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Abstract. A clustering method is presented which can be applied to relational
knowledge bases (e.gADALOG deductive databases). It can be used to discover
interesting groups of resources through their (semantic) annotations expressed
in the standard logic programming languages. The method exploits an effective
and language-independent semi-distance measure for individuals., that is based
on the resource semantics w.r.t. a number of dimensions corresponding to a com-
mittee of features represented by a group of concept descriptions (discriminating
features). The algorithm is a fusion of the classis BCTING K-MEANS with ap-
proaches based on medoids that are typically applied to relational representations.
We discuss its complexity and potential applications to several tasks.

1 Unsupervised Learning with Complex Data

In this work, we investigate on unsupervised learning for knowledge bases (KBs) ex-
pressed in relational languages. In particular, we focus on the problem of conceptual
clustering of semantically annotated resources. The benefitsrafeptual clustering

[10] in such a context are manifold) concept formationclustering annotated re-
sources enables the definition of new emerging concepts on the grounds of the primitive
concepts asserted in a KB) evolution supervised methods can exploit these clusters

to induce new concept definitions or to refining existing ord@search and ranking
intensionally defined groupings may speed-up the task of search upon queries; a hierar-
chical clustering also suggests criteria for ranking the retrieved resources.

Essentially, many existing clustering methods are based on the application of simi-
larity (or density) measures defined over a fixed set of attributes of the domain objects.
Classes of objects are taken as collections that exhibit low interclass similarity (density)
and high intraclass similarity (density). Often these methods cannot take into account
background knowledgbat could characterize object configurations by means of global
concepts and semantic relationship. As pointed out in related surveys [11], initially,
most of the proposed similarity measures for concept descriptions focus on the similar-
ity of atomic concepts within simple concept hierarchies or are strongly based on the
structure of the terms for specific FOL fragments [4]. Alternative approaches are based
on the notions ofeaturesimilarity orinformation contentln the perspective of exploit-
ing similarity measures in inductive (instance-based) tasks like those mentioned above,
the need for a definition of a semantic similarity measureérfstancesarises [2, 8].



Early conceptual clustering methods aimed at defining groups of objects using con-
junctive descriptions based on selected attributes [10]. Anyway, in the conceptual clus-
tering perspective, the expressiveness of the language adopted for describing objects
and clusters (concepts) is equally important. Alternative approaches, suitable to concept
languages, have pursued a different way for attacking the problem, devising logic-based
methods [3]. However, these methods may suffer from noise in the data. This moti-
vates our investigation on similarity-based clustering methods which can be more noise-
tolerant. We propose a multi-relational extension of effective clustering techniques. Itis
intended for grouping similar resources w.r.t. a semantic dissimilarity measure in order
to discover new concepts. Our relational method derives fronBtkecting k-means
algorithm [5], a well-known partitional clustering method. Specifically, we recur to the
notion of medoidg(like in algorithmPAM [6]) as central individual in a cluster, rather
than to the notion of means characterizing the algorithms descendindgfmeansand
EM [5] developed for numeric (or ordinal) features. Upgrading existing algorithms to
work on multi-relational representations such as clausal languages, requires novel sim-
ilarity measures that are suitable for such representations. Moreover, rather than fix a
given numbet¥; of clusters of interest (that may be hard when scarce domain knowledge
is available), a partitional method may be employed up to reaching a minimal threshold
value for clustequality [6, 5] which makes any further bisections useless.

In the next section the dissimilarity measure adopted in the algorithm is defined.
The clustering algorithm is presented in Sect. 3. Possible developments are examined
in Sect. 4.

2 A Family of Metrics for Instances

In the following, we assume that objects (instances), concepts and relationships among
them are defined in terms of a function-free (yet not constant-free) clausal language
such as BTALOG, endowed with the standard semantics (see [7Rndwledge basis
defined asC = (P, D), whereP is a logic program representing teehemawith con-

cepts (entities) and relationships defined through definite clada&shaseD is a set

of ground facts concerning the world state. Without loss of generality, we will consider
concepts as described by unary atoRmitive concepts are defined iR extension-

ally by means of ground facts only, wheredefinedconcepts will be defined i® by
means of clauses. The set of the objects occurrifigimdenoted witltonst(D). As re-

gards the necessary inference services, our measures will require perforstange-
checking which amounts to determining whether an object belongs (is an instance) of
a concept in a certain interpretation.

Instances lack a syntactic structure that may be exploited for a comparison. How-
ever, on a semantic level, similar objects shdodthavesimilarly w.r.t. the same con-
cepts, i.e. similar assertions (facts) should be shared. Conversely, dissimilar instances
should likely instantiate disjoint concepts. Therefore, we introduce novel dissimilar-
ity measures for objects, whose rationale is the comparison of their semantics w.r.t. a
fixed number of dimensions represented by concept descriptions (predicate definitions).
Instances are compared on the grounds of their behavior w.r.t. a reduced (yet not nec-
essarily disjoint) committee of features (concept descriptiéns) { 1, Fs, ..., F, },



expressed in the language taken into account, acting as discrimifediinges We will
consider unary predicates which have a definition in the KB. Following [9], a family

of totally semantic distance measures for objects can be defined for clausal representa-
tions. In its simplest formulation, inspired by Minkowski’s metrics, it is defined as:

Definition 2.1 (family of measures).Let K be a KB. Given a set of concept descrip-
tionsF = {Fy, F», ..., F,}, afamily{d} } e of functionsif : const(D)x const(D) —
[0, 1] is defined as follows

1/p
Va,b € const(D)  di(a,b) lz (a,b)) ]

whereVi € {1, ..., m} thei-th dissimilarity functiony; is defined:

Va,b € const(D)  §i(a,b) = {O K F Fi(a) iff K+ Fi(b)
1 otherwise

The superscripk will be omitted when the set of features is fixed.

These functions are semi-distances (or pseudo-metrics) [1], namely, it cannot be
proved that ifd,(a,b) = 0 thena = b. However, if theunique names assumptids
made for the constant names, then a distance can be obtained by using a further feature
setFy based on the equalityi (a, b) = 1 if a = b; do(a, b) = 0 otherwise.

Here, we make the assumption that the featurd-sepresents a sufficient number
of (possibly redundant) features that are able to discriminate really different objects. In
[1], we propose a method for performing a randomized search of optimal feature sets.

Compared to other proposed distance (or dissimilarity) measures, the presented
functions are not based on structural (syntactical) criteria.

The definition above might be further refined and extended by recurring to model
theory. The set of Herbrand modeld - C 2/8<! of the KB may be considered, where
By stands for its Herbrand base. Given two instancesd b to be compared w.r.t.
a certain feature;, i = 1,...,m, we might check if they can be distinguished in
the world represented by a Herbrand interpretafior My:Z = F;(a) andZ E
F;(b). Hence, a distance measure should count the cases of disagreement, varying the
Herbrand models of the KB. The resulting measure definition will be in this case:

1/p

Va,b € const(D) d; (a,b) := \M | [ Z Z | 6Z(a, b)
K

TeMy i=1

where the dissimilarity functiong’ are computed for a specific world state as encoded
by a Herbrand interpretatidf:

1 Fi(a) e ZandF;(b) € T

Ya € const(D) 67 (a,b) = {0 otherwise



3 Grouping Objects through Hierarchical Clustering

The conceptual clustering procedure implemented in our method works top-down, start-
ing with one universal cluster grouping all instances. Then it iteratively finds two clus-
ters bisecting an existing one up to the desired number of clusters is reached. Our al-
gorithm can be ascribed to the category of the heuristic partitioning algorithms such as
K-MEANS and EM [5]. Each cluster is represented by the center of the cluster. In our
setting we consider the medoid [6] as a notion of cluster center. In particular our algo-
rithm can be seen as a hierarchical extension of the PAM algoriBamifjon Around
Medoids[6]): each cluster is represented by one of the individuals in the cluster, the
medoid, that is, in our case, the one with the lowest average distance w.r.t. all the others
individuals in the cluster. The bi-partition is repeated level-wise producing a dendro-
gram. In the following, a sketch of the algorithm is reported.

HBAM(alllndividuals, k, maxlterations): clusterVector;

input allindividuals: set of individualsk: number of clusters;
maxlterations: max number of inner iterations;

output clusterVector: array[1..k] of sets of clusters

level :=0; clusterVector[1] := allindividuals;
repeat
++level;
cluster2split := selectWorstClustétlusterVector[level]);
iterCount :=0;
stableConfiguration ;= false
(newMedoidl,newMedoid?2) := selectMostDissimildtluster2split);
repeat
++iterCount;
I/l E step
(medoid1,medoid?2) := (newMedoid1l,newMedoid?2);
(clusterl,cluster2) := distributdcluster2split,medoid1,medoid2);
/I M step
newMedoidl := medoidclusterl);
newMedoid2 := medoidcluster2);
stableConfiguration := (medoid1l = newMedoidl) A (medoid2 = newMedoid2);
until stableConfiguration V (iterCount = maxlterations);
clusterVector[level+1] := replacécluster2split,clusterl,cluster2,clusterVector[level]);
until (level = k);

The algorithm essentially consists of two nested loops: the outer one computes a
new level of the resulting dendrogram and it is repeated until the desired number of
clusters is obtained; the inner loop consists of a run of the PAM algorithm at the cur-
rent level. Per each level, the next worst cluster is selectelégtWorstClusté€y func-
tion) on the grounds of its quality, e.g. the one endowed with the least average in-
ner similarity (or cohesiveness [10]). This cluster is candidate to being parted in two.
The partition is constructed around two medoids initially chosetectMostDissimi-
lar() function) and then iteratively adjusted in the inner loop. In the end, the candidate



cluster is replaced by the newly found parts at the next level of the dendrogram. The
inner loop basically resembles to a 2-means (or EM) algorithm, where medoids are
considered instead of means, which can hardly be defined in symbolic computations.
Then, the classical two steps are performed in an iterakostep: given the current
medoids, the first distributes the other individuals in one of the two partitions under
construction on the grounds of their similarity w.r.t. either medMdstep: given the
bipartition obtained bylistributg), this second step computes the new medoids for ei-
ther cluster. These tend to change on each iteration until eventually they converge to
a stable couple (or when a maximum number of iteration have been performed). The
medoid of a group of individuals is the individual that has the lowest distance w.r.t.
the others. Formally. given a clustét = {aj,as,...,a,}, the medoid is defined:
m = medoidC) = argmin,.~ Z;”:l d(a, a;). The representation of centers by means
of medoids has two advantages. First, it presents no limitations on attributes types, and,
second, the choice of medoids is dictated by the location of a predominant fraction of
points inside a cluster and, therefore, it is lesser sensitive to the presence of outliers.
Each node of the tree (a cluster) may be labeled with an intensional concept defini-
tion which characterizes the individuals in the given cluster while discriminating those
in the twin cluster at the same level. Labeling the tree-nodes with concepts can be re-
garded as a number of supervised learning problems in the specific multi-relational
representation targeted in our setting. A straightforward solution may be given by the
computation of théeast general generalizatiofigg) operator [7] and (an approxima-
tion of) the most specific conceffinsc) operator, which amounts to building a new
ground clause whose body is made up of the ground literals in the set of derivable facts
(from K) that are linked through their constants:

mscic(a) := {L : literal, K = L | Ja € args(L) or 3L" € msc(a) s.t.
3b € args(L) Nargs(L') and Jc € args(L')}

This solution involves the following steps:

— input: clusters of individual€”;
— output: new clause
1. for eachindividuala;; € C; do
(a) computel;; < msci(a;;)
(b) let Clause;; < (newConcept;(a;;) - M;;);
2. return Igg(Clause;;)

As an alternative, algorithms for learning concept descriptions expressesrint D
LOG may be employed.

4 Conclusions and Future Work

This work has presented a clustering method farAL.oG knowledge bases. The
method exploits a novel dissimilarity measure, that is based on the resource semantics
w.r.t. a number of dimensions corresponding to a committee of features represented by



a group of concept descriptions (discriminating features). The algorithm is an adapta-
tion of the classic bisecting k-means to complex LP representations. We have discussed
its complexity and the potential applications to a variety of important tasks.

Ongoing work concerns the feature selection task. Namely, we aim at inducing an
optimal set of concepts for the distance measure by means of randomized algorithms
based on genetic programming and simulated annealing. Furthermore, also the cluster-
ing process itself may be carried out by means of a randomized method based on the
same approaches. We are also exploiting the outcome of the clustering algorithm for
performing similarity search grounded on a lazy-learning procedure and specifically
based on the weighted k-nearest neighbor approach, exploiting the distance measures
presented in this work. Further applications regards the tasks specified in Sec. 1.
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