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Abstract. Several activities related to semantically annotated resources can be
enabled by a notion of similarity, spanning from clustering to retrieval, match-
making and other forms of inductive reasoning. We propose the definition of a
family of semi-distances over the set of objects in a knowledge base which can
be used in these activities. In the line of works on distance-induction on clausal
spaces, the family is parameterized on a committee of concepts expressed with
clauses. Hence, we also present a method based on the idea of simulated anneal-
ing to be used to optimize the choice of the best concept committee.

1 Introduction

Assessing semantic similarity between objects can support a wide variety of instance-
based tasks spanning from case-based reasoning and retrieval to inductive generaliza-
tion and clustering.

As pointed out in related surveys [16], initially, most of the proposed similarity mea-
sures for concept descriptions focus on the similarity of atomic concepts within simple
concept hierarchies or are strongly based on the structure of the terms for specific FOL
fragments [5]. Alternative approaches are based on related notions of feature similarity
or information content. All these approaches have been specifically aimed at assessing
similarity between concepts (see also [10]). In the perspective of exploiting similarity
measures in inductive (instance-based) tasks like those mentioned above, the need for a
definition of a semantic similarity measure for instances arises [1, 2, 12].

Recently, semantic dissimilarity measures for specific FOL fragments have been
proposed which turned out to be practically effective for the targeted inductive tasks. Al-
though these measures ultimately rely on the semantics of primitive concepts as elicited
from the knowledge base, still they are partly based on structural criteria (a notion of
normal form) which determine also their main weakness: they are hardly portable to
deal with other FOL fragments.

Therefore, we have devised a new family of dissimilarity measures for semantically
annotated resources, which can overcome the aforementioned limitations. Our measures
are mainly based on Minkowski’s measures for Euclidean spaces defined by means of
the hypothesis-driven distance induction method [14]. Another source of inspiration
was provided by the indiscernibility relationships investigated rough sets theory [11].

Namely, the proposed measures are based on the degree of discernibility of the
input objects with respect to a committee of features, which are represented by concept



descriptions. As such, these new measures are not absolute, since they depend on both
the choice (and cardinality) of the features committee and the knowledge base they are
applied to. Rather, they rely on statistics on objects that are likely to be maintained
by the knowledge base management system, which can determine a potential speed-
up in the measure computation during knowledge-intensive tasks. Differently from the
original idea [14], we give a definition of the notion of projections which is based on
model-theory in LP.

Furthermore, we also propose ways to extend the presented measures to the case of
assessing concept similarity by considering concepts as represented by their extension,
i.e. the set of their instances. Specifically, we recur to notions borrowed from clustering
[6] such as the medoid, the most centrally located instance in a concept extension w.r.t.
a given metric.

Experimentally1, it may be shown that the measures induced by large committees
(e.g. including all primitive and defined concepts) can be sufficiently accurate when em-
ployed for classification tasks even though the employed committee of features were not
the optimal one or if the concepts therein were partially redundant. Nevertheless, this
has led us to investigate on a method to optimize the committee of features that serve
as dimensions for the computation of the measure. To this purpose, the employment of
genetic programming and randomized search procedures was considered. Finally we
opted for an optimization search procedure based on simulated annealing [7], a ran-
domized approach that can overcome the problem of the search being caught in local
minima.

The remainder of the paper is organized as follows. The definition of the family of
measures is proposed in Sect. 2, where we prove them to be semi-distances and extend
their applicability to the case of concept similarity. In Sect. 3, we illustrate and discuss
the method for optimizing the choice of concepts for the committee of features which
induces the measures. The effectiveness of the method is demonstrated in a preliminary
experimentation (see Sect. 4) on the task of similarity search. Possible developments
are finally examined in Sect. 5.

2 A Family of Semi-distances for Instances

In the following, we assume that objects (instances), concepts and relationships among
them may be defined in terms of a function-free (yet not constant-free) clausal language
such as DATALOG, endowed with the standard semantics (see [9] for reference).

We will consider a knowledge base K = 〈P,D〉, where P is a logic program repre-
senting the schema, with concepts (entities) and relationships defined through definite
clauses, and the database D is a set of ground facts concerning the world state. In this
context, without loss of generality, we will consider concepts as described by unary
atoms. Primitive concepts are defined in D extensionally by means of ground facts
only, whereas defined concepts will be defined in P by means of clauses. The set of the
objects occurring in K is denoted with const(D).

1 Such experiments, regarding a nearest neighbor search task, are not further commented here
for the sake of brevity.



As regards the necessary inference services, our measures will require performing
instance-checking, which amounts to determining whether an object belongs (is an in-
stance) of a concept in a certain interpretation.

2.1 Basic Measure Definition

It can be observed that instances lack a syntactic structure that may be exploited for a
comparison. However, on a semantic level, similar objects should behave similarly with
respect to the same concepts, i.e. similar assertions (facts) should be shared. Conversely,
dissimilar instances should likely instantiate disjoint concepts.

Therefore, we introduce novel dissimilarity measures for objects, whose rationale
is the comparison of their semantics w.r.t. a fixed number of dimensions represented
by concept descriptions (predicate definitions). Namely, instances are compared on the
grounds of their behavior w.r.t. a reduced (yet not necessarily disjoint) committee of fea-
tures, represented by a collection of concept descriptions, say F = {F1, F2, . . . , Fm},
which stands as a group of discriminating features expressed in the language taken into
account. In this case, we will consider unary predicates which have a definition in the
knowledge base.

Following [14], a family of totally semantic distance measures for objects can be
defined for clausal representations. In its simplest formulation, inspired by Minkowski’s
metrics, these functions can be defined as follows:

Definition 2.1 (family of measures). Let K be a knowledge base. Given a set of con-
cept descriptions F = {F1, F2, . . . , Fm}, a family {dF

p}p∈IN of functions dF
p : const(D)×

const(D) 7→ [0, 1] is defined as follows:

∀a, b ∈ const(D) dF
p(a, b) :=

1
m

[
m∑

i=1

| πi(a)− πi(b) |p
]1/p

where ∀i ∈ {1, . . . ,m} the i-th projection function πi is defined by:

∀a ∈ const(D) πi(a) =
{

1 K ` Fi(a)
0 otherwise

The superscript F will be omitted when the set of features is fixed.

2.2 Discussion

We can prove that these functions have the standard properties for semi-distances:

Proposition 2.1 (semi-distance). For a fixed feature set and p ∈ IN, function dp is a
semi-distance.

Proof. In order to prove the thesis, given any three objects a, b, c ∈ const(D) it must
hold that:
1. dp(a, b) ≥ 0 positivity
2. dp(a, b) = dp(b, a) symmetry
3. dp(a, c) ≤ dp(a, b) + dp(b, c) triangular inequality
Now, we observe that:



1. trivial, by definition
2. trivial, for the commutativity of the operators involved
3. it follows from the properties of the power function:

dp(a, c) =
1
m

[
m∑

i=1

| πi(a)− πi(c) |p
]1/p

=
1
m

[
m∑

i=1

| πi(a)− πi(b) + πi(b)− πi(c) |p
]1/p

≤ 1
m

[
m∑

i=1

| πi(a)− πi(b) |p + | πi(b)− πi(c) |p
]1/p

=
1
m

[
m∑

i=1

| πi(a)− πi(b) |p +
m∑

i=1

| πi(b)− πi(c) |p
]1/p

≤ 1
m

[
m∑

i=1

| πi(a)− πi(b) |p
]1/p

+
1
m

[
m∑

i=1

| πi(b)− πi(c) |p
]1/p

= dp(a, b) + dp(b, c)

As such, these are only a semi-distances. Namely, it cannot be proved that dp(a, b) =
0 iff a = b. This is the case of indiscernible instances with respect to the given set of
features F [11].

Here, we make the assumption that the feature-set F may represent a sufficient num-
ber of (possibly redundant) features that are able to discriminate really different objects.
As hinted in [14], redundancy may help appreciate the relative differences in similarity.

Compared to other proposed distance (or dissimilarity) measures, the presented
functions are not based on structural (syntactical) criteria; namely, they require only
deciding whether an object can be an instance of the concepts in the committee.

Note that the computation of projection functions can be performed in advance (with
the support of suitable DBMSs) thus determining a speed-up in the actual computation
of the distance measure. This is very important for the integration of these measures in
instance-based methods which massively use distances, such as in case-based reasoning
and clustering.

2.3 Extensions

The definition above might be further refined and extended by recurring to model the-
ory. Namely, the set of Herbrand models of the knowledge baseMK ⊆ 2|BK| may be
considered, where BK stands for its Herbrand base.

Now, given two instances a and b to be compared w.r.t. a certain feature Fi, i =
1, . . . ,m, we might check whether they can be distinguished in the world represented
by a Herbrand interpretation I ∈ MK: I |= Fi(a) and I |= Fi(b). Hence, a distance
measure should count the cases of disagreement, varying the Herbrand models of the



knowledge base: The resulting definition for a dissimilarity measure is the following:

∀a, b ∈ const(D) dF
p(a, b) :=

1
m · |MK|

[ ∑
I∈MK

m∑
i=1

| πIi (a)− πIi (b) |p
]1/p

where the projections are computed for a specific world state as encoded by a Herbrand
interpretation I:

∀a ∈ const(D) πI
i (a) =

{
1 Fi(a) ∈ I
0 otherwise

Following the rationale of the average link criterion used in clustering [6], the mea-
sures can be extended to the case of concepts, by recurring to the notion of medoids.
The medoid of a group of objects is the object that has the highest similarity w.r.t. the
others. Formally. given a group G = {a1, a2, . . . , an}, the medoid is defined:

m = medoid(G) = argmin
a∈G

n∑
j=1

dF
p(a, aj)

Now, given two concepts C1, C2, we can consider the two corresponding groups of
objects obtained by retrieval Ri = {a ∈ const(D) | K |= Ci(a)}, and their resp.
medoids mi = medoid(Ri) for i = 1, 2 w.r.t. a given measure dF

p (for some p > 0 and
committee F). Then we can define the function for concepts as follows:

dF
p(C1, C2) := dF

p(m1,m2)

Alternatively, a metric can be defined based on the single-link and complete-link
principles [6]:

dF
p(C1, C2) =

min{dF
p(a, b) | K |= C1(a) ∧ C2(b)}

max{dF
p(a, b) | K |= C1(a) ∧ C2(b)}

3 Optimization

Although the measures could be implemented according to the definitions, their effec-
tiveness and also the efficiency of their computation strongly depends on the choice of
the feature committee (feature selection). Indeed, various optimizations of the measures
can be foreseen as concerns their parametric definition.

Among the possible committees, those that are able to better discriminate the objects
in the ABox ought to be preferred:

Definition 3.1 (good feature set). Let F = {F1, F2, . . . , Fm} be a set of concept
descriptions. We call F a good feature set for the knowledge base K = 〈T ,A〉 iff
∀a, b ∈ const(D) ∃i ∈ {1, . . . ,m} : πi(a) 6= πi(b).

Note that, when the function defined in the previous section adopts a good feature set,
it has the properties of a metric on the related instance-space.

Since the function strongly depends on the choice of concepts included in the com-
mittee of features F, two immediate heuristics can be derived:



1. controlling the number of concepts of the committee (which has an impact also on
efficiency), including especially those that are endowed with a real discriminating
power;

2. finding optimal sets of discriminating features of a given cardinality, by allowing
also their composition employing the specific refinement operators.

Both these heuristics can be enforced by means of suitable ILP techniques espe-
cially when knowledge bases with large sets of instances are available. Namely, part of
the entire data can be drawn in order to induce optimal F sets, in advance with respect
to the application of the measure for other specific purposes as those mentioned above.
The adoption of genetic programming has been considered for constructing optimal sets
of features. Yet these algorithms are known to suffer from being possibly caught in local
minima. An alternative may consist in employing a different probabilistic search proce-
dure which aims at a global optimization. Thus a method based on simulated annealing
[7] has been devised, whose algorithm is reported in Fig. 1.

Essentially the algorithm searches the space of all possible feature committees start-
ing from an initial guess (determined by MAKEINITIALFS(K)) based on the concepts
(both primitive and defined) currently referenced in the knowledge base. The loop con-
trolling the search is repeated for a number of times that depends on the temperature
which gradually decays to 0, when the current committee can be returned. The current
feature set is iteratively refined calling a suitable procedure RANDOMSUCCESSOR().
Then the fitness of the new feature set is compared to that of the current one deter-
mining the increment of energy ∆E. If this is positive then the candidate committee
replaces the current one. Otherwise it will be replaced with a probability that depends
on ∆E.

As regards the heuristic FITNESSVALUE(F), it can be computed as the average dis-
cernibility factor [11] of the objects w.r.t. the feature set. For example, given a set of
objects IS = {a1, . . . , an} ⊆ const(D) the fitness function may be defined:

FITNESSVALUE(F) = k ·
∑

1≤i<j≤n

m∑
h=1

| πh(ai)− πh(aj) |

where k is a normalization factor which may be set to: (1/m) (n · (n− 1)/4− n),
depending on the number of couples of different instances that really determine the
fitness measure.

As concerns finding candidates to replace the current committee (RANDOMSUC-
CESSOR()), the function was implemented by recurring to simple transformations of a
feature set:

– adding (resp. removing) a concept C: nextFS← currentFS ∪ {C}
(resp. nextFS← currentFS \ {C})

– randomly choosing one of the current concepts from currentFS, say C, and
replacing it with one of its refinements C ′ ∈ REF(C)

Refining concept descriptions is language-dependent. For the adopted clausal logic, var-
ious refinement operators have been proposed in the literature [9]. Complete operators
are to be preferred to ensure exploring the whole search-space.



FeatureSet OPTIMIZEFEATURESET(K, ∆T )
input K: Knowledge base

∆T : function controlling the decrease of temperature
output FeatureSet
local currentFS: current Feature Set

nextFS: next Feature Set
Temperature: controlling the probability of downward steps

begin
currentFS← MAKEINITIALFS(K)
for t← 1 to∞ do

Temperature← Temperature−∆T (t)
if (Temperature = 0)

return currentFS
nextFS← RANDOMSUCCESSOR(currentFS,K)
∆E ← FITNESSVALUE(nextFS)− FITNESSVALUE(currentFS)
if (∆E > 0)

currentFS← nextFS
else // replace FS with given probability

REPLACE(currentFS, nextFS, e∆E/Temperature)
end

Fig. 1. Feature Set optimization based on a Simulated Annealing procedure.

4 Experiments on Similarity Search

In order to prove the effectiveness of the distance coupled with the optimization pro-
cedure, an experimentation was performed on the task of similarity search [16], i.e.
searching instances that can be answers to relational queries by means of a notion of
distance. We intended to evaluate both the effectiveness of the distance and the impact
of its optimization phase.

To this purpose, a relational kNN algorithm was devised, similar to RIBL [2], with
a voting procedure weighted by the distance of the query instance from its neighbors.
The Java implementation exploits external Prolog libraries2 for the reasoning services
required for determining the distance between individuals.

Four relational datasets from very different domains were selected: a small one
was artificially generated for the PHASE TRANSITION [3], (problem pt4444), the Uni-
versity of Washington CSE dept. dataset (UW-CSE) [13], one from the Mutagenesis
datasets [15], and one concerned the layout structure of scientific papers (SCI-DOCS)
[4]. The details3 about these datasets are reported in Tab. 1. A simple discretization had
to be preliminary operated on the numerical attributes, if present. for the measure cur-
rently does not handle these cases. Hence, the number of concepts was increased w.r.t.
the original dataset.

2 JPL 3. See http://www.swi-prolog.org
3 As stated in Sect.2, concepts correspond to unary predicates while predicates with larger arity

are generically referred to as relations. Individuals correspond to the objects denoted by the
constant names, i.e. the resources to be searched.



Table 1. Details about the datasets that were employed in the experiments.

dataset #concepts #relations #individuals

PHASE TRANSITION 1 4 400
UW-CSE 9 20 2208
SCI-DOCS 30 9 4585

MUTAGENESIS 68 2 9292

Table 2. Experimental results: cardinality of the induced feature set and average outcomes
(± standard deviation).

dataset | F | %correct %false pos. %false neg.

PHASE TRANSITION 6 99.97 ± 0.13 0.00 ± 0.00 0.03 ± 0.13
UW-CSE 9 99.01 ± 1.92 0.05 ± 0.08 0.94 ± 1.94
SCI-DOCS 5 85.49 ± 9.06 1.66 ± 1.87 12.85 ± 8.96

MUTAGENESIS 11 98.68 ± 1.92 0.08 ± 0.12 1.24 ± 1.94

We intended to assess the accuracy of the answers obtained inductively from the
kNN procedure compared to the correct (deductive) ones. Preliminarily, an optimal
distance was obtained using the procedure described in the previous section, to be em-
ployed both for selecting the nearest neighbors and for determining their weights. A 5%
sample of instances was drawn from the dataset for performing the distance optimiza-
tion task finding a proper feature set.

In the successive phase, a number of 20 queries (clauses whose head defines a new
concept) were randomly generated provided that they had non-empty answer sets for
the head variable. Then, search was simulated by testing class-membership w.r.t. the
query concepts employing the kNN procedure based on the distance. The experiment
was repeated applying a 10-fold cross-validation setting.

In all of the runs the number of nearest neighbors k that determine the classification
of the test instance was set to

√
|TrSet|, where TrSet is the training set related to the

given fold. The cardinality of the committees determined in the first phase and the
average results of the classification are reported in Table 2.

We note that the performance is quite good with a decay for the case of the SCI-
DOCS dataset, which is determined by the larger variance: some queries were perfectly
answered while some yielded poorer results. In terms of retrieval measures, we can say
that the procedure suffers more in terms of recall rather than precision. the good results
were probably due to the regularity of the information in the various datasets: for each
individual the same amount of information is known, which helps to discern among
them. More sparsity (incomplete information) would certainly decrease the distance
acuity and, hence, the overall performance to the task.

The good performance on such datasets, despite some of them are known to be
particularly difficult for learning methods, is due to the fact that for the considered task
a characterization of an unknown concept is not to be learnt. Rather, it is an input of
the inductive procedure based on discriminative features that help to discern between
member and non-member instances.



Table 3. Experimental results (no optimization phase): average outcomes of the experiment.

dataset %correct %false pos. %false neg.

PHASE TRANSITION N/A N/A N/A
UW-CSE 94.88 0.7 4.42
SCI-DOCS 81,29 2,65 16,06

MUTAGENESIS 94.76 0.55 4,69

It is also possible to compare the number of new features induced for the distance
measure and the overall number of (primitive or defined) concepts in the KB. In the
case of the MUTAGENESIS dataset, it needed only about 15% of the available concepts.
However it is to be admitted that many of them had been added to the original dataset
during the discretization process.

Employing smaller committees (with comparable performance results) is certainly
desirable for the sake of an efficient computation of the measure. In order to asses the
potential of the measure when employing basically the concepts already contained in the
knowledge base, the same experiment with the same settings (10-fold cross validation)
was repeated with no preliminary optimization phase; instead, for the comparison, we
randomly selected the same amount of pre-defined concepts in the knowledge base as
the size of the optimal set (indicated in the second column of Tab. 2). The average
results obtained are reported in Tab. 3. The PHASE TRANSITION dataset had only one
predefined concept all predicates are relations with arity ≥ 2) which excluded it from
the possibility of a comparison.

The performance in terms of time was quite satisfactory, however various optimiza-
tions can be implemented for this specific search-task such as, for instance, computing
and storing the distances in appropriate data structures [16] (e.g. kD-trees or ball-trees)
that may speed-up the overall retrieval process.

5 Conclusions and Ongoing Work

In the line of past works on distance-induction, we have proposed the definition of a
family of semi-distances over the instances in a clausal knowledge base. The measures
are parameterized on a committee of concepts that can be selected by the proposed
randomized search method.

Possible subsumption relationships between clauses in the committee may be ex-
plicitly exploited in the measure for making the relative distances more accurate. The
extension to the case of concept distance may also be improved. Particularly, the mea-
sure should be extended to cope with numeric information which abounds in biologi-
cal/chemical datasets.

The measures may have a wide range of application in distance-based methods to
knowledge bases. Currently we are exploiting the measures in conceptual clustering al-
gorithms where clusters will be formed by grouping instances on the grounds of their
similarity assessed through the measure, triggering the induction of new emerging con-
cepts.



Another possibility is also the extension to learning relational kernels which en-
code a notion of similarity, as in kFOIL [8], where measure induction and performance
evaluation are intertwined.
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