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ABSTRACT
This work presents a method for retrieval in knowledge bases
expressed in Description Logics, founded in the instance-
based learning. The procedure implements the disjunctive
version space approach exploiting a notion of semantic dif-
ference. The method can be employed both to answer to
class-membership queries, even though the answers are not
logically entailed by the knowledge base, e.g. there are some
inconsistent assertions due to heterogeneous sources. In
addition, it may also predict/suggest new assertions The
method has been implemented and tested in an experimen-
tation, where we show that it is sound and effective.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; I.2.6 [Artificial Intelligence]:
Learning

Keywords
Nearest Neighbor, Disjunctive Version Space, Description
Logics, Analogy

1. INTRODUCTION AND MOTIVATION
Many important tasks that are likely to be provided by

new generation knowledge-based systems, such as classifica-
tion, construction, revision, population are likely supported
by inductive methods. In order to support these tasks and
overcome the inherent complexity of classic logic-based in-
ference other forms of reasoning are being investigated, both
deductive, such as non-monotonic, paraconsistent [8], ap-
proximate reasoning (see the discussion in [9]), case-based
reasoning [5] and inductive-analogical forms such as induc-
tive generalization [3] and specialization [7].

All these approaches aim at noise-tolerant and efficient
forms of reasoning. From this viewpoint, instance-based in-
ductive methods [6] are particularly well suited. Indeed,
they are known to be both very efficient and fault-tolerant
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compared to the classic logic-based methods, being noise al-
ways a danger in contexts where knowledge is distributed
and acquired from heterogeneous sources. Two kinds of
noise may be identified. The first kind may be introduced
by inconsistency in the knowledge base: some of the meth-
ods aforementioned methods are able deal with this prob-
lem by means of approximate reasoning or by spotting and
repairing specific parts of the knowledge bases. A second
kind of noise is due to incorrect knowledge that does not
strictly cause inconsistency, nevertheless it may yield incom-
plete/inconsistent conclusions with respect to the intended
meaning of the concepts in considered domain.

Instance-based algorithms, which can be suitable for these
cases, have been mainly applied to attribute-value repre-
sentations. Upgrading the algorithms to work on multi-
relational representations [6], namely on the concept lan-
guages used in the Semantic Web, founded in Description
Logics (DLs) [1] (see Sect. 2), requires specific adjustments.

An instance-based framework for DLs was devised (see
Sect. 3) for exploiting a dissimilarity measure to derive in-
ductively (by analogy) both consistent consequences from
the knowledge base and also new assertions which were not
previously logically derivable. In turn, this enables also
other related reasoning services such as classification, re-
trieval and clustering. Particularly, classification can be per-
formed even in absence of a definition for the target concept
in the knowledge base by analogy with a set of training as-
sertions on such a concept (provided by an expert).

Specifically, we elaborate on classification procedures based
on lazy learning, namely a relational form of the well-known
Nearest Neighbor (NN) approach [10]. The baseline idea
is that similar individuals, by analogy, should likely belong
to similar concepts. The adaptation to the context of DLs
concept languages could not be straightforward. In particu-
lar, a theoretical problem has been posed by the Open World
Assumption (OWA) that is generally made in the target con-
text, differently from data mining settings where the Closed
World Assumption (CWA) is the standard. Besides, in the
standard NN multi-class setting, different classes are often
assumed to be disjoint, which is not typical in the context
of the Semantic Web.

These ideas have been further pushed forward (see Sect.
4) by considering another form of instance-based learning:
the disjunctive version space approach, adapted to a DL
framework. In this setting, the neighborhood of an individ-
ual w.r.t. a target concept is determined on the grounds of
its similarity to other training individuals in the knowledge
base which are known to belong to that concept. Instead of



using a similarity measure, like in the basic NN approach,
the notion of neighborhood is based on class-membership
queries performed on a training set of individuals: An in-
dividual is said to belong to the neighborhood of a positive
example, when it belongs to the conjunction of the concepts
that differentiate that instance from each negative example.
In turn each such a concept can be regarded as a disjunction
of features that separate a positive from a negative example.
Thus belonging to the neighborhood of positive instances of
a target concept gives a criterion to decide on the member-
ship of an individual. The procedure is not crisp, since a
number of mistakes can be tolerated, blaming them to the
noise in the data. The method has been implemented so that
some preliminary experimental results with real ontologies
can be presented (Sect. 5).

2. REPRESENTATION AND
INFERENCE SERVICES

The basics of ALC and inference in DL are briefly recalled.
This logic adopts constructors supported by the standard
Web ontology languages (see the DL handbook [1] for a
thorough reference). Actually, the methods presented in the
next sections may be made less language dependent through
suitable approximations.

In DLs, concept descriptions are defined in terms of a set
NC of primitive concept names and a set NR of primitive
roles. The semantics of the concept descriptions is defined
by an interpretation I = (∆I , ·I), where ∆I is a non-empty
set, the domain of the interpretation, and ·I is the interpre-
tation function that maps each A ∈ NC to a set AI ⊆ ∆I

and each R ∈ NR to RI ⊆ ∆I × ∆I . The top concept
> is interpreted as the whole domain ∆I , while the bottom
concept ⊥ corresponds to ∅. Complex descriptions can be
built in ALC using the following constructors. The language
supports full negation: given any concept description C, de-
noted ¬C, it amounts to ∆I \ CI . The conjunction of con-
cepts, denoted with C1uC2, yields an extension CI

1 ∩CI
2 and,

dually, concept disjunction, denoted with C1 t C2, yields
CI

1 ∪ CI
2 . Finally, there are two restrictions on roles: the

existential restriction, denoted with ∃R.C, and interpreted
as the set {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ RI ∧ y ∈ CI} and
the value restriction, denoted with ∀R.C, whose extension
is {x ∈ ∆I | ∀y ∈ ∆I : (x, y) ∈ RI → y ∈ CI}.

A knowledge base K = 〈T ,A〉 contains a TBox T and an
ABox A. T is a set of concept definitions1 C ≡ D, meaning
CI = DI , where C is atomic (the concept name) and D is an
arbitrarily complex description defined as above. A contains
assertions on the world state, e.g. C(a) and R(a, b), meaning
that aI ∈ CI and (aI , bI) ∈ RI . Moreover, normally the
unique names assumption is made on the ABox individuals.
These are denoted with Ind(A).

In this context the most common inference is the semantic
notion of subsumption between concepts:

Definition 2.1. Given two concept descriptions C and
D, D subsumes C, denoted by C v D, iff for every in-
terpretation I it holds that CI ⊆ DI . When C v D and
D v C, they are equivalent, denoted with C ≡ D.

Another important inference for reasoning with individu-
als requires finding the concepts which an individual belongs

1The cases of general axioms or cyclic definitions will not
considered here.

to, namely, the most specific one:

Definition 2.2. Given an ABox A and an individual a,
the most specific concept of a w.r.t. A is the concept C,
denoted MSCA(a), such that A |= C(a) and for any other
concept D such that A |= D(a), it holds that C v D.

Unfortunately, for many non-trivial DL languages, such
as ALC, the exact MSC may not be always expressed with a
finite acyclic description [1] interpreted with the descriptive
semantics presented earlier, yet it may be approximated [3,
2], which is satisfactory for inductive approaches.

3. A NEAREST NEIGHBOR PROCEDURE
IN DL

The basics of the Nearest Neighbor approach [10] are re-
called showing how to exploit a classification procedure for
inductive reasoning and retrieval.

In this lazy-learning approach the learning phase is re-
duced to memorizing training instances of the target con-
cepts pre-classified by an expert. Then, during the classi-
fication phase, a notion of similarity for the instance space
is employed to classify a new instance in analogy with its
neighbor. Given an ontology, a classification method can be
employed for assigning a individual with the concepts it is
likely to belong.

Let xq be the instance that must be classified. Using a
similarity measure (or any other distance function), the set
of the k nearest pre-classified instances w.r.t. xq is selected.
The objective is to learn an estimate of a hypothesis function
for the target concept membership h : TI 7→ V from a space
of training instances TI to a set of values V = {v1, . . . , vs}
standing for the classes to be assigned. In its simplest set-
ting, the algorithm approximates h for xq on the ground of
the value that h assumes for the training instances in the
neighborhood of xq, i.e. the k closest instances to the new
instance in terms of a dissimilarity measure. Precisely, this
instance is assigned a class according to the value which is
voted by the majority of instances in the neighborhood. This
setting takes into account similarity only when selecting the
instances to be included in a neighborhood.

A more general setting is based on weighting the vote
according to the distance of the query instance from the
training instances:

ĥ(xq) := argmax
v∈V

kX
i=1

wiδ(v, h(xi)) (1)

where ĥ is the estimated hypothesis function, δ is the Kro-
necker symbol, a function that returns 1 in case of matching
arguments and 0 otherwise, and, given a distance measure
d, wi = 1/d(xi, xq) or wi = 1/d(xi, xq)

2. In the case of the
ALC DL, the similarity measure in [4] could be employed.

Note that the hypothesis function ĥ is defined only ex-
tensionally, therefore the k-NN method does not return an
intensional classification model (a function or a concept def-
inition), it merely gives an answer for new query instances
to be classified, employing the procedure mentioned above.

It should be observed that a strong assumption made in
this setting is that it can be employed to assign the query in-
stance to the class from a set of values which can be regarded
as a set of pairwise disjoint concepts. This is a simplifying
assumption that cannot be always valid. In our setting, in-
deed, an individual could be an instance of more than one



concept. Let us consider a value set V = {C1, . . . , Cs}, of
possibly overlapping concepts Cj (1 ≤ j ≤ s) that may be
assigned to a query instance xq. If the classes were disjoint
as in the standard setting, the decision procedure defining
the hypothesis function is the same as in Eq. (1), with the
query instance assigned the single class of the majority of
instances in the neighborhood. In the general case, when
the pairwise disjointness of the concepts cannot be assumed,
one can adopt another classification procedure, decompos-
ing the multi-class problem into smaller binary classification
problems (one per target concept).

The problem with non-explicitly disjoint concepts is also
related to the CWA usually made in the knowledge discov-
ery context. That is the reason for adapting the standard
setting to cope both with the case of generally non-disjoint
classes and with the OWA which is commonly made in the
Semantic Web context. To deal with the OWA, the ab-
sence of information on whether a certain training instance
x belongs to the extension of concept Cj should not be inter-
preted negatively, as shown before. Rather, it should count
as neutral information. Thus, a ternary value set has to be
adopted for the hj ’s, namely V = {−1, 0, +1}, where the
values denote, respectively, membership2, non-membership
and absence of information:

hj(x) =

8<: +1 K ` Cj(x)
−1 K ` ¬Cj(x)

0 o.w.

The checks could have been pre-computed for the KB, there-
fore the overall complexity of the procedure depends on the
number k � |Ind(A)|, that is the number of times the dis-
tance measure is needed.

Note that, being based on a majority vote of the individ-
uals in the neighborhood, this procedure is less error-prone
in case of noise in the data (i.e. incorrect assertions in the
ABox), therefore it may be able to give an answer, requiring
only the correctness of the training instances classification.

4. APPLYING A DISJUNCTIVE VERSION
SPACE APPROACH TO DL

Another analogy-based method for retrieval can be de-
rived from Sebag’s notion of Disjunctive Version Space [11].
Differently from the NN approach based on distances pre-
sented in the previous section, the population of an indi-
vidual’s neighborhood is performed inducing definitions for
the query concept on the grounds of its examples and coun-
terexamples available in the knowledge base.

Given a query concept Cj (1 ≤ j ≤ s), for each train-
ing instance x ∈ TI such that Cj(x) holds (positive exam-
ple for Cj), a hypothesis Hx

j may be generated (on-the-fly)
by considering the subset of counterexamples for Cj , de-
noted Ej = {x ∈ TI | K ` ¬Cj(x)} ⊆ TI and finding a
maximally discriminating description D(x, x) ∈ L for each
x ∈ Ej . Namely, the hypothesis Hx

j may be regarded as
the conjunction of such D(x, x)’s, to be induced varying the
counterexamples x in Ej :

Hx
j =

l

x∈Ej

D(x, x)

2Here ` indicates the instance checking service to be pro-
vided by a reasoner. This proof-theoretic interpretation
could be replaced by weaker and/or more efficiently com-
putable procedures, such as a paraconsistent derivation

In order to produce a(n approximation of) description
D(x, x), one possibility is considering the difference

D(x, x) := MSCp(x)−MSCp(x)

where p is a fixed depth that may depend on the ABox
depth (see the final remark in this section). and the symbol
− denotes Teege’s difference operator for DL descriptions
[12]. In the case of ALC, we have:

D(x, x) := Dx t ¬Dx

where Dx = MSCp(x) and Dx = MSCp(x).
Now, for each training individual x, the individual under

classification xq will belong to x’s neighborhood w.r.t. Cj

iff it belongs to the related hypothesis Hx
j . The neighbor

instance set of xq w.r.t. Cj is defined as follows

Nj(xq) := {x ∈ TI | K ` Hx
j (xq)}

The classification procedure can be defined again as a ma-
jority vote for the classes V = {−1, 0, +1}:

ĥj(xq) := argmax
v∈V

X
x∈Nj(xq)

δ(v, Hx
j )

Yet, in this case the procedure may be biased by the dif-
ferent numbers of training instances in Nj(xq) voting for
the negative or neutral cases. Hence, we rather consider
the proportions of votes over the total number of training
individuals classified with the three values of V :

ĥj(xq) := argmax
v∈V

X
x∈Nj(xq)

wv
j · δ(v, Hx

j )

where the weighting factor wv
j = #(v, Nj(xq))/#(v, TI) de-

notes the count of neighbor instances w.r.t. xq voting for
value v for concept Cj over the total number of training
individuals belonging to the same class.

Discussion. As suggested in [11], the procedure can be
parametrized on precision and recall. Indeed it may become
more noise-tolerant by admitting an amount of consistency
errors (say ε) in deciding whether a training instance belongs
to the neighborhood: there may be up to ε · |Ej | cases, i.e. a
number of counterexamples x ∈ Ej , for which xq 6∈ D(x, x)
and yet the membership to a neighborhood will be assumed
as acceptable (x ∈ Nj(xq)).

Besides, the method can be tuned also w.r.t. the com-
pleteness, by adjusting the specificity of D(·, ·) according to
a number of features to be considered (say M) as a separa-
tion between positive and negative instances.

Better and language-independent definitions of D(·, ·) can
be considered, that may be based only on the available as-
sertions, as the algorithm only requires to know whether a
new individual belongs to the neighborhood or not and this
can be specified also with no involvement of the concept
level.

Namely, in order to extend the applicability to more ex-
pressive languages than ALC, an alternate way for building
the discriminating definitions D(·, ·). The method adopted
here is suitable for logics endowed with a notion of differ-
ence and a further approximation had to be made on the
construction of the MSC’s. Nevertheless, the algorithm is
not extremely language-dependent: Any other method that
can induce concept descriptions which are able to explain a
positive instance and rule out a single negative one would
be acceptable.



5. EXPERIMENTS
We present the outcomes of experiments carried out for

testing the feasibility of the method illustrated in the pre-
vious section. Its implementation was tested on answer-
ing queries w.r.t. four ontologies drawn from the Protégé
library3, endowed with an different numbers of individuals,
namely: the fsm, Surface-Water-Model, Science, and
NewTestamentNames. Some are expressed in larger DLs
than ALC. This affected the construction of the MSC’s
approximations, which turned out to be more general than
those that could be produced in the original DLs.

fsm is an SF(D) KB describing finite state machines. It
is made up of 20 concepts, 10 object properties, 7 datatype
properties, 37 individual names. Surface-Water-Model
is an ALO(D) ontology describing water quality models. It
is based on the Surface-water Models Information Clearing-
house of the US Geological Survey. It deals with numeri-
cal models for surface water flow and water quality simula-
tion. These models are classified according to their avail-
ability, domain, dimensions, and characteristic types. It is
made up of 19 concepts, 9 object properties, 115 individual
names. Science is an ALCIF(D) KB and describes scien-
tific facts. It is made up of 74 concepts, 70 object proper-
ties, 331 individual names. The NewTestamentNames is
an SHIN (D) KB which describes facts related to the New
Testament (Semantic Bible Project). It is made up of 47
concepts, 27 object properties, 676 individual names.

The classification method presented in the previous sec-
tion was applied to each test ontology, by generating 15 ran-
dom queries based on the concepts and roles therein; each
query is a complex concept made up of a variable random
number (from 2 up to 11) of (primitive and defined) concepts
found in the knowledge base.

A näıve retrieval procedure required, for each test query,
every individual is considered to determine if it belongs
to the answerer set (+1) or not (-1), or it is neutral 0,
i.e. unknown answer) w.r.t. the ontology. Specifically, for
each training individual an MSC approximation was pre-
computed and assigned to the set of examples or counterex-
amples w.r.t. the query concept. Each test individual is
then classified applying the method presented in the previ-
ous section. For the smaller knowledge bases leave-one-out
cross validation procedure was used, while for the larger ones
a 10-fold cross validation was performed. We intended to
assess whether our method is able to retrieve instances cor-
rectly, i.e. its performance was compared to the relevance
determined by an expert, whose role was made by a rea-
soner4. Additionally, it should also be able to induce by
analogy new (previously unknown) class-membership asser-
tions that cannot be logically inferred.

Particularly, for each ontology and for each concept, four
rates have been computed: match rate, omission error rate,
commission error rate, induction rate. The match rate is
the proportion of instances retrieved exactly as a reasoner
would do. The omission error is related to completeness.
It measures the amount of relevant individuals w.r.t. a cer-
tain query (i.e. the answer is ±1) that were not retrieved
(answer 0). The commission error is related to soundness.
It measures the amount of individuals whose relevance was

3Located at the webpage: http://protege.stanford.edu/
download/ontologies.html
4We employed Pellet: http://www.mindswap.org

mismatched, i.e. they were retrieved when they belonged to
the negation of the query concept or vice-versa. The in-
duction rate measures the amount of individuals found as
relevant (answer ±1) even though the expert cannot give an
answer (i.e. the reasoner returns unknown). Thus, commis-
sion error may be more harmful than omission error. A high
induction rate means that the procedure was actually able
to suggest new assertions that are likely to be valid and can
be validated by a knowledge engineer.

Tab. 1 reports the experimental results. Per each ontol-
ogy, we report the average rates for the measures discussed
above and also the interval of values assumed for the 15
random queries during the cross validation experiments.

Primarily, by looking at table, it is important to note
that, for every ontology, the commission error was null on
average and the variance is also quite low. This means that
the classifier has never made critical mistakes because no
individual has been deemed as an instance of a concept while
really it is an instance an disjoint class. Also the omission
error rate is almost null. The highest value was observed on
the fsm ontology, likely caused by the very few individuals
in it. The performance is comparable to the reasoner, as the
high match rate values show. Yet this yields low induction
rates.

As such, the method appears to be sound. As regards the
completeness, we observed during the first experiment that
the amount of individuals that vote for the unknown class
w.r.t. the query was generally high for these ontologies, thus
biasing the final decision. Although this may be satisfactory
compared to the reasoner’s performance, the final goal is to
overcome the inherent incompleteness due to the OWA and
try to induce the real classification of an individual (w.r.t.
the intended meaning of the domain modeled by an ontol-
ogy). Therefore, we tweaked the procedure, by decreasing
the impact of the individuals classified as unknown during
the voting phase. Specifically, it is modified by answering
unknown only when the number of neighboring positives and
negatives is balanced; in the rest of the cases, the new pro-
cedure gives an answer to a binary classification problem
depending on the their majority.

Again, the method proved sound (null commission error
rate). As regards completeness, we observed in two cases a
shift from the match rate towards the induction rate: i.e. the
system actually suggested a classification, even in presence
of a high rate of individuals classified as unknown. Indeed,
for the Surface-Water-Model and the NewTestament-
Names ontologies, the incompleteness is caused by the lack
of information about concept disjointness, thus yielding no
counterexamples which were needed to assess the member-
ship to the target query. For the other cases, the outcomes
are almost similar to those observed in the previous experi-
ment. Namely, or the fsm ontology this should be caused by
the number of disjointness axioms (46) which greatly helps
the procedure. Moreover, most of the its individuals are in-
stances of a single concept. This latter situation applies also
the Science ontology.

Concluding, we have observed that the proposed method
is often able to induce new assertions in addition those that
were already logically derivable from the knowledge base.
Particularly, an increase in prediction accuracy was observed
when the instances are homogeneously spread and informa-
tion about concept disjointness is available. Besides, the
method confirmed its tolerance to noise as a very low com-



Table 1: Results of the experiments.
Ontology measure match rate induction rate omission err. rate commission err. rate

1
st

E
x
p
e
r
im

e
n
t fsm

avg. 0.92 0.00 0.08 0.00
range 0.84 - 1.00 0.00 - 0.00 0.00 - 0.16 0.00 - 0.00

Surface-Water-Model
avg. 0.92 0.07 0.01 0.00
range 0.57 - 1.00 0.00 - 0.43 0.00 - 0.03 0.00 - 0.00

Science
avg. 0.94 0.06 0.00 0.00
range 0.04 - 1.00 0.00 - 0.96 0.00 - 0.00 0.00 - 0.00

NewTestamentNames
avg. 0.98 0.00 0.02 0.00
range 0.78 - 1.00 0.00 - 0.00 0.00 - 0.22 0.00 - 0.00

2
n
d

E
x
p
e
r
im

e
n
t fsm

avg. 0.81 0.00 0.19 0.00
range 0.30 - 1.00 0.00 - 0.00 0.00 - 0.68 0.00 - 0.03

Surface-Water-Model
avg. 0.54 0.46 0.00 0.00
range 0.02 - 1.00 0.00 - 0.99 0.00 - 0.01 0.00 - 0.00

Science
avg. 0.98 0.02 0.00 0.00
range 0.71 - 1.00 0.00 - 0.29 0.00 - 0.00 0.00 - 0.00

NewTestamentNames
avg. 0.45 0.55 0.00 0.00
range 0.01 - 1.00 0.00 - 0.99 0.00 - 0.00 0.00 - 0.00

mission error was observed. In order to assess the com-
pliance with the real relevance of an individual (intended
meaning) w.r.t. the test queries probably a human expert
would be more suitable than a reasoner.

6. CONCLUSIONS AND FUTURE WORK
A merely deductive approach to retrieval may fall short in

the real cases of heterogeneous knowledge bases integrating
distributed knowledge sources. That was the reason for in-
vestigating other forms of retrieval based on different mem-
bership decision procedures. Specifically, we have proposed
a way to adapt instance-based learning and the disjunctive
version space approach, to the retrieval task.

An instance-based learning method applied to DL repre-
sentations that may serve to predict/suggest missing infor-
mation about individuals in a knowledge base. Besides, the
procedure is robust to noise and never made commission
errors in the experiments that have been carried out so far.

Future work will concern a further investigation on ways
to make the method more language-independent, so to apply
it to more expressive DL languages, as those implemented
in OWL. Moreover, we are studying the possibility of pro-
viding, together with each individual classification, also an
estimate of its probability. Besides, the application of the
method to the problem of Semantic Web Service discovery
and retrieval is also foreseen.
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