algorithm, which proceeds by bisection of the worst
cluster in the previous level, is not the natural one, and thus is likely to be discarded.

6 Conclusions

This work has presented a clustering for (multi-)relational representations which are
standard in the SW field. Namely, it can be used to discover interesting groupings of
semantically annotated resources in a wide range of concept languages.

The method exploits a novel dissimilarity measure, that is based on the resource
semantics w.r.t. a number of dimensions corresponding to a committee of features rep-
resented by a group of concept descriptions (discriminating features). The algorithm, is
an adaptation of the classic bisecting k-means to complex representations typical of the
ontology in the SW.

Currently we are investigating evolutionary clustering methods both for performing
the optimization of the feature committee and for clustering individuals automatically
discovering an optimal number of clusters.

®The metric 6, is defined, given any couple of cluster&;, C;), 6(C;,C;) =
max{d,(Cs, C;),dp(Cj,C;)}, whered, (C;, C;) = maxaeci{minbecj {dp(a,b)}}.
7 http://pellet.owldl.com
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Fig. 3. Outcomes of the experiments: Dunn’s, Silhouette, and WSS index graphs.
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