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Abstract. This work proposes a family of language-independent semantic ker-
nel functions defined for individuals in an ontology. This allows exploiting well-
founded kernel methods for several mining applications related to OWL knowl-
edge bases. Namely, our method integrates the novel kernel functions with a sup-
port vector machine that can be set up to work with these representations. In
particular, we present preliminary experiments where statistical classifiers are in-
duced to perform the tasks of instance classification and retrieval.

1 Ontology Mining

Many application domains require operating on large repositories made up of struc-
tured data. In the field of the Semantic Web (SW) [2], knowledge intensive manipula-
tions on complex relational descriptions to be performed by machines are foreseen. In
this context, expressive languages borrowed from Description Logics (DLs) [1] have
been adopted for representing ontological knowledge. Unfortunately, machine learning
through logic-based methods is inherently intractable in multi-relational settings [13],
unless language bias is imposed to constrain the representation, for the sake of tractabil-
ity, only very simple DLs have been considered [4, 15, 14]. On the other hand, kernel
methods [16] represent a family of statistical learning algorithms, including the support
vector machines (SVMs), that have been effectively applied to a variety of tasks, re-
cently also in domains that typically require structured representations [10, 11]. They
can be very efficient since they map, by means of a kernel function, the original feature
space into a high-dimensional space, where the learning task is simplified. Such a map-
ping is not explicitly performed (kernel trick): the usage of a positive definite kernel
function (i.e. a valid kernel) ensures that the embedding into a new space exists and the
kernel function corresponds to the inner product in this space [16]. Two components of
kernel methods have to be distinguished: the kernel machine and the kernel function.
The kernel machine encapsulates the learning task, the kernel function encapsulates the
hypothesis language. The same kernel machine can be applied to several knowledge
representations, provided a suitable kernel function for each of them.

As argued in [3], most of the research in the SW context address the problem of
learning for the SW, less attention has been given to the problem of learning from the
SW data. Looking in this direction, kernel methods can be adopted for several tasks such
as classification, clustering and ranking of individuals. In this work, we exploit a kernel
method, specifically a SVM, for performing inductive concept retrieval and query an-
swering. To accomplish this goal, a kernel function for DL representation (henceforth



DL-kernel) is proposed. It encodes a notion of similarity of individuals, by exploit-
ing only semantic aspects of the reference representation. Currently, concept retrieval
and query answering are performed using merely deductive procedures which easily
fail in case of (partially) inconsistent or incomplete knowledge, that can happen when
data comes from heterogeneous and distributed resources. We show how the proposed
method performs comparably well w.r.t. a standard deductive reasoner, allowing the
suggestion of new knowledge that was not previously logically derivable.

In the next section basics of kernel functions for complex representations will be an-
alyzed. In Sect. 3 the DL-kernel will be proposed while in Sect. 4 the inductive concept
retrieval problem and method will be formally defined. Initial experimental evaluation
of the method is presented in in Sect. 5.

2 Kernel Functions

In kernel methods, the learning algorithm (inductive bias) and the choice of the kernel
function (language bias) are almost completely independent. The kernel machine en-
capsulates the learning task, the kernel function encapsulates the hypothesis language.
Specifically, the kernel function maps the original feature space of the considered data
set into a high-dimensional space, where the learning task is simplified. Such a map-
ping is not explicitly performed (kernel trick): the usage of a positive definite kernel
function (i.e. a valid kernel) ensures that the embedding into a new space exists, so that
the kernel function corresponds to the inner product in this space [16]. In this way, an
efficient algorithm for attribute-value instance spaces can be converted into one suitable
for structured spaces (e.g. trees, graphs) by merely replacing the kernel function.

Kernels functions are endowed with the closure property w.r.t. many operations, one
of them is the convolution [12]: kernels can deal with compounds by decomposing them
into their parts, provided that valid kernels have already been defined for them.

kconv(x, y) =
∑

x ∈ R−1(x)

y ∈ R−1(y)

D∏
i=1

ki(xi, yi) (1)

where R is a composition relationship building a single compound out of D simpler
objects, each from a space that is already endowed with a valid kernel. The choice of
the function R is a non-trivial task which may depend on the particular application.

On the ground of this property several kernel functions have been defined: for string
representations, trees, graphs and other discrete structures [10]. Particularly, in [11] it
is shown how to define generic kernels based on type construction, where types are
defined in a declarative way. While these kernels are defined as depending on specific
structures, a more flexible method is to build kernels parametrized on a uniform rep-
resentation. Cumby and Roth [5] propose the syntax-driven definition of kernels based
on a simple DL representation, the Feature Description Language. They show that the
feature space blow-up is mitigated by the adoption of efficiently computable kernels.
Kernel functions for structured data, parametrized on a description language, allow for
the employment of algorithms such as SVM’s that can simulate feature generation.



These functions transform the initial representation of the instances into the related ac-
tive features, thus allowing learning the classifier directly from the structured data.

A notion of kernel for the SW representations has first been proposed in [6]. The ker-
nel function is defined for comparing ALC concept definitions based on the structural
similarity of the AND-OR trees corresponding to the normal form of the input concepts.
This kernel is not only structural, since it ultimately relies on the semantic similarity of
the primitive concepts on the leaves assessed by comparing their extensions through
a set kernel. Moreover, the kernel is actually applied to couples of individuals, after
having lifted them to the concept level through realization operators (actually by means
of approximations of the most specific concept, see [1]). Since these concepts are con-
structed on the ground of the same ABox assertions it is very likely that structural and
semantic similarity tend to coincide. A more recent definition of kernel functions for
individuals in the context of the standard SW representations is reported in [3]. Here
the authors define a set of kernels for individuals and for the various types of asser-
tions in the ABox (on concepts, datatype properties, object properties). It is not clear
how to integrate such separate building blocks; the preliminary evaluation on specific
classification problems regarded single kernels or simple additive combinations.

3 A Family of Kernels for Individuals

In the following we adopt the terminology employed in Description Logics (see [1] for
details). We report the basics that are needed for the material in this paper.

Consider a triple 〈NC , NR, NI〉 made up respectively, of a set of concept names
NC , a set of role names NR and a set of individual names NI . An interpretation
I = (∆I , ·I) maps (via ·I) such names to the corresponding element subsets, binary re-
lations, and objects of the domain ∆I . A DL language gives the rules for building more
complex concept descriptions based on these building blocks by extending the syntax
with specific constructs and providing the related interpretation. The Open World As-
sumption (OWA) is made in the underlying semantics. A knowledge base K = 〈T ,A〉
contains a TBox T and an ABox A. T is the set of terminological axioms o concept
descriptions C v D, meaning CI ⊆ DI , where C is the concept name and D is its
description. A contains assertions on the world state, e.g. C(a) and R(a, b), meaning
that aI ∈ CI and (aI , bI) ∈ RI . Subsumption w.r.t. the models of the KB is the
most important inference service. Yet in our case we will exploit instance checking,
that amounts to deciding whether an individual is an instance of a concept [1].

Grounded on [11], a family of valid kernels for the spaceX ofALC descriptions has
been proposed [6]. In that case the kernel was defined for pairs of concepts descriptions,
then the individuals had to be lifted to the concept level before computation (exploit-
ing approximations of the respective most specific concepts w.r.t. the ABox). The main
limitation of the kernel is represented by the dependency on the DL language. In order
to overcome this limitation, we propose a set of kernels that can be applied directly
to individuals, based on ideas exploited for a family of inductive distance measures
[9]. The rationale for this kernels is that similarity between individuals is decomposed
along with the similarity w.r.t. each concept in a given committee of features (class def-
initions). Two individuals are maximally similar w.r.t. a given concept Fi if they exhibit



the same behavior, i.e. both are instances of the concept or of its negation. Conversely,
the minimal similarity holds when they belong to opposite concepts. Because of the
OWA, sometimes a reasoner cannot assess the concept-membership, hence we assign
an intermediate value to reflect such uncertainty. The kernel function is formally defined
in the following:

Definition 3.1 (family of kernels). LetK = 〈T ,A〉 be a KB. Given a set of concept de-
scriptions F = {F1, F2, . . . , Fm}, a family of kernel functions kF

p : Ind(A)× Ind(A) 7→
[0, 1] is defined as follows:

∀a, b ∈ Ind(A) kF
p(a, b) :=

1
|F|

 |F|∑
i=1

| σi(a, b) |p
1/p

where p > 0 and ∀i ∈ {1, . . . ,m} the similarity function σi is defined: ∀a, b ∈ Ind(A)

σi(a, b) =

 1 (Fi(a) ∈ A ∧ Fi(b) ∈ A) ∨ (¬Fi(a) ∈ A ∧ ¬Fi(b) ∈ A)
0 (Fi(a) ∈ A ∧ ¬Fi(b) ∈ A) ∨ (¬Fi(a) ∈ A ∧ Fi(b) ∈ A)
1
2 otherwise

Note that the kernel functions can be model-theoretically defined by substituting,in the
formulation above, the following expression K |= Fi(a) to Fi(a) ∈ A (resp. K |=
¬Fi(a)) to each belongingness expression Fi(a) ∈ A (resp. ¬Fi(a) ∈ A), both for a
and b.

Instance-checking is to be employed for assessing the value of the simple similar-
ity functions. This is known to be computationally expensive (also depending on the
specific DL language of choice). Alternatively, especially for largely populated ontolo-
gies, a simple look-up may be sufficient, as suggested by the formal definition of the
σi functions. If it is required that k(a, b) = 0 even though the selected features are not
able to distinguish the individuals, one might make the unique names assumption on all
individuals occurring in the ABox A, and employ a special feature based on equality:
σ0(a, b) = 1 iff a = b (and 0 otherwise). Alternatively, equivalence classes might be
considered instead of individuals.

The most important property of a kernel function is its validity (it must correspond
to a dot product in a certain embedding space).

Proposition 3.1 (validity). Given an integer p > 0 and a committee of features F, the
function kF

p is a valid kernel.

This result can be assessed by proving the function kF
p definite-positive. Alterna-

tively it is easier to prove the property by showing that the function can be obtained by
composing simpler valid kernels through operations that guarantee the closure w.r.t. this
property [12]. Specifically, since the various σi functions (i = 1, . . . , n) correspond to
a matching kernel, the property follows from the closure w.r.t. sum, multiplication by a
constant and kernel multiplication.

It is also worthwhile to note that this is indeed a family of kernels parametrized
on the choice of features. As for the semantic pseudo-metric that inspired the kernel
definition [9], a preliminary phase may concern finding an optimal choice of features.
This may be carried out by means of randomized optimization procedures, similar to
the developed for the pseudo-distance [8].



4 Inductive Classification and Retrieval through Kernel Methods

SVMs are classifiers based on kernel functions that, exploiting a kernel function, map
the training data into a higher dimensional feature space where they can be classified
by means of a linear classifier. This is done by constructing a separating hyperplane
with the maximum margin in the new feature space, which yields a nonlinear decision
boundary in the input space. By the use of a kernel function, the separating hyperplane
is computed without explicitly carrying out the mapping into the feature space. A SVM,
as any other kernel method, can be applied to whatever knowledge representation, pro-
vided a valid kernel function suitable for the chosen representation. Given the DL-kernel
defined in Sect. 3, we use the SVM to solve the following problem:

Definition 4.1 (classification problem). Let K = 〈T ,A〉 be a KB, let Ind(A) be the
set of all individuals in A and let C = {C1, . . . , Cs} be the set of all concepts (both
primitive and defined) in T . The classification problem to solve is: given an individual
a ∈ Ind(A), determine the set of concepts {C1, . . . , Ct} ⊆ C to which a belongs to.

In the general setting of SVMs, the classes, w.r.t. which the classification is per-
formed, are disjoint. This is not generally verified in the SW context, where an in-
dividual can be instance of more than one concept. To solve this problem, a different
answering procedure is proposed. The multi-class classification problem is decomposed
into smaller binary classification problems (one per class). Specifically, given an indi-
vidual in the KB, instead of returns the set of concepts to which it belongs to, it is
classified w.r.t. to each concept, namely for each concept, the classifier assesses if the
individual is instance or not. Therefore, a simple binary value set (V = {−1,+1}) can
be employed, where (+1) indicates that an individual xi is instance of the concept Cj ;
(−1) indicates that xi is not instance of Cj . Anyway, this is not enough. Indeed, in the
general setting, an implicit Closed World assumption (CWA) is made, while in the SW
context, the Open World Assumption (OWA) is usually adopted. To deal with the OWA,
the absence of information on whether a certain individual xi belongs to the extension
of the concept Cj should not be interpreted negatively, as seen before, rather, it should
count as neutral information. Thus, we consider another value set: V = {+1,−1, 0},
where the three values denote, respectively, assertion occurrence (Cj(xi) ∈ A), occur-
rence of the opposite assertion (¬Cj(x) ∈ A) and assertion absence inA. Hence, given
a query instance xq , for every concept Cj ∈ C, the classifier will return +1 if xq is an
instance of Cj , −1 if xq is an instance of ¬Cj , and 0 otherwise. The classification is
performed on the ground of a set of training examples from which such information can
be derived.

Considered a knowledge baseK = 〈T ,A〉, all the individuals inA can be classified
w.r.t. one or more concepts in T , thus performing the concept retrieval inductively. In
the same way, the classifier can be employed for solving a query answering task, by
determining the extension of a new concept built from concepts and roles in T . As it will
be shown in the next section, the classifier behavior, in performing concept retrieval, is
comparable with the one of a standard reasoner. Moreover, the classifier may be able to
induce new knowledge that is not logically derivable.



Table 1. Ontologies employed in the experiments.

ontology DL #concepts #obj. prop #data prop #individuals
S.-W.-M. ALCOF(D) 19 9 1 115
SCIENCE ALCIF(D) 74 70 40 331

NTN SHIF(D) 47 27 8 676
WINES ALCIO(D) 112 9 10 149

5 Experimental Evaluation

For performing the classification problem defined in Sect. 4 and for assessing the valid-
ity of the DL-kernel (see Def. 3.1), a SVM from the LIBSVM library1 has been consid-
ered. The instance classification has been performed on four different OWL ontologies:
SURFACE-WATER-MODEL, NEWTESTAMENTNAMES, SCIENCE, and WINES from the
Protégé library2. Details about such ontologies are reported in Tab. 1. The classification
method was applied to all the individuals in each ontology; namely, for each ontology,
the individuals were checked to assess if they were instances of the concepts in the
ontology through the SVM and the DL-kernel3 embedded in it. A similar experimental
setting has been considered in [3] with an exemplified version of the GALEN Upper
Ontology4. The ontology has been randomly populated and only seven concepts have
been considered while no roles have been taken into account5. Differently from this
case, we did not apply any changes on the considered ontologies.

The SVM-based classifier performance was evaluated by comparing its responses
to those returned by a standard reasoner6 used as baseline. The experiment has been
performed by adopting the ten-fold cross validation procedure. For each concept in
the ontology, the following parameters have been measured for the evaluation: match
rate: number of cases of individuals that got exactly the same classification by both
classifiers with respect to the overall number of individuals; omission error rate: amount
of unlabeled individuals (namely the method returns 0 as classification results) while
they were to be classified as instances of the considered concept; commission error rate:
amount of individuals labeled as instances of a concept, while they (logically) belong
to the negation of that concept or vice-versa; induction rate: amount of individuals that
were found to belong to a concept or its negation, while this information is not logically
derivable from the knowledge base. The average rates obtained over all the concepts in
each ontology are reported in Tab. 2, jointly with their range.

Looking at the table, it is important to note that, for every ontology, the commission
error is null. This means that the classifier did not make critical mistakes, i.e. cases

1 http://www.csie.ntu.edu.tw/ cjlin/libsvm
2 See the webpage: http://protege.stanford.edu/plugins/owl/owl-library
3 The feature set for computing the DL-kernel was made by all concepts in the considered on-

tology (see Def. 3.1).
4 http://www.cs.man.ac.uk/ rector/ontologies/simple-top-bio/
5 Due to the lack of information for replicating the ontology used in [3], a comparative experi-

ment with the proposed kernel framework cannot be performed.
6 PELLET: http://pellet.owldl.com



Table 2. Results (average and range) of the experiments using DL-kernel.

ONTOLOGY match rate induction rate omis. err. rate comm. err. rate

WINES
avg. 0.952 0.006 0.042 0.000

range 0.585 - 0.993 0.000 - 0.415 0.000 - 0.343 0.000 - 0.00

SCIENCE
avg. 0.971 0.018 0.011 0.000

range 0.947 - 1.000 0.000 - 0.053 0.000 - 0.021 0.000 - 0.000

S.-W.-M. avg. 0.959 0.000 0.041 0.000
range 0.836 - 1.000 0.000 - 0.000 0.000 - 0.164 0.000 - 0.000

N.T.N. avg. 0.982 0.002 0.016 0.000
range 1.000 - 0.932 0.000 - 0.055 0.000 - 0.068 0.000 - 0.000

Table 3. Results (average and range) of the experiments with ALC kernel (λ = 1).

ONTOLOGY match rate induction rate omis. err. rate comm. err. rate

WINES
avg. 0.956 0.004 0.040 0.000

range 0.650 - 1.000 0.000 - 0.270 0.010 - 0.340 0.000 - 0.000

SCIENCE
avg. 0.942 0.007 0.051 0.000

range 0.800 - 1.00 0.000 - 0.040 0.000 - 0.200 0.000 - 0.000

S.-W.-M. avg. 0.871 0.067 0.062 0.000
range 0.570 - 0.980 0.000 - 0.420 0.000 - 0.400 0.000 - 0.000

N.T.N. avg. 0.925 0.026 0.048 0.001
range 0.660 - 0.990 0.000 - 0.320 0.000 - 0.220 0.000 - 0.030

when an individual is deemed as an instance of a concept while it really is an instance
of the negation of that concept. Furthermore, a very high match rate is registered for
every ontology. Particularly, looking at Tab. 2, it can be observed that the match rate
increases with the increase of the number of individuals in the considered ontology.
This is because, being the SVM a statistical method, its performance improves with
the augmentation of the set of the available examples. Almost always the SVM-based
classifier is able to induce new knowledge. However, a conservative behavior has been
also registered, indeed the omission error rate is not null (even if it is very close to 0).
To decrease the tendency to a conservative behavior of the method, a threshold could be
introduced for the consideration of the ”unknown” (labeled with 0) training examples.

We have compared the results obtained by performing the inductive concept re-
trieval exploiting the DL-kernel, with the one obtained applying the SVM-based clas-
sifier jointly with the ALC kernel (see [6, 7]). The outcomes of the second set of ex-
periments are reported in Tab. 3. By comparing Tab. 2 and Tab. 3 it is possible to note
that DL-kernel improves both match rate and omission rate with respect toALC kernel.
Consequently a decrease of the induction rate is observed. The commission rate for the
ALC kernel is almost null as for the DL-kernel.

6 Conclusions

We have defined a novel family of semantic kernel functions for individuals in the con-
text of populated ontologies based on their behavior w.r.t. a number of features (con-
cept definitions). The kernels are language-independent (they simply require instance-
checking or ABox look-up) and can be easily integrated with a kernel machine (a SVM
in our case) for performing a broad spectrum of activities. In this paper we focused on
the application to statistical classification of individuals in an ontology. The resulting
classifier has been used to perform instance classification in an inductive way which



may be more efficient and noise-tolerant w.r.t. the standard deductive procedures. It has
been experimentally shown that its performance is not only comparable to the one of a
standard reasoner, but the classifier is also able to induce new knowledge, which is not
logically derivable. Particularly, an increase in prediction accuracy was observed when
the instances are homogeneously spread, as expected from statistical methods. The re-
alized classifier can be exploited for predicting/suggesting missing information about
individuals, thus completing large ontologies.
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