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Abstract. A clustering method is presented which can be applied to semanti-
cally annotated resources in the context of ontological knowledge bases. This
method can be used to discover emerging groupings of resources expressed in the
standard ontology languages. The method exploits a language-independent semi-
distance measure over the space of resources, that is based on their semantics
w.r.t. a number of dimensions corresponding to a committee of discriminating
features represented by concept descriptions. A maximally discriminating group
of features can be constructed through a feature construction method based on
genetic programming. The evolutionary clustering algorithm proposed is based
on the notion of medoids applied to relational representations. It is able to induce
a set of clusters by means of a fitness function based on a discernibility criterion.
An experimentation with some ontologies proves the feasibility of our method.

1 Introduction

In the perspective of the Semantic Web [2] knowledge bases will contain rich data and
meta-data described with complex representations. This requires re-thinking the cur-
rent data mining approaches to cope with the challenge of the new representation and
semantics. In this work, unsupervised learning is tackled in the context of the standard
concept languages used for representing ontologies which are based on Description
Logics (henceforth DLs) [1]. In particular, we focus on the problem of conceptual clus-
tering [25] for semantically annotated resources.

The benefits of clustering in the context of semantically annotated knowledge bases
are manifold. Clustering enables the definition of new emerging categories (concept
formation) on the grounds of the primitive concepts asserted in a knowledge base [9];
supervised methods can exploit these clusters to induce new concept definitions or to
refining existing ones ontology evolution; intensionally defined groupings may speed-
up the task of discovery and search in general.

Essentially, many existing clustering methods are based on the application of simi-
larity (or density) measures defined over a fixed set of attributes of the domain objects.
Classes of objects are taken as collections that exhibit low interclass similarity (density)
and high intraclass similarity (density). Thus, clustering methods have aimed at defining
groups of objects through conjunctive descriptions based on selected attributes [25].

Often these methods cannot into account any form of prior knowledge at a concep-
tual level encoding some semantic relationships. This hinders the interpretation of the



outcomes of these methods which is crucial in the Semantic Web perspective in which
the expressiveness of the language adopted for describing objects and clusters is ex-
tremely important. Specific logic-based approaches, intended for terminological repre-
sentations [1], have have been proposed as language-dependent methods [16, 9]. These
methods have been criticized for suffering from noise in the data. This motivates our in-
vestigation on similarity-based clustering approaches which can be more noise-tolerant,
and as language-independent as possible. Specifically we propose a multi-relational ex-
tension of effective clustering techniques intended for grouping similar resources w.r.t.
a semantic dissimilarity measure, which is tailored for the standard representations of
Semantic Web context.

From a technical viewpoint, adapting existing algorithms to work on complex rep-
resentations, requires semantic measures that are suitable for such concept languages.
Recently, dissimilarity measures for specific DLs have been proposed [5]. Although
they turned out to be quite effective for the inductive tasks, they were still partly based
on structural criteria which makes them fail to fully capture the underlying semantics
and hardly scale to any standard ontology language. As pointed out in a seminal paper
on similarity measures for DLs [4], most of the existing measures focus on the simi-
larity of atomic concepts within hierarchies or simple ontologies. Moreover, they have
been conceived for assessing concept similarity, whereas, for other tasks, a notion of
similarity between individuals is required.

Therefore, we have devised a family of dissimilarity measures for semantically an-
notated resources, which can overcome the mentioned limitations [8]. Following the
criterion of semantic discernibility of individuals, these measures are suitable for a
wide range of concept languages since they are merely based on the discernibility of
the input individuals with respect to a fixed committee of features represented by con-
cept definitions. As such the new measures are not absolute, yet they depend on the
knowledge base they are applied to. Thus, also the choice of the optimal feature sets
deserves a preliminary feature construction phase, which may be performed by means
of a randomized search procedure based on genetic programming, whose operators are
borrowed from recent works on ontology evolution [13].

The clustering algorithm that we propose adopts an evolutionary learning approach
for adapting classic distance-based clustering approaches, such as the K-MEANS [14].
In our setting, instead of the notion of centroid that characterizes algorithms originally
developed for numeric or ordinal features, we recur to the notion of medoids [15] as
central individuals in a cluster. The clustering problem is solved by considering popula-
tions made up of strings of medoids with different lengths. The medoids are computed
according to the semantic measure induced with the methodology introduced above.
On each generation, the strings in the current population are evolved by mutation and
cross-over operators, which are also able to change the number of medoids. Thus, this
algorithm is also able to autonomously suggest a promising number of clusters.

The paper is organized as follows. Sect. 2 presents the basics of the representation
and the similarity measure adopted in the clustering algorithm. This algorithm is illus-
trated and discussed in Sect. 3. Related methods and distance measures are recalled in
Sect. 4 then an experimental session applying the method on real ontologies is reported
in Sect. 5. Conclusions and extensions are finally examined in Sect. 6.



2 Semantic Distance Measures

One of the advantages of our method is that it does not rely on a particular language for
semantic annotations. Hence, in the following, we assume that resources, concepts and
their relationship may be defined in terms of a generic ontology language that may be
mapped to some DL language with the standard open-world semantics (see the hand-
book [1] for a thorough reference).

In this context, a knowledge base K = 〈T ,A〉 is made up of a TBox T and an ABox
A. T is a set of concept definitions. A contains assertions (ground facts) concerning
individuals. The set of the individuals occurring in A will be denoted with Ind(A).
The unique names assumption can be made for such individuals: each is assumed to be
identified by its own URI.

As regards the inference services, like all other instance-based methods, our proce-
dure may require performing instance-checking, which amounts to determining whether
an individual, say a, belongs to a concept extension, i.e. whether C(a) holds for a cer-
tain concept C.

2.1 A Semantic Semi-Distance for Individuals
Moreover, for our purposes, we need a function for measuring the similarity of indi-
viduals rather than concepts. It can be observed that individuals do not have a syntactic
structure that can be compared. This has led to lifting them to the concept description
level before comparing them (recurring to the approximation of the most specific con-
cept of an individual w.r.t. the ABox).

We have developed new measures whose definition totally depends on semantic
aspects of the individuals in the knowledge base [8]. On a semantic level, similar indi-
viduals should behave similarly with respect to the same concepts. We introduce a novel
measure for assessing the similarity of individuals in a knowledge base, which is based
on the idea of comparing their semantics along a number of dimensions represented
by a committee of concept descriptions. Following the ideas borrowed from ILP [24]
and multi-dimensional scaling, we propose the definition of totally semantic distance
measures for individuals in the context of a knowledge base.

The rationale of the new measure is to compare them on the grounds of their be-
havior w.r.t. a given set of hypotheses, that is a collection of concept descriptions, say
F = {F1, F2, . . . , Fm}, which stands as a group of discriminating features expressed in
the language taken into account.

In its simple formulation, a family of distance functions for individuals inspired to
Minkowski’s distances can be defined as follows:

Definition 2.1 (dissimilarity measures). Let K = 〈T ,A〉 be a knowledge base. Given
a set of concept descriptions F = {F1, F2, . . . , Fm}, a family of functions

dF
p : Ind(A)× Ind(A) 7→ [0, 1]

defined as follows:
∀a, b ∈ Ind(A)

dF
p(a, b) :=

1
m

(
m∑

i=1

| πi(a)− πi(b) |p
)1/p



where p > 0 and ∀i ∈ {1, . . . ,m} the projection function πi is defined by:
∀c ∈ Ind(A)

πi(c) =

 1 K |= Fi(c)
0 K |= ¬Fi(c)

1/2 otherwise
(1)

The case of πi(c) = 1/2 corresponds to the case when a reasoner cannot give the
truth value for a certain membership query. This is due to the Open World Assumption
(OWA) normally made in the descriptive semantics [1].

It can be proved that these functions have almost all standard properties of dis-
tances [8]:

Proposition 2.1 (semi-distance). For a fixed feature set F and p > 0 the function dF
p is

a semi-distance.

It cannot be proved that dp(a, b) = 0 iff a = b. This is the case of indiscernible
individuals with respect to the given set of hypotheses F.

Compared to other proposed distance (or dissimilarity) measures [4], the presented
function does not depend on the constructors of a specific language, rather it requires
only retrieval or instance-checking service used for deciding whether an individual is
asserted in the knowledge base to belong to a concept extension (or, alternatively, if this
could be derived as a logical consequence).

Note that the πi functions (∀i = 1, . . . ,m) for the training instances, that contribute
to determine the measure with respect to new ones, can be computed in advance thus
determining a speed-up in the actual computation of the measure. This is very important
for the measure integration in algorithms which massively use this distance, such as all
instance-based methods.

The underlying idea for the measure is that similar individuals should exhibit the
same behavior w.r.t. the concepts in F. Here, we make the assumption that the feature-
set F represents a sufficient number of (possibly redundant) features that are able to
discriminate really different individuals.

2.2 Committee Optimization

The choice of the concepts to be included in the committee – feature selection – may be
crucial. Experimentally, it was observed that good results could be obtained by using the
very set of both primitive and defined concepts found in the ontology. However, some
ontologies define very large sets of concepts which make the task unfeasible. Thus, we
have devised a specific optimization algorithms founded in genetic programming which
are able to find optimal choices of discriminating concept committees.

Various optimizations of the measures can be foreseen as concerns its definition.
Among the possible sets of features we will prefer those that are able to discriminate
the individuals in the ABox.

Since the function is very dependent on the concepts included in the committee of
features F, two immediate heuristics can be derived:

– limit the number of concepts of the committee, including especially those that are
endowed with a real discriminating power;



– find sets of discriminating features, by allowing also their composition employing
the specific constructors made available by the representation language of choice.

Both these objectives can be accomplished by means of randomized optimization tech-
niques especially when knowledge bases with large sets of individuals are available.
Namely, part of the entire data can be drawn in order to learn optimal F sets, in advance
with respect to the successive usage for all other purposes.

Specifically, we experimented the usage of genetic programming for constructing
optimal sets of features. Thus we devised the algorithm depicted in Fig. 1. Essentially
the algorithm searches the space of all possible feature committees starting from an ini-
tial guess (determined by MAKEINITIALFS(K)) based on the concepts (both primitive
and defined) currently referenced in the knowledge base K.

The outer loop gradually augments the cardinality of the candidate committees. It
is repeated until the algorithm realizes that employing larger feature committees would
not yield a better fitness value with respect to the best fitness recorded in the previous
iteration (with fewer features).

The inner loop is repeated for a number of generations until a stop criterion is met,
based on the maximal value of generations maxGenerations or, alternatively, when an
minimal threshold for the fitness value minFitness is reached by some feature set in the
population, which can be returned.

As regards the BESTFITNESS() routine, it computes the best feature committee in
a vector in terms of their discernibility [22, 12]. For instance, given the whole set of
individuals IS = Ind(A) (or just a sample to be used to induce an optimal measure) the
fitness function may be:

DISCERNIBILITY(F) :=
1

|IS|2
∑

(a,b)∈IS2

|F|∑
i=1

| πi(a)− πi(b) |
2 · |F|

As concerns finding candidate sets of concepts to replace the current committee
(GENERATEOFFSPRINGS() routine), the function was implemented by recurring to sim-
ple transformations of a feature set:

– choose F ∈ currentFSs;
– randomly select Fi ∈ F;

• replace Fi with F ′
i ∈ RANDOMMUTATION(Fi) randomly constructed, or

• replace Fi with one of its refinements F ′
i ∈ REF(Fi)

Refinement of concept description may be language specific. E.g. for the case of ALC
logic, refinement operators have been proposed in [13].

This is iterated till a suitable number of offsprings is generated. Then these off-
spring feature sets are evaluated and the best ones are included in the new version of
the currentFSs array; the minimal fitness value for these feature sets is also computed.
As mentioned, when the while-loop is over the current best fitness is compared with the
best one computed for the former feature set length; if an improvement is detected then
the outer repeat-loop is continued, otherwise (one of) the former best feature set(s) is
selected for being returned as the result of the algorithm.



FeatureSet OPTIMIZEFS(K, maxGenerations, minFitness)
input:

K: current knowledge base
maxGenerations: maximal number of generations
minFitness: minimal fitness value

output:
FeatureSet: FeatureSet

begin
currentBestFitness := 0; formerBestFitness := 0;
currentFSs := MAKEINITIALFS(K); formerFSs := currentFSs;
repeat

fitnessImproved := false;
generationNumber := 0;
currentBestFitness := BESTFITNESS(currentFSs);
while (currentBestFitness < minFitness) or (generationNumber < maxGenerations)

begin
offsprings := GENERATEOFFSPRINGS(currentFSs);
currentFSs := SELECTFROMPOPULATION(offsprings);
currentBestFitness := BESTFITNESS(currentFSs);
++generationNumber;
end

if (currentBestFitness > formerBestFitness) and (currentBestFitness < minFitness) then
begin
formerFSs := currentFSs;
formerBestFitness := currentBestFitness;
currentFSs := ENLARGEFS(currentFSs);
end

else fitnessImproved := true;
end

until not fitnessImproved;
return BEST(formerFSs);
end

Fig. 1. Feature set optimization algorithm based on Genetic Programming.

Further methods for performing feature construction by means of randomized ap-
proaches are discussed in [8], where we propose a different approach based on simu-
lated annealing in a DL framework, employing similar refinement operators.

3 Evolutionary Clustering Around Medoids

The conceptual clustering procedure consists of two phases: one that detects the clusters
in the data and the other that finds an intensional definition for the groups of individuals
detected in the former phase.

The first clustering phase implements a genetic programming learning scheme,
where the designed representation for the competing genes is made up of strings (lists)



of individuals of different lengths, where each individual stands as prototypical for one
cluster. Thus, each cluster will be represented by its prototype recurring to the notion
of medoid [15, 14] on a categorical feature-space w.r.t. the distance measure previously
defined. Namely, the medoid of a group of individuals is the individual that has the
lowest distance w.r.t. the others. Formally. given a cluster C = {a1, a2, . . . , an}, the
medoid is defined:

m = medoid(C) := argmin
a∈C

n∑
j=1

d(a, aj)

The algorithm performs a search in the space of possible clusterings of the individuals
optimizing a fitness measure maximizing discernibility of the individuals of the differ-
ent clusters (inter-cluster separation) and the intra-cluster similarity measured in terms
of our metric.

The second phase is more language dependent. The various cluster can be consid-
ered as training examples for a supervised algorithm aimed at finding an intensional
DL definition for one cluster against the counterexamples, represented by individuals
in different clusters [16, 9].

3.1 The Clustering Algorithm

The proposed clustering algorithm can be considered as an extension of methods based
on genetic programming, where the notion of cluster prototypical instance of cen-
troid, typical of the numeric feature-vector data representations, is replaced by that of
medoid [15] as in (Partition Around Medoids or PAM): each cluster is represented by
one of the individuals in the cluster, the medoid, i.e., in our case, the one with the low-
est average distance w.r.t. all the others individuals in the cluster. In the algorithm, a
genome will be represented by a list of medoids G = {m1, . . . ,mk}. Per each genera-
tion those that are considered as best w.r.t. a fitness function are selected for passing to
the next generation. Note that the algorithm does not prescribe a fixed length of these
lists (as, for instance in K-MEANS and its extensions [14]), hence it should be able to
detect an optimal number of clusters for the data at hand.

Fig. 2 reports a sketch of the clustering algorithm. After the call to the initialization
procedure INITIALIZE() returning the randomly generated initial population of medoid
strings (currentPopulation) in a number of popLength, it essentially consists of the
typical generation loop of genetic programming.

At each iteration this computes the new offsprings of current best clusterings repre-
sented by currentPopulation. This is performed by suitable genetic operators explained
in the following. The fitnessVector recording the quality of the various offsprings (i.e.
clusterings) is then updated, which is used to select the best offsprings that survive,
passing to the next generation.

The quality of a genome G = {m1, . . . ,mk} is evaluated by distributing all indi-
viduals among the clusters ideally formed around the medoids listed in it. Let Ci be the
cluster around medoid mi, i = 1, . . . , k. Then, the measure is computed as follows:

UNFITNESS(G) :=
√

k + 1
k∑

i=1

∑
x∈Ci

dp(x,mi)



medoidVector ECM(maxGenerations, minGap)
input:

maxGenerations: max number of iterations;
minGap: minimal gap for stopping the evolution;

output:
medoidVector: list of medoids

begin
INITIALIZE(currentPopulation,popLength);
while (generation ≤ maxGenerations) and (gap > minGap)

begin
offsprings := GENERATEOFFSPRINGS(currentPopulation);
fitnessVector := COMPUTEFITNESS(offsprings);
currentPopulation := SELECT(offsprings,fitnessVector);
gap := (UNFITNESS[popLength]−UNFITNESS[1]);
generation++;
end

return currentPopulation[0]; // best genome
end

Fig. 2. ECM: the EVOLUTIONARY CLUSTERING AROUND MEDOIDS algorithm.

This measure is to be minimized. The factor
√

k + 1 is introduced in order to penalize
those clusterings made up of too many clusters that could enforce the minimization in
this way (e.g. by proliferating singletons). This can be considered a measure of inco-
herence within the various clusters, while the fitness function used in the metric opti-
mization procedure measures discernibility as the spread of the various individuals in
the derived space independently of their classification.

The loop condition is controlled by two factors the maximal number of genera-
tion (the maxGenerations parameter) and the difference (gap) between the fitness of
best and of the worst selected genomes in currentPopulation (which is supposed to be
sorted in ascending order, 1 through popLength). Thus another stopping criterion is met
when this gap becomes less than the minimal gap minGap passed as a parameter to the
algorithm, meaning that the algorithm has reached a (local) minimum.

It remains to specify the nature of the GENERATEOFFSPRINGS procedure function
and the number of such offsprings, which may as well be another parameter of the ECM
algorithm. Three mutation and one crossover operators are implemented:

DELETION(G) drop a randomly selected medoid:
G := G \ {m},m ∈ G

INSERTION(G) select m ∈ Ind(A) \G that is added to G:
G := G ∪ {m}

REPLACEMENTWITHNEIGHBOR(G) randomly select m ∈ G and replace it with m′ ∈
Ind(A) \G such that ∀m′′ ∈ Ind(A) \G d(m,m′) ≤ d(m,m′′):
G′ := (G \ {m}) ∪ {m′}

CROSSOVER(GA,GB) select subsets SA ⊂ GA and SB ⊂ GB and exchange them
between the genomes:
GA := (GA \ SA) ∪ SB and GB := (GB \ SB) ∪ SA



input Clustering = {Cj | j = 1, . . . , k}: set of clusters
K = 〈T ,A〉: knowledge base;

output Descriptions: set of DL concept descriptions
Descriptions := ∅;
for each Cj ∈ Clustering:

for each individual ai ∈ Cj :
do compute Mi := msc(ai) w.r.t. A;

let MSCsj := {Mi | ai ∈ Cj};
Descriptions := Descriptions ∪{lcs(MSCsj)};

return Descriptions;

Fig. 3. A basic concept induction algorithm from clusterings.

A (10+60) selection strategy has been implemented, indicating, resp., the number
of parents selected for survival and the number of their offsprings.

3.2 The Supervised Learning Phase

Each cluster may be labeled with a new DL concept definition which characterizes the
individuals in the given cluster while discriminating those in other clusters [9]. The pro-
cess of labeling clusters with concepts can be regarded as solving a number of super-
vised learning problems in the specific multi-relational representation targeted in our
setting. As such, it deserves specific solutions that are suitable for the DL languages
employed.

A straightforward solution, for DLs that allow for the computation of (an approxi-
mation of) the most specific concept (msc) and least common subsumer (lcs) [1] (such
as ALC) is depicted in Fig. 3.

However, such a solution is likely to produce overly specific definitions which may
lack of predictiveness w.r.t. future individuals. Hence, better generalizing operators
would be needed. Alternatively, algorithms for learning concept descriptions expressed
in DLs may be employed [13]. Further refinement operators for the ALC DL have been
proposed [18] to be employed in an algorithm performing a heuristic search in the re-
finement tree guided by a fitness function.

3.3 Discussion

For an analysis of the algorithm, the parameters of the methods based on genetic pro-
gramming have to be considered, namely maximum number of iterations, number of
offsprings, number of genomes that are selected for the next generation. However, it
should be also pointed out that computing the fitness function requires some inference
service (instance-checking) from a reasoner whose complexity may dominate the over-
all complexity of the process. This depends on the DL language of choice and also on
the structure of the concepts descriptions handled, as investigated in the specific area
(see [1], Ch. 3).



The representation of centers by means of medoids has two advantages. First, it
presents no limitations on attributes types, and, second, the choice of medoids is dictated
by the location of a predominant fraction of points inside a cluster and, therefore, it
is lesser sensitive to the presence of outliers. Density based methods could be also
investigated, yet this may be difficult when handling complex data. In K-MEANS case
a cluster is represented by its centroid, which is a mean (usually weighted average) of
points within a cluster. This works conveniently only with numerical attributes and can
be negatively affected by a single outlier.

Together with the density based clustering methods, also the algorithms based on
medoids have several favorable properties w.r.t. other methods based on (dis)similarity.
Since it performs clustering with respect to any specified metric, it allows for a flex-
ible definition of the similarity function. This flexibility is particularly important in
biological applications where researchers may be interested, for example, in grouping
correlated or possibly also anti-correlated elements. Many clustering algorithms do not
allow for a flexible definition of similarity: mostly they are rather based on a distances
in Euclidean spaces. In addition, the algorithm has the advantage of identifying clusters
by the medoids which represent more robust representations of the cluster centers that
are less sensitive to outliers than other cluster profiles, such as the cluster centers of
K-MEANS. This robustness is particularly important in the common context that many
elements do not belong exactly to any cluster, which may be the case of the membership
in DL knowledge bases, which may be not ascertained given the OWA.

4 Related Work

The unsupervised learning procedure presented in this paper is mainly based on two
factors: the semantic dissimilarity measure and the clustering method. To the best of
our knowledge in the literature there are very few examples of similar clustering al-
gorithms working on complex representations that are suitable for knowledge bases of
semantically annotated resources. Thus, in this section, we briefly discuss sources of
inspiration for our procedure and some related approaches.

As previously mentioned, various attempts to define semantic similarity (or dissim-
ilarity) measures for concept languages have been made, yet they have still a limited ap-
plicability to simple languages [4] or they are not completely semantic depending also
on the structure of the descriptions [5]. OSS is another recent proposal for an asymmet-
ric similarity function for concepts within an ontology [23] based on its structure. Very
few works deal with the comparison of individuals rather than concepts.

In the context of clausal logics, a metric was defined [21] for the Herbrand interpre-
tations of logic clauses as induced from a distance defined on the space of ground atoms.
This kind of measures may be employed to assess similarity in deductive databases. Al-
though it represents a form of fully semantic measure, different assumptions are made
with respect to those which are standard for knowledgeable bases in the SW perspective.
Therefore the transposition to the context of interest is not straightforward.

Our measure is mainly based on Minkowski’s measures [26] and on a method for
distance induction developed by Sebag [24] in the context of machine learning, where
metric learning is developing as an important subfield. In this work it is shown that



the induced measure could be accurate when employed for classification tasks even
though set of features to be used were not the optimal ones (or they were redundant).
Indeed, differently from our unsupervised learning approach, the original method learns
different versions of the same target concept, which are then employed in a voting
procedure similar to the Nearest Neighbor approach for determining the classification
of instances.

A source of inspiration was also rough sets theory [22] which aims at the formal def-
inition of vague sets by means of their approximations determined by an indiscernibility
relationship. Hopefully, these methods developed in this context will help solving the
open points of our framework (see Sect. 6) and suggest new ways to treat uncertainty.

Our algorithm adapts to the specific representations devised for the SW context a
combination of evolutionary clustering and the distance-based approaches (see [14]).
Specifically, in the methods derived from K-MEANS and K-MEDOIDS each cluster is
represented by one of its points.

Early versions of this approach are represented by further algorithms based on PAM
such as CLARA [15], and CLARANS [20]. They implement iterative optimization
methods that essentially cyclically relocate points between perspective clusters and re-
compute potential medoids. The leading principle for the process is the effect on an
objective function. The whole dataset is assigned to resulting medoids, the objective
function is computed, and the best system of medoids is retained. In CLARANS a
graph is considered whose nodes are sets of k medoids and an edge connects two nodes
if they differ by one medoid. While CLARA compares very few neighbors (a fixed
small sample), CLARANS uses random search to generate neighbors by starting with
an arbitrary node and randomly checking maxneighbor neighbors. If a neighbor rep-
resents a better partition, the process continues with this new node. Otherwise a local
minimum is found, and the algorithm restarts until a certain number of local minima is
found. The best node (i.e. a set of medoids) is returned for the formation of a resulting
partition. Ester et al. [6] extended CLARANS to deal with very large spatial databases.

Our algorithm may be considered an extension of evolutionary clustering meth-
ods [11] which are also capable to determine a good estimate of the number of clus-
ters [10]. Besides, we adopted the idea of representing clusterings (genomes) as strings
of cluster centers [17] transposed to the case of medoids for the categorical search
spaces of interest.

Other related recent approaches are represented by the UNC algorithm and its ex-
tension to the hierarchical clustering case H-UNC [19]. Essentially, UNC solves a mul-
timodal function optimization problem seeking dense areas in the feature space. It is
also able to determine their number. The algorithm is also demonstrated to be noise-
tolerant and robust w.r.t. the presence of outliers. However, the applicability is limited
to simpler representations w.r.t. those considered in this paper.

Further comparable clustering methods are those based on an indiscernibility rela-
tionship [12]. While in our method this idea is embedded in the semi-distance measure
(and the choice of the committee of concepts), these algorithms are based on an it-
erative refinement of an equivalence relationship which eventually induces clusters as
equivalence classes.



As mentioned in the introduction, the classic approaches to conceptual cluster-
ing [25] in complex (multi-relational) spaces are based on structure and logics. Kietz &
Morik proposed a method for efficient construction of knowledge bases for the BACK
representation language [16]. This method exploits the assertions concerning the roles
available in the knowledge base, in order to assess, in the corresponding relationship,
those subgroups of the domain and ranges which may be inductively deemed as dis-
joint. In the successive phase, supervised learning methods are used on the discovered
disjoint subgroups to construct new concepts that account for them. A similar approach
is followed in [9], where the supervised phase is performed as an iterative refinement
step, exploiting suitable refinement operators for a different DL, namely ALC.

5 Experimental Evaluation

A comparative evaluation of the method is not possible yet, since to the best of our
knowledge, there is no similar algorithm which can cope with complex DL languages
such as those indicated in the following Tab. 1. The only comparable (logical) ap-
proaches to clustering DL KBs are suitable for limited languages only (e.g. see [16, 9]).

The clustering procedure was validated through some standard internal indices [14,
3]. As pointed out in several surveys on clustering, it is better to use a different criterion
for the clustering algorithm (e.g. for choosing the candidate cluster to bisection) and for
assessing the quality of its resulting clusters.

To this purpose, we propose a generalization of Dunn’s index [3] to deal with
medoids. Let P = {C1, . . . , Ck} be a possible clustering of n individuals in k clus-
ters. The index can be defined:

VGD(P ) := min
1≤i≤k

 min
1≤j≤k

i 6=j

{
δp(Ci, Cj)

max1≤h≤k {∆p(Ch)}

}
where δp is the Hausdorff distance for clusters derived from dp (defined: δp(Ci, Cj) =
max{dp(Ci, Cj), dp(Cj , Ci)}, where dp(Ci, Cj) = maxa∈Ci{minb∈Cj{dp(a, b)}})
while the cluster diameter measure ∆p is defined:

∆p(Ch) :=
2

|Ch|
∑

c∈Ch

dp(c,mh)

The other indices employed are more standard: the mean within-cluster square sum
error (WSS), a measure of cohesion, and the silhouette measure [15].

For the experiments, a number of different ontologies represented in OWL were se-
lected, namely: FSM, SURFACE-WATER-MODEL, TRANSPORTATION and NEWTES-
TAMENTNAMES from the Protégé library1, the FINANCIAL ontology2 employed as a
testbed for the PELLET reasoner. Tab. 1 summarizes important details concerning the

1 http://protege.stanford.edu/plugins/owl/owl-library
2 http://www.cs.put.poznan.pl/alawrynowicz/financial.owl



Table 1. Ontologies employed in the experiments.

ONTOLOGY DL #concepts #object prop. #data prop. #individuals
FSM SOF(D) 20 10 7 37

S.-W.-M. ALCOF(D) 19 9 1 115
TRANSPORTATION ALC 44 7 0 250

NTN SHIF(D) 47 27 8 676
FINANCIAL ALCIF 60 16 0 1000

Table 2. Results of the experiments: average value (±std. deviation) and min−max value ranges.

ONTOLOGY SILHOUETTE index DUNN’S index WSS index

FSM
.998 (±.005) .221 (±.003) 30.254 (±11.394)
.985−1.000 .212−.222 14.344−41.724

S.-W.-M.
1.000 (±.000) .333 (±.000) 11.971 (±11.394)
1.000−1.000 .333−.333 7.335−13.554

TRANSPORTATION
.976 (±.000) .079 (±.000) 46.812 (±5.944)
.976−.976 .079−.079 39.584−57.225

NTN
.986 (±.007) .058 (±.003) 96.155 (±24.992)
.974−.996 .056−.063 64.756−143.895

FINANCIAL
.927 (±.034) .237 (±.000) 130.863 (±24.117)
.861−.951 .237−.237 99.305−163.259

ontologies employed in the experimentation. A variable number of assertions per sin-
gle individual was available in the ontology. For each ontology, the experiments have
been repeated for 10 times. The PELLET 1.4 reasoner was employed to compute the
projections required for determining the distance between individuals. An overall ex-
perimentation (10 repetitions) on a single ontology took from a few minutes up to less
than one hour on a 2.5GhZ (512Mb RAM) Linux Machine.

The outcomes of the experiments are reported in Tab. 2. It is possible to note that the
the Silhouette measure is quite close its optimal value (1), thus providing an absolute
indication for the quality of the obtained clusterings. The variability is limited thus the
performance appears to be quite stable.

Dunn’s and WSS indices may be employed as a suggestion on whether to accept
or not the (number of) clusters computed by the algorithm. Namely, among the various
repetitions, those final clusterings whose values maximize these indices would have
to be preferred. The high variance observed for the WSS index (that it is not limited
within a range) has to be considered in proportion with its mean values. Besides, this
measure is very sensitive to the number of clusters produced by the method. Although
the algorithm converges to a stable number of clusters a difference of 1 may yield a
sensible variation of the WSS, also because medoids are considered as centers rather
than centroids.



6 Conclusions and Future Work

This work has presented a clustering for (multi-)relational representations which are
standard in the Semantic Web field. Namely, it can be used to discover interesting
groupings of semantically annotated resources in a wide range of concept languages.
The method exploits a novel dissimilarity measure, that is based on the resource se-
mantics w.r.t. a number of dimensions corresponding to a committee of features repre-
sented by a group of concept descriptions (discriminating features). The algorithm, is an
adaptation of clustering procedures employing medoids since complex representations
typical of the ontology in the Semantic Web are to be dealt with.

Better fitness functions may be investigated for both the evolutionary distance opti-
mization procedure and the clustering one. In particular, feature selection for inducing
a good distance measure deserves an independent investigation in order to make the
choice efficient despite the large extent of the search space. As mentioned, we are inves-
tigating other stochastic procedures based on local search [8] and also extensions which
can treat less uniformly the cases of uncertainty, e.g. evidence combination methods re-
lated to rough sets theory.

We are also devising extensions that are able to produce hierarchical clusterings [7]
which would suggest new (non necessarily disjoint) concepts. Instead of repeatedly
bisecting the target cluster (as in BISECTING K-MEANS [14]) the algorithm would au-
tonomously find an optimal number for the split at each level.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The
Description Logic Handbook. Cambridge University Press, 2003.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, May
2001.

[3] J.C. Bezdek and N.R. Pal. Some new indexes of cluster validity. IEEE Transactions on
Systems, Man, and Cybernetics, 28(3):301–315, 1998.

[4] A. Borgida, T.J. Walsh, and H. Hirsh. Towards measuring similarity in description logics.
In I. Horrocks, U. Sattler, and F. Wolter, editors, Working Notes of the International De-
scription Logics Workshop, volume 147 of CEUR Workshop Proceedings, Edinburgh, UK,
2005.

[5] C. d’Amato, N. Fanizzi, and F. Esposito. Reasoning by analogy in description logics
through instance-based learning. In G. Tummarello, P. Bouquet, and O. Signore, editors,
Proceedings of Semantic Web Applications and Perspectives, 3rd Italian Semantic Web
Workshop, SWAP2006, volume 201 of CEUR Workshop Proceedings, Pisa, Italy, 2006.

[6] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering
clusters in large spatial databases. In Proceedings of the 2nd Conference of ACM SIGKDD,
pages 226–231, 1996.

[7] N. Fanizzi, C. d’Amato, and F. Esposito. A hierarchical clustering procedure for semanti-
cally annotated resources. In R. Basili and M.T. Pazienza, editors, Proceedings of the 10th
Congress of the Italian Association for Artificial Intelligence, AI*IA2007, volume 4733 of
LNAI, pages 266–277. Springer, 2007.

[8] N. Fanizzi, C. d’Amato, and F. Esposito. Induction of optimal semi-distances for indi-
viduals based on feature sets. In Working Notes of the International Description Logics
Workshop, DL2007, volume 250 of CEUR Workshop Proceedings, Bressanone, Italy, 2007.



[9] N. Fanizzi, L. Iannone, I. Palmisano, and G. Semeraro. Concept formation in expressive
description logics. In J.-F. Boulicaut, F. Esposito, F. Giannotti, and D. Pedreschi, editors,
Proceedings of the 15th European Conference on Machine Learning, ECML2004, volume
3201 of LNAI, pages 99–113. Springer, 2004.

[10] A. Ghozeil and D.B. Fogel. Discovering patterns in spatial data using evolutionary pro-
gramming. In John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo,
editors, Genetic Programming 1996: Proceedings of the First Annual Conference, pages
521–527, Stanford University, CA, USA, 1996. MIT Press.
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