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Abstract. A procedure founded in instance-based learning is presented,
for performing a form of analogical reasoning on knowledge bases ex-
pressed in a wide range of ontology languages. The procedure exploits
a novel semi-distance measure for individuals, that is based on their se-
mantics w.r.t. a number of dimensions corresponding to a committee of
features represented by concept descriptions. The procedure can answer
by analogy to class'membership queries on the grounds of the classi-
fication of a number of training instances (the nearest ones w.r.t. the
semi-distance measure). Particularly, it may also predict assertions that
are not logically entailed by the knowledge base. In the experimentation,
where we compare the procedure to a logical reasoner, we show that it
can be quite accurate and augment the scope of its applicability, outper-
forming previous prototypes that adopted other semantic measures.

1 Introduction

In the perspective of knowledge sharing and reuse of the social vision of the
Semantic Web, new services are required aiming at noise-tolerant and efficient
forms of reasoning. From this perspective, instance-based inductive methods
applied to multi-relational domains appear particularly well suited. Indeed, they
are known to be both very efficient and noise-tolerant and noise is always harmful
in contexts where knowledge is to be acquired from distributed sources.

A relational instance-based framework for the Semantic Web context has
been devised (based on a similarity measure) to derive (by analogy) both con-
sistent consequences from the knowledge base and, possibly, also new assertions
which were not previously logically derivable. The main idea is that similar in-
dividuals, by analogy, should likely belong to similar concepts. Specifically, we
derive a classification procedure that constitutes a relational form of the Nearest
Neighbor algorithm (NN, henceforth) [5], a well-known approach to lazy learning.

These algorithms are efficient because no explicit hypothesis has to be learned.
Rather, the workload is shifted towards the classification phase when knowledge
concerning the training instances is used to classify new ones. Particularly, this
only requires checking the assertions for a limited set of instances training on
such concepts and making a decision (classification) for new query instances.



From a technical viewpoint, upgrading NN algorithms to work on multi-
relational representations [5], like the concept languages used in the Semantic
Web [4], required novel similarity measures that are suitable for such representa-
tions. This adaptation could not be straightforward. In particular, a theoretical
problem has been posed by the Open World Assumption (OWA) that is gen-
erally made in the target context, differently from typical the machine learning
settings where the Closed World Assumption (CWA) is the standard. Besides,
in the standard NN multi-class setting, different concept are assumed to be dis-
joint, which typically cannot hold in a Semantic Web context. As pointed out
in [2], most of the existing measures focus on the similarity of atomic concepts
within hierarchies or simple ontologies. Moreover they have been conceived for
assessing concept similarity. On the other hand, for our purposes, a notion of
similarity between individuals is required.

Recently, dissimilarity measures for specific description logics concept de-
scriptions have been proposed [3]. Although they turned out to be quite effective
for the inductive tasks of interest [4], they were still partly based on structural
criteria (a notion of normal form) which determine their main weakness: they are
hardly scalable to deal with standard languages, such as OWL-DL, commonly
used for knowledge bases.

In this paper we introduce a new semantic dissimilarity measure which can
overcome these limitations. Following some ideas introduced in [6], we present
a new family of measures that is suitable a wide range of ontology languages
(RDF through OWL) since it is merely based on the discernibility of the input
individuals with respect to a fixed set of features represented by concept defini-
tions (hypotheses). As such the new measures are not absolute, yet they depend
on the knowledge base they are applied to.

The measure and the NN procedure have been integrated in a system that
allowed for an extended experimentation the method on performing instance
retrieval with real ontologies drawn from public repositories comparing its pre-
dictions to the assertions that were logically derived by a standard reasoner.
These experiments show that the novel measure considerably increases the ef-
fectiveness of the method with respect to the past experiments where the same
procedure was integrated with other structural/semantic dissimilarity measures
[4]. Moreover, as expected, an increase of accuracy was observed with the in-
crease of the dimensions employed for the measure, which proposes further lines
of development for the presented measure.

The paper is organized as follows. The basics of the instance-based approach
applied to ontology representations are recalled in Sect. 2. The next Sect. 3
presents the novel semantic similarity measure adopted with the inductive pro-
cedure. Successively, Sect. 4 reports the outcomes of experiments performed with
its implementation. Possible developments are finally examined in Sect. 5.



2 A Nearest Neighbor Approach to Instance-checking

In the following, we assume that concept descriptions are defined in terms of a
generic ontology language that may be mapped to some description logic with
the standard model-theoretic semantics (see the handbook [1] for a thorough
reference).

A knowledge base K = (T, A) contains a TBox 7 and an ABor A. T is
a set of concept definitions. .4 contains assertions (facts, data) concerning the
world state. Moreover, normally the unique names assumption is made on the
ABox individuals. The set of the individuals occurring in A will be denoted with
Ind(A). As regards the inference services, like all other instance-based meth-
ods, our procedure may require performing instance-checking, which amounts to
determining whether an individual, say a, belongs to a concept extension, i.e.
whether C(a) holds for a certain concept C'.

Given an ontology, a classification method can employed for predicting the
concepts to which a new individual it is likely to belong. These individuals are
supposed to be described by assertions in the knowledge base. Such an classifica-
tion procedure may also suggest new assertions about such an individual which
cannot not be inferred by deduction, in analogy with the class-membership of
other similar instances.

We review the basics of the k-Nearest Neighbor method in the semantic web
context [4] and propose how to exploit this classification procedure for inductive
instance checking and query answering. It is ascribed to the category of lazy
learning, since the learning phase is reduced to memorizing instances of the
target concepts pre-classified by an expert. Then, during the classification phase,
a notion of similarity over the instance space is employed to classify a new
instance in analogy with its neighbors.

The objective is to induce an approximation for a discrete-valued target func-
tion h : IS — V from a space of instances IS to a set of values V = {v1,...,vs}
standing for the classes (concepts) that have to be predicted.

Let x4, be the query instance whose class-membership is to be checked. Using
a dissimilarity measure, the set of the k nearest (pre-classified) training instances
w.I.t. x4 is selected: NN(zy) = {x; | i = 1,...,k}. In its simplest setting, the
kE-NN algorithm approximates h for classifying x4, on the grounds of the value
that h is known to assume for the training instances in NN (z,), i.e. the k closest
instances to x4 in terms of a dissimilarity measure. Precisely, the value is decided
by means of a majority voting procedure: it is simply the most voted value by
the instances in NN (zg).

A problem with this formulation is that it takes into account similarity only
when selecting those instance to be included in the neighborhood. Therefore
a modified setting is generally adopted, that is based on weighting the vote
according to the distance of the query instance from the training instances:

k

ﬁ(xq) = argn‘l/axZwié(v,h(:ci)) (1)
veV =1



where § is a function that returns 1 in case of matching arguments and 0
otherwise, and, given a distance measure d, the weights are determined by
w; = 1/d(z;,14) or w; = 1/d(z;,34)>.

Note that the hypothesis function h is defined only extensionally, since the
basic k-NN method does not return an intensional classification model (a func-
tion or a concept definition), it merely gives an answer for the query instances
to be classified.

It should be also observed that a strong assumption of this setting is that
it can be employed to assign the query instance to the concept from a set of
pairwise disjoint concepts (those corresponding to the value set V). This is an
assumption that cannot be always made. In our setting, indeed, an individual
might be an instance of more than one concept. In a more general setting that
does not assume the pairwise disjointness of the concepts, given a query concept
@, the membership of an instance x, may be checked through a NN classification
procedure, transforming the multi-class problem into a binary one. Therefore, a
simple binary value set V' = {—1, 41} may be employed. Then, a hypothesis hg
is computed for performing inductive query answering:

h olzq) 7argmaxz th (2)

where the value of hg for the training instances z; is simply determined to the
occurrence (+1) or absence (—1) of the corresponding assertion Q(x;) in the
ABox. Alternately, @ may return +1 when Q(z;) can be inferred! from the
knowledge base (K |= Q(x;)), and —1 otherwise.

The problem with non-explicitly disjoint concepts is also related to the CWA
usually made in the knowledge discovery context. To deal with the OWA, the
absence of information on whether a certain training instance x is likely to
belong to the extension of the query concept @) should not be interpreted neg-
atively, as in the standard machine learning settings which adopt the CWA.
Rather, it should count as neutral information. Thus, another value set has to
be adopted for the classification of the neighboring training instances, namely
V = {-1,+1,0}, where the three values denote, respectively, occurrence of the
assertion, occurrence of the opposite assertion and absence of both:

1 KE Q)
Q@)={ -1 KE-Q)
0 otherwise

Occurrence can be easily computed with a look-up in the ABox, therefore the
overall complexity of the procedure depends on the number k <« |Ind(.A)|, that
is the number of times the distance measure is needed.

Note that, being based on a majority vote of the individuals in the neighbor-
hood, this procedure is less error-prone in case of noise in the data (i.e. incorrect

! In the following = will denote entailment, as computed through a reasoner.



assertions in the ABox), therefore it may be able to give a correct classification
even in case of (partially) inconsistent knowledge bases.

Again, a more complex procedure may be devised by simply substituting the
notion of occurrence (absence) of assertions in (from) the ABox with the one
of derivability (non-derivability) from the whole knowledge base, i.e. K = Q(z),
K E —Q(z) and neither of the previous relations, respectively. Although this
may exploit more information and turn out to be more accurate, it is also much
more computationally expensive, since the simple look-up in the ABox must
be replaced with a logical inference (instance checking). However much of the
computation can be performed in advance w.r.t. to the classification phase and
the number of inferences needed is bounded by k.

It should be noted that the inductive inference made by the procedure shown
above is not guaranteed to be deductively valid. Indeed, inductive inference nat-
urally yields a certain degree of uncertainty. In order to measure the likelihood
of the decision made by the procedure (individual z, belongs to the concept
denoted by value v maximizing the argmax argument in Eq. (2)), given the
nearest training individuals in NN (z4), the quantity that determined the deci-
sion should be normalized by dividing it by the sum of such arguments over the
(three) possible values:

" P " v xZ;
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3 A Semantic Semi-Distance for Individuals

As mentioned in the first section, various attempts to define semantic similarity
(or dissimilarity) measures for concept languages have been made, yet they have
still a limited applicability to simple languages [2] or they are not completely
semantic depending also on the structure of the descriptions [3]. Moreover, for
our purposes, we need a function for measuring the similarity of individuals
rather than concepts. It can be observed that individuals do not have a syntactic
structure that can be compared. This has led to lifting them to the concept
description level before comparing them (recurring to the notion of the most
specific concept of an individual w.r.t. the ABox [1].

For the nearest-neighbor classification procedure recalled in Sect. 2, we have
developed a new measure with a definition that totally depends on semantic
aspects of the individuals in the knowledge base.

3.1 The Measure

On a semantic level, similar individuals should behave similarly with respect to
the same concepts. We introduce a novel measure for assessing the similarity
of individuals in a knowledge base, which is based on the idea of comparing
their semantics along a number of dimensions represented by a committee of



concept descriptions. Following the ideas borrowed from [6], we can define totally
semantic distance measures for individuals in the context of a knowledge base.

The rationale of the new measure is to compare them on the grounds of
their behavior w.r.t. a given set of hypotheses, that is a collection of concept
descriptions, say F = {F}, Fy, ..., F}, }, which stands as a group of discriminating
features expressed in the language taken into account.

In its simple formulation, a family of distance functions for individuals in-
spired to Minkowski’s distances can be defined as follows:

Definition 3.1 (family of measures). Let K = (7, A) be a knowledge base.
Given set of concept descriptions F = {Fy, Fa,..., Fy,}, a family of dissimilarity
Junctions df : Ind(A) x Ind(A) — IR defined as follows:

1/p
Va,b € Ind(A) dF (a,b) [Z | wi(a) — mi(b) |p1

where p > 0 and Vi € {1,...,m} the projection function w; is defined by:

1 FZ(.’L') eA
Va € Ind(A) mi(a) =4 0 Fi(x)e A
% otherwise

The superscript F will be omitted when the set of hypotheses is fixed.

As an alternative, like in the definition of the hypothesis function for the
NN procedure, the definition of the measures can be made more accurate by
considering entailment rather than the simple ABox look-up, when determining
the values of the projection functions:

Va € Ind(A) mi(a) =<0 K = —F;(z)
% otherwise

In particular, we will consider the following measures:

Va,b € Ind(A) di(a,b) : Zm ) —mi(b) |
or:
Va,b € Ind(A) da(a,b) : Z mi(a) — m (b))
=1

3.2 Discussion

It is easy to prove that these functions have the standard properties for semi-
distances:



Proposition 3.1 (semi-distance). For a fized hypothesis set and p > 0, given
any three instances a,b,c € Ind(A). it holds that:

1. dp(a,b) >0
2. dy(a,b) = dy(b, a)
dp(a,b) + dy(b; c)
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Proof.

1. trivial
2. trivial
3. Noted that

then the property follows for the monotonicity of the power function.

It cannot be proved that d,(a,b) = 0 iff a = b. This is the case of indiscernible
individuals with respect to the given set of hypotheses F.

Compared to other proposed distance (or dissimilarity) measures [2], the
presented function does not depend on the constructors of a specific language,
rather it requires only retrieval or instance-checking service used for deciding
whether an individual is asserted in the knowledge base to belong to a concept
extension (or, alternatively, if this could be derived as a logical consequence).

Note that the m; functions (Vi = 1,...,m) for the training instances, that
contribute to determine the measure with respect to new ones, can be computed
in advance thus determining a speed-up in the actual computation of the mea-
sure. This is very important for the measure integration in algorithms which
massively use this distance, such as all instance-based methods.

The underlying idea for the measure is that similar individuals should ex-
hibit the same behavior w.r.t. the concepts in F. Here, we make the assumption
that the feature-set F represents a sufficient number of (possibly redundant)
features that are able to discriminate really different individuals. The choice
of the concepts to be included — feature selection — is beyond the scope of this
work. Experimentally, we could obtain good results by using the very set of both
primitive and defined concepts found in the ontology.



Table 1. Ontologies employed in the experiments.

ontology DL #concepts #obj. prop #data prop #individuals

FSM SOF(D) 20 10 7 37
S.-W.-M. ALCOF(D) 19 9 1 115
SCIENCE ALCIF(D) 74 70 40 331
FiNaNcIAL  ALCIF 60 17 0 652
NTN SHIF(D) 47 27 8 676

4 Experiments

4.1 Experimental Setting

In order to test the inductive instance-checking NN procedure proposed in Sect. 2,
integrated with the new dissimilarity measure, we have applied it to a num-
ber of retrieval problems. To these purposes, we selected a number of different
ontologies represented in OWL, namely: FSM, SURFACE-WATER-MODEL, SCI-
ENCE and NEWTESTAMENTNAMES from the Protégé library?, the FINANCIAL
ontology® employed as a testbed for the PELLET reasoner. Table 1 summarizes
important details concerning the ontologies employed in the experimentation.

The FSM ontology describes the domain of finite state machines using the
SOF(D) language. It is made up of 20 (primitive and defined) concepts (some
of them are explicitly declared to be disjoint), 10 object properties, 7 datatype
properties, 37 distinct individual names. About half of the individuals are as-
serted as instances of a single concept and are not involved in any role (object
property) assertion. SURFACE-WATER-MODEL is an ALCOF(D) ontology de-
scribing the domain of the surface water and the water quality models. It is
made up of 19 concepts (both primitive and defined) with no specification about
their disjointness, 9 object properties, 115 distinct individual names; each of
them is an instance of a single class and only some of them are involved in ob-
ject properties. The SCIENCE ontology describes scientific facts in ALCZF (D).
It is made up of 74 concepts, 70 object properties, 331 individual names. F1-
NANCIAL is an ALCZF ontology that describes the domain of eBanking. It is
made up of 60 (primitive and defined) concepts (some of them are declared to
be disjoint), 17 object properties, and no datatype property. It contains 17941
distinct individual names. From the original ABox, we randomly extracted asser-
tions for 652 individuals. NEWTESTAMENTNAMES (developed for the Semantic
Bible Project) describes facts related to the New Testament. It contains of 47
concepts, 27 object properties, 676 individual names.

The experiment was quite intensive involving the classification of all the in-
dividuals in each ontology; namely, the individuals were checked through the

2 http://protege.stanford.edu/plugins/owl/owl-1library
3 http://www.cs.put.poznan.pl/alawrynowicz/financial.owl



inductive procedure to assess wether they were to be retrieved as instances of
a query concept. Therefore, 15 queries were randomly generated by conjunc-
tion/disjunction of primitive or defined concepts of each ontology. The perfor-
mance was evaluated comparing its responses to those returned by a standard
reasoner® as a baseline.

The experiment has been repeated twice adopting different procedures ac-
cording to the size of the corresponding ABox (measured by |Ind(A)|): a leave-
one-out cross validation for the smaller ontologies (FSM and S.-W.-M.) and
a ten-fold cross validation one for the larger ones Applying the k-NN method,
we chose /|Ind(A)|, as a value for k, as advised in the instance-based learning
literature. Yet we found experimentally that much smaller values could be cho-
sen, resulting in the same classification. We employed the simpler version of the
distance (d;) utilizing all the concepts in the ontology for determining the set F.

For each concept in the ontology, we measured the following parameters for
the evaluation:

— match rate: number of cases of individuals that got exactly the same classi-
fication by both classifiers with respect to the overall number of individuals;

— omission error rate: amount of unlabeled individuals (our method could not
determine whether it was an instance or not) while it was to be classified as
an instance of that concept;

— commission error rate: amount of individuals (analogically) labeled as in-
stances of a concept, while they (logically) belong to that concept or vice-
versa

— induction rate: amount of individuals that were found to belong to a concept
or its negation, while this information is not logically derivable from the
knowledge base

We report the average rates obtained over all the concepts in each ontology and
also their standard deviation.

4.2 Retrieval Employing the New Measure in the NN Procedure

By looking at Tab. 2 reporting the experimental outcomes (mean values and stan-
dard deviations), preliminarily it is important to note that, for every ontology,
the commission error was low. This means that the procedure is quite accurate:
it did not make critical mistakes i.e. cases when an individual is deemed as an
instance of a concept while it really is an instance of another disjoint concept.
If we compare these outcomes with those reported in previous papers [4],
where the average accuracy on the same was slightly higher than 80%, we find a
significant increase of the performance due to the accuracy of the new measure.
Also the elapsed time (not reported here) was lowered because, once the values
for the 7’s functions are pre-computed, the efficiency of the classification, which
depends a lot on the computation of the dissimilarity, gains a lot of speed-up.

* We employed PELLET: http://pellet.owldl.com



Table 2. Results (averagetstd-dev.) of the experiments with the method employing
the new semantic measure.

match commission omission induction

rate rate rate rate
FSM  97.7 £+ 3.00 2.30 &£ 3.00 0.00 = 0.00 0.00 £ 0.00
S.-W.-M. 99.9 £ 0.20 0.00 &£ 0.00 0.10 & 0.20 0.00 £ 0.00
SCIENCE  99.8 & 0.50 0.00 & 0.00 0.20 &+ 0.10  0.00 £ 0.00
FINANCIAL  90.4 4 24.6 9.40 £+ 24.5 0.10 = 0.10  0.10 = 0.20
NTN 999+ 0.10 0.00+£ 760 0.10£ 0.00 0.00 & 0.10

The usage of all concepts for the set F made the measure quite accurate,
which is the reason why the procedure resulted quite conservative as regards
inducing new assertions. It rather matched faithfully the reasoner decisions. A
noteworthy difference was observed for the case of the FINANCIAL ontology for
which we find the lowest match rate and the highest variability in the results
over the various concepts. On a careful examination of the experimentation with
this ontology, we found that the average results were lowered by a concept whose
assertions, having been poorly sampled from the initial ontology, could not con-
stitute enough evidence to our inductive method for determining the correct
classification. The same problem, to a lesser extent, were found also with the
FSM ontology which was the one with the least number of assertions. This
shows that the weaker side of any instance-based procedure is really when data
are too sparse or non evenly distributed.

As mentioned, we found also that a lower value for k could have been chosen,
for in many cases the decision on the correct classification was easy to make
even on account of a few (the closest) neighbor instances. This yields also the
likelihood of the inference made (see Eq. (3)) turned out quite high.

4.3 Varying the Hypothesis Set

In the previous experiments all concepts involved in an ontology were used for
inclusion in the hypothesis set F. We sensed that the inherent redundancy helped
a lot the measure accuracy. Yet larger sets yield more effort to be made for
computing the measures. Nevertheless, it is well known that the NN approach
suffers when lots of further irrelevant attributes for describing the instances
are added. Thus, we have tested also how the variation of hypotheses (concept
descriptions) belonging to the set F could affect the performance of the measure.
We expected that with an increasing number of hypotheses considered in F, the
accuracy of the measure would increase accordingly.

To test this claim experimentally, one of the ontologies considered the previ-
ous experiment was considered. We performed repeatedly (three times) a leave-
one-out cross validation with an increasing percentage of concepts randomly
selected for F w.r.t. the overall number of primitive or defined concept names in
the ontology. The average results returned by the system are depicted in Fig. 1.
Numerical details of such outcomes are given in Table 3.
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Fig. 1. Average results varying the number of hypotheses in the set F.

As expected, it is possible to see that the accuracy of the decisions (match
rate) is positively correlated with the number of concepts included in F. The same
outcomes were obtained by repeating similar experiments with other ontologies.
It should be observed that in some cases the concepts randomly selected for
inclusion in F actually turned out to be a little redundant (by subsumption
or because of a simple overlap between their extension) This suggest a line of
further investigation that will concern finding minimal subsets of concepts to be
used for the measure.

5 Conclusions and Future Work

This paper explored the application of an instance-based learning procedure for
analogical reasoning applied to concept representations adopted in the Semantic
Web context. We defined a novel semantic similarity measure that has a wide
scope of application to methods which require the assessment of the semantic
(dis)ssimilarity of individuals. Particularly, in this paper we employed it inte-
grated in an instance-based instance-checking procedure in the task of instance

Table 3. Average results varying the number of hypotheses in the set F.

match commission omission Induction

% of concepts rate rate rate rate
20% 79.1 20.7 0.00 0.20

40% 96.1 03.9 0.00 0.00

50% 97.2 02.8 0.00 0.00

70% 97.4 02.6 0.00 0.00

100% 98.0 02.0 0.00 0.00




retrieval (predicting class-membership) which can be effective even in the pres-
ence of missing (or noisy) information in the knowledge bases.

The experiments made on various ontologies showed that the method is quite
effective, and, as expected, its performance depends on the number (and distri-
bution) of the available training instances. Besides, the procedure is robust to
noise since it seldom made commission errors in the experiments that have been
carried out so far.

Various developments for the measure can be foreseen as concerns its defini-
tion. Namely, since it is very dependant on the concepts included in the com-
mittee of features, two immediate lines of research arise: 1) reducing the number
of concepts saving those concepts which are endowed of a real discriminating
power; 2) learning optimal sets of discriminating features, by allowing also their
composition employing the specific constructors made available by the represen-
tation language of choice. Both these objectives can be accomplished by means
of machine learning techniques especially when ontologies with a large set of
individuals are available. Namely, part of the entire data can be drawn in order
to learn optimal feature sets, in advance with respect to the successive usage.

As mentioned, the measure is applicable to other instance-based tasks which
can be approached through machine learning techniques. The next step will be
plugging the measure in a hierarchical clustering algorithm where clusters would
be formed grouping instances on the grounds of their similarity assessed through
the measure.
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