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Abstract. In spatial data mining, a common task is the discovery of spatial 
association rules from spatial databases. We propose a distributed system 
named ARES that assists data miners in the complex process of extracting the 
association rules from a spatial database. We also face a common problem of 
association rule mining, that is the high number of discovered rules. This affects 
both efficiency of the data mining process and quality of the discovered rules. 
We propose some criteria to bias the search and to filter the discovered rules 
according to user’s interests. Finally, we show the applicability of our proposal 
to two different real world domains, namely, document image processing and 
geo-referenced analysis of census data. We illustrate and comment experimental 
results on a set of multi-page documents extracted by IEEE PAMI and on 
North-West England 1998 census data. 

1. Introduction 

Spatial data mining investigates the problem of extracting pieces of knowledge from 
data describing spatial objects, which are characterized by a geometrical 
representation (e.g. point, line, and region in a 2D context) and a position with respect 
to some reference system. The relative positioning of spatial objects defines implicitly 
spatial relations of different nature, such as directional and topological. The goal of 
spatial data mining methods is to extract spatial patterns, that is, patterns involving 
spatial relations between mined objects such that they are certain, previously 
unknown, and potentially useful for the specific application [9].     

Spatial data mining demands for the development of specific techniques that, 
differently from traditional data-mining techniques, do take the spatial dimension of 
the data into account when exploring the pattern space. Moreover, data to be mined 
are generally stored in spatial databases that provide powerful, flexible model data 
structures to serve multiple tasks including storage and sophisticated treatment of real-
world geometry. Therefore, it is important that spatial data mining algorithms do 
explicitly consider these data structures in order to make the exploration of the pattern 
space more efficient. 



Knowledge discovered from spatial data can be in various forms including 
classification rules, which describe the partition of the database into a given set of classes 
[10], clusters of spatial objects [16,17], patterns describing spatial trends, that is, regular 
changes of one or more non-spatial attributes when moving away from a given start 
object [4], and subgroup patterns, which identify subgroups of spatial objects with an 
unusual, an unexpected, or a deviating distribution of a target variable [8]. 

In a recent work, Lisi and Malerba [12] have proposed an algorithm, named SPADA 
(Spatial Pattern Discovery Algorithm), that discovers spatial association rules, that is, 
association rules involving spatial objects and relations. It is based on an ILP approach to 
(multi-)relational data mining and permits the extraction of multi-level spatial association 
rules, that is, association rules involving spatial objects at different granularity levels. For 
each granularity level, SPADA operates in three different phases: i) pattern generation; 
ii) pattern evaluation; iii) rule generation and evaluation. 

SPADA has been loosely coupled with a spatial database and has been integrated into 
a system, named ARES (Association Rules Extractor from Spatial data), in order to assist 
data miners in the complex process of extracting the units of analysis from the spatial 
database, specifying the background knowledge on the application domain and defining 
some form of search bias. The last aspect is particularly relevant, since the number of 
discovered patterns or association rules is usually high and the interest of most of them 
does not fulfil user expectations. The presentation of thousands of rules can discourage 
users from interpreting them in order to find nuggets of knowledge. Furthermore, it is 
very difficult to evaluate which patterns could be interesting for the end users by means 
of some simple statistics, such as support and confidence. Therefore, an additional 
processing step is necessary in order to clean, order or filter interesting patterns/rules.  

In this paper, we describe the integration of SPADA in the ARES system, then we 
explain the additional processing step of the rules, and finally we show the application 
of the spatial mining tool to two different application domains, namely, document 
image processing and geo-referenced analysis of census data. The paper is organized 
as follows. The problem of mining spatial association rules is briefly reported in 
Section 2. Section 3 describes the ARES distributed architecture that supports the 
interface of SPADA with a spatial database by generating high-level logic descriptions 
of spatial data.  Some filtering mechanisms implemented in SPADA are described in 
Section 4. Finally, the application of ARES to two case studies is described in 
Sections 5. Some experimental results are reported and conclusions are drawn. 

2. Mining Spatial Association Rules 

The discovery of spatial association rules is a descriptive mining task aiming to detect 
associations between reference objects (ro) and some task-relevant objects (tro). The 
former are the main subject of the description, while the latter are spatial objects that 
are relevant for the task in hand and are spatially related to the former.  

In general, association rules are a class of regularities that can be expressed by the 
implication:  P→Q (s, c), where P and Q are a set of literals, called items, such that 
P∩Q = ∅, the support s estimates the probability p(P∪Q), and the confidence c, 



estimates the probability p(Q | P). The conjunction P∧Q is called pattern. In classic 
data mining, patterns are mined from data represented in a single relation of a 
relational database, such that each tuple represents an independent unit of the sample 
population and columns correspond to properties of units. In the case of spatial 
patterns, this assumption turns out to be a great limitation. Indeed, a spatial pattern 
expresses a spatial relationship among spatial objects. The recently promoted (multi-) 
relational approach to data mining [2] looks for patterns that involve multiple 
relations of a relational database. Patterns found by these approaches are called 
relational and are typically stated in a more expressive language than patterns defined 
in a single relation. Typically, subsets of first-order logic are used to express 
relational patterns. Hence, a spatial association may be represented as conjunctive 
formula as follows: 

is_a(X, large_town), intersects(X,Y), is_a(Y, road) �   
intersects(X, Z), is_a(Z, road), Z≠ Y (91%, 100%) 

to be read as “If a large town X intersects a road Y then X intersects a road Z distinct 
from Y with 91% support and 100% confidence". Since some kind of taxonomic 
knowledge on task-relevant objects may also be taken into account to obtain 
descriptions at different granularity levels (multiple-level association rules), finer-
grained association rules are also expected, such as: 

is_a(X, large_town), intersects(X, Y), is_a(Y, regional_road) �  
intersects(X, Z), is_a(Z, main_trunk_road), Z≠ Y (65%,71%) 

It is noteworthy that the support and the confidence of the last rule have changed. 
Generally, the lower the granularity level, the lower the support of association rules. 
Therefore, different thresholds of support and confidence for different granularity 
levels should be used [5].  

In general, the problem of mining association rules can be formally stated as 
follows: Given a spatial database (SDB), a set of reference objects S, some sets Rk, 
1≤k≤m, of task-relevant objects, a background knowledge BK including some 
hierarchies Hk on objects in Rk , M granularity levels in the descriptions (1 is the 
highest while M is the lowest), a language bias LB that constrains the search space and 
a couple of thresholds minsup[l] and minconf[l] for each granularity level; Find strong 
multi-level spatial association rules. 

Each Rk is typically a layer of the spatial database while hierarchies define is-a 
(i.e., taxonomical) relations of spatial objects in the same layer. To deal with several 
hierarchies at once in a uniform manner, objects in them are mapped to one or more of 
the M user-defined description granularity levels so that frequency of patterns as well 
as strength of rules depend on the level l of granularity with which patterns/rules 
describe data. To be more precise, a pattern P (s%) at level l is frequent if s≥minsup[l] 
and all ancestors of P with respect to Hk are frequent at their corresponding levels. An 
association rule Q → R (s%, c%) at level l is strong if the pattern Q∪R (s%) is 
frequent and c≥ minconf[l].   

A data mining tool that solves the problem stated above is ARES whose 
architecture is explained in the next section. 



3. The architecture of ARES  

ARES has a distributed architecture based on a client-server model (see Fig. 1).  The 
spatial association rule miner SPADA is on the server side, so that several data mining 
tasks can be run concurrently by multiple users. SPADA is implemented in Prolog and 
fully exploits the flexibility of this logic programming language to specify both the 
background knowledge BK (hierarchies are expressed by a collection of ground atoms 
that define the binary predicate is_a, while domain specific knowledge is expressed as 
sets of definite clauses) and a language bias LB that constrains the search for patterns.  

On the client side, the system includes a Graphical User Interface (GUI) 
implemented as Java application, which provides the user with facilities for 
controlling all parameters of the data mining process. More precisely, a wizard 
supports the user in the selection of layers (for spatial objects), tables (for aspatial 
properties) and attributes involved in the query to the SDB (Oracle Spatial). 
Conditions on both aspatial attributes (simple comparisons between two fields) and 
spatial features (simple comparisons with a field or a constant) can also be specified. 
Once the query is performed, the GUI allows the user to discretize some numerical 
attributes, to define the spatial hierarchies and their mappings into the M granularity 
level, to specify the declarative bias, and finally to run SPADA on the server.  

SPADA, like many other association rule mining algorithms, cannot process 
numerical data properly, so it is necessary to perform a discretization of numerical 
features with a relatively large domain. For this purpose, ARES includes in the client 
side the module RUDE (relative unsupervised discretization algorithm) which 
discretizes a numerical attribute of a relational database in the context defined by 
other attributes [13].  

In ARES, the SDB can run on a third computation unit. Many spatial features 
(relations and attributes) can be extracted from spatial objects stored in the SDB. The 
feature extraction requires complex data transformation processes to make spatial 
relations explicit and representable as ground Prolog atoms. Therefore, a middle layer 
module is required to make possible a loose coupling between SPADA and the SDB 
by generating features (e.g. area, contains, on_top) of spatial objects. The module, 
named FEATEX (Feature Extractor), is implemented as an Oracle package of 
procedures and functions, each of which computes a different feature [1].   

On the client side, the system WISDOM++ [15] can be used to extract spatial data 
from document image and store them in the SDB. The process performed by 
WISDOM++ consists of the preprocessing of the raster image of a scanned paper 

Fig. 1. ARES architecture. 



document, the segmentation of the preprocessed raster image into basic layout 
components, the classification of basic layout components according to the type of 
content (e.g., text, graphics, etc.), the identification of a more abstract representation 
of the document layout (layout analysis), the classification of the document in one of 
predefined categories (e.g. business letter, scientific paper) on the basis of its layout 
and content, and the identification of semantically relevant layout components (e.g. 
title, abstract of a scientific paper) called logical components (document image 
understanding [18]). The final representation includes both layout structure (extracted 
in the layout analysis) and logical structure (semantic information extracted by means 
of document classification and understanding) computed on the original image. A 
further processing step stores the output structures in the SDB. WISDOM++ makes 
use of an Oracle Database to store intermediate data. 

In order to handle spatial data provided by WISDOM++, FEATEX has been 
extended to allow features of layout components to be extracted (see section 5.1).  

4.  Filtering patterns and association rules 

The efficiency of the data mining process is very important to tackle real-world 
problems. In order to improve the efficiency of the search process, SPADA associates 
each candidate pattern with backward pointers to parent patterns both at the same 
granularity level (intra-space parenthood) and at higher granularity levels (inter-space 
parenthood). Backward pointers are profitably exploited in the pattern generation 
phase to prevent the generation of some infrequent patterns [11]. In a more recent 
release of SPADA (3.0), backward pointers are also exploited in the pattern evaluation 
phase. Indeed, by associating each pattern with the list of support objects, it is 
possible to perform the evaluation of each pattern solely on the support objects of its 
intra-space parenthood instead of the whole set S of reference objects. An additional 
caching technique compensates the overhead in looking for the parenthood of each 
pattern, since it has a cost, which increases with the number of stored patterns.   

The above mentioned efficiency improvements are based on the monotonicity 
property of the generality order that is defined for spatial patterns with respect to the 
support of the patterns themselves. This is a nice example of an “intelligent” 
exploitation of general properties to prune the search space and reduce the number of 
expensive tests. However, this approach does not take into account user preferences 
and expectations. In real-world applications, such as the characterization of areas 
crossed by motorways [14], a large number of spatial patterns can be generated even 
for a few hundred spatial objects. Nevertheless, most of discovered patters are useless 
for the application at hand. Therefore, it is important to allow the user to specify 
his/her bias for interesting solutions, and then to exploit this bias to improve both the 
efficiency of the system and the quality of the discovered rules. In SPADA, the 
language bias LB is expressed as a set of constraint specifications for either patterns 
or association rules. Users may specify the following pattern constraint: 

pattern_constraint(AtomList, Min_occur, Max_occur) 
where AtomList is a list of atoms (for atomic constraints) or a list of atom lists (for 
conjunctive constraints), while Min_occur (Max_occur) is positive number which 



specifies the minimum (maximum) number of constraints in the AtomList that must be 
satisfied. When Max_occur = ‘_’ no limitation is imposed on the maximum number of 
constraints. For instance, the following: 
pattern_constraint(crossed_by_green_area(_,_ ), crossed_by_urban_area(_,_ )],1,_ ) 
specifies that at least one of the binary spatial predicates crossed_by_green_area, and 
crossed_by_urban_area must occur in the patterns filtered by SPADA, while the 
following: 

pattern_constraint([ [crossed_by_green_area(_,_ ), crossed_by_urban_area(_,_ )] 
, [crossed_only_by_road(_ )] ], 1, _ ). 

specifies that at least one of either the binary spatial predicates 
crossed_by_green_area and crossed_by_urban_area or the unary spatial predicate 
crossed_only_by_road must occur in the patterns filtered by SPADA. It is noteworthy 
that this simple specification allows users to define both conjunctive and disjunctive 
constraints. 

During the rule generation phase, patterns that do not satisfy a pattern constraint are 
filtered out. This means that they are generated and evaluated anyway. This late 
exploitation of pattern constraints is due to the fact that if a pattern P does not satisfy a 
constraint (e.g. the lack of the predicate crossed_by_green_area), it is still possible 
that P descendants (i.e., more specific patterns) satisfy it. Therefore, pattern 
constraints do not prune the pattern space, but improve the efficiency of the mining 
process, since they prevent the generation of useless rules, and hence their evaluation.  

A further pattern constraint takes into account the typing mechanism of the 
variables to be included in the rules. A variable X is untyped when it does not appear 
as first argument of a binary is-a atom in the rule. In some applications, the occurrence 
of untyped variables in a rule is undesirable. Therefore, users can specify the 
constraint max_rules_untyped_vars(n), where n denotes the maximum number of 
untyped variables in the rules being generated. As in the previous case, the 
specification of this constraint affects the rule generation phase. 

Users may specify constraints either on the antecedent or on the consequent of 
spatial association rules through one of the following facts: 

body_constraint(AtomList, Min_occur, Max_occur).   
head_constraint(AtomList, Min_occur, Max_occur). 

where AtomList, Min_occur and Max_Occur have the same meaning as in the 
pattern constraint described above. For instance, the constraint 
head_constraint([mortality_rate(_ )], 1, 1) specifies that a single occurrence of the 
unary predicate high_mortality must be in the head of the rules. As for pattern 
constraints, head and body constraints affect the rule generation phase. The main 
property of all described constraints is that they do not prevent the generation of 
candidate rules but only the evaluation of their confidence.  

The LB described in this Section is a revisited version of the language bias 
proposed for SPADA in [1]. In particular, both pattern and rule constrains have been 
extended by introducing Max_Occur parameter that allows users to eventually specify 
the maximum number of constraints in the list to be satisfied. In addition, since 
association rules discovered by SPADA can have several conditions in the head, we 
have extended LB allowing users to specify the fact: rule_head_length (Min_occur, 



Max_occur) in order to fix the minimum (Min_occur) and the maximum number 
(Max_occur) of predicates to be included in the head of generated rules. 

By combining the rule filters head_constraint( [mortality_rate(_ ) ], 1, 1)  and 
rule_head_length(1, 1) users is able to ask for rules containing only the predicate 
mortality_rate in the head. Rules in this form may be employed for spatial subgroup 
mining that is the discovery of interesting group of spatial objects with respect to a 
certain property of interest, as well as for classification purposes. 

5. The Application: two case studies 

In this section, we describe the application of SPADA to two distinct real-world 
problems, namely mining document images and mining geo-referenced census data. In 
the former problem, spatial objects are layout components extracted by means of a 
sophisticated document image segmentation algorithm. Layout components are in the 
same page of a document and have a common geometrical representation: they are all 
rectangles with edges parallel to the axes associated to the left and top border of a 
page. As result of the document understanding process, layout components may be 
associated with some components of the document logical structure, whose 
hierarchical organization defines the hierarchy of task-relevant objects. Discovered 
spatial association rules can be used in a generative way. For instance, if a part of the 
document is hidden or missing, strong spatial association rules can be used to predict 
the location of missing layout/logical components [7]. This problem is also related to 
document reformatting [6]. 

In the second problem, the goal is to perform a joint analysis of both socio-
economic factors represented in census data and geographical factors represented in 
topographic maps. The discovery of interesting association rules on geographically 
distributed socio-economic phenomena can be a valuable support to good public 
policy. In this case, spatial objects are territorial units for which census data are 
collected as well as entities of the transport network (roads and rails), while the 
hierarchies are either based on layers of the topographic map or defined on the 
basis of a conceptual categorization or urban areas.  

5.1 Document image processing 

In this application SPADA takes in input a collection of ground facts describing both 
the layout and the logical structures of the documents processed by WISDOM++. 
Spatial features (relations and attributes) are used to describe the logical structure of a 
document image. In particular, we mention locational features such as the coordinates 
of the centroid of a logical component, geometrical features such as the dimensions of 
a logical component, and topological features such as relations between two 
components. We use the aspatial feature type_of  that specifies the content type of a 
logical component (e.g. image, text, horizontal line). In addition there are other 
aspatial features, called logical features which define the label associated to the 
logical components. They are: affiliation, page_number, figure, caption, index_term, 



running_head, author, title, abstract, formulae, subsection_title, section_title, 
biografy, references, paragraph, table, undefined.  

The specification of the domain specific knowledge allows SPADA to automatically 
associate information on page order to layout components, since the presence of some 
logical components may depend on the order page (e.g. author is in the first page). An 
example related to the first page is at_page(X,first) :- part_of(Y,X), page(Y,first). 

The specification of the hierarchy (Figure 2) allows the system to extract spatial 
association rules at different granularity levels.  

In this task, the ro are the logical components associated with logical feature 
different from undefined. The tro are all the logical components. This is specified by 
means of the language bias LB. In particular, we ask for rules containing at least one 
binary spatial predicate: 
pattern_constraint([only_middle_col(_,_),only_left_col(_,_),only_right_col(_,_),only_midd
le_row(_,_),only_upper_row(_,_),only_lower_row(_,_), to_right(_,_), on_top(_,_) ],1). 

Furthermore, we are interested in rules containing the ro in the antecedent. For 
instance, if we use abstract as ro the constraint is: body_constraint([abstract(_)], 1). 

We investigate the applicability of the proposed solution on 19 real-world documents, 
which are scientific papers published as either regular or short in the IEEE Transactions 
on Pattern Analysis and Machine Intelligence in the January and February 1996 issues. 
Each paper is a multi-page document and has a variable number of pages and layout 
components per page, for a total of 179 document images and 2998 layout components. 
Eight-hundred and eleven layout components with no clear logical meaning are labelled 
as undefined. All logical labels belong to the lowest level of the hierarchy reported in the 
previous section. In Table 1 (second column) the average number of logical components 
(labels) is reported. The number of features to describe the documents presented to 
SPADA is 78,789, about 440 features for each page document. Average running time per 
document image is 1.32 secs (237.52/179), therefore this application of SPADA to 
document images seems scalable to larger collections of documents. 

The number of mined association rules for each logical component at different 
granularity levels is also reported in Table 1. Many spatial patterns involving logical 
components  (e.g., affiliation, title, author, abstract and index term) in the first page of an 
article are found. SPADA has found several spatial associations involving all logical 
components, references and biography excluded. This can be explained by the 
observation that the first page generally has a more regular layout structure and contains 
several distinct logical components.  

An example of association rule discovered by SPADA is: 
author(A) � on_top(A,B) , is_a(B,heading) , height(B,[1..174]) , type_text(A)  
                                                                                                       (82.6%, 82.6%) 
This means that 19 logical components which represent the author of some paper 

are textual components on top of a logical component B that is the heading of the 

article 

page_component heading content 

identification Synopsis body final_components page_number running_head 

author 
title 

affiliation 
index_term 

abstract 

references paragraph 

biography 

figure subsection_title 
section_title caption 

formulae 

undefined 

Fig. 2. Hierarchy of logical components 
table 



paper, with height between 1 and 174. At a lower granularity level, a similar rule is 
found where the logical component B is specialized as abstract: 

author(A) � on_top(A,B) , is_a(B,abstract) , height(B,[1..174]) , type_text(A) 
                                                                                                       (82.6%, 82.6%) 
The rule has the same confidence and support reported for the rule inferred at the 

first granularity level.  

 
 Tot No 

of Labels  
No of Rules 
Level 1 

No of Rules 
Level 2 

No of Rules 
Level 3 

No of Rules 
Level 4 

Running 
Time (secs) 

min_conf  0.7 0.6 0.5 0.4  
min_supp  0.5 0.4 0.3 0.2  
Affiliation 20 20 20 24 28 13.71 
Page_Number 162 8 12 12 12 14.01 
Figure 312 12 12 12 12 14.44 
Caption 161 8 10 10 8 13.37 
Index_term 10 29 41 74 74 15 
Running_head 184 11 12 23 18 17.26 
Author 23 48 56 56 56 14.24 
Title 20 143 155 223 240 13.71 
Abstract 19 31 42 74 94 16.51 
Formulae 283 12 12 12 12 14.10 
SubsectionTitle 25 14 26 26 30 14.03 
Section_Title 59 26 26 38 38 14.14 
Biografy 19 0 0 0 0 12.91 
Paragraph 822 29 31 40 39 20.13 
Table 39 7 13 14 13 17.52 
References 19 0 0 0 0 12.44 
TOTAL 2177 398 468 638 674 237.52 

5.2 Geo-referenced exploratory data analysis 

In this study we describe a practical example that shows how it is possible to employ 
ARES in performing data analysis on geo-referenced census data concerning Greater 
Manchester, one of the five counties of North West England, that is divided into censual 
sections or wards, for a total of two hundreds and fourteen wards. For this application, 
spatial analysis is enabled by the availability of vectorized boundary of wards as well 
as vector geographical data about transport network, waters, green and urban areas 
that allow us to investigate the mortality rate (i.e. percentage of deaths with respect to 
the number of inhabitants) from a spatial viewpoint according to some deprivation 
indices. Geographical layers are taken from the Meridian product of the Ordnance 
Survey. 

In particular, we decide to mine spatial association rules relating wards, which play 
the role of reference objects, with topological related road network (i.e. motorways, 
primary roads, A- and B- roads), rail network, water network (i.e. rivers, canals and 
waters), green area (i.e. parks and woods) and urban area (i.e. small and large areas) as 
task relevant objects. 

Therefore, by using FEATEX we extract facts concerning topological relationships 
between wards and roads, rails, waters, green areas and urban areas reported in the 

Table 1. Number of rules. 



spatial database for that area. An example of fact extracted by FEATEX is 
crosses(ward_135, urbareaL_151). The number of facts is 784,107. Despite the 
complexity of the spatial computation performed by FEATEX to extract these facts, 
the results are still not appropriate for the goals of our data analysis tasks. Therefore, a 
domain specific knowledge should be expressed in form of a set of rules. Some of the 
rules used in this data mining task are: 

crossed_by_urbanarea(X,Y) :- crosses(X,Y), is_a(Y,urban_area).  
crossed_by_urbanarea(X,Y) :- inside(X,Y), is_a(Y,urban_area). 
not_crossed_by_urbanarea(X) :- is_a(X,ward), \+ crossed_by_urbanarea(X,_). 
Here the use of the predicate is_a hides the fact that a hierarchy has been defined 

for spatial objects belonging to urban area layer (see Figure 3). Similarly, four 
different hierarchies have been defined to describe road network, rail network, water 
network and green area. The hierarchies have depth three and are straightforwardly 
mapped into three granularity levels. Hence, these hierarchies are used to complete the 
domain specific knowledge by adding rules describing topological relationships 
and/or not-relationschips between wards and green area, transport and water net. 

Until now, all extracted data and user-defined background knowledge are purely 
spatial. However, we can observe that the mortality rate of an area cannot be defined on 
the basis of the geographical environment alone. We select four deprivation indecies, 
namely Townsend index, Carstairs index, Jarman index and DoE index, we discretize 
them with RUDE and generate the following four binary predicates for SPADA: 
townsend_idx, carstairs_idx, jarman_idx and doe_idx. The first argument of the 
predicate refers to a ward, while the second argument is an interval returned by RUDE. 
The Townsend index is a measure of multiple deprivation that is computed at ward level 
according to the percentage of households that are not owner occupied, percentage of 
households with no car, percentage of households with more than one person per room 
and percentage of persons who are unemployed. Similarly, Carstairs index, Jarman index 
and DoE index are calculated using census data to measure socio-economical deprivation 
of a ward. 

To complete the problem statement we specify a declarative bias both to constrain 
the search space and to filter out some uninteresting spatial association rules. In 
particular, we rule out all spatial relations directly extracted by means of FEATEX.  

Moreover, by specifying the rule filters head_constraint( [mortality_rate(_ ) ], 1, 
1)  and rule_head_length(1, 1) we ask for rules containing only the predicate 
mortality_rate in the head. After some tuning of the parameters min_sup and min_conf 
for each granularity level, we decide to run the system with the following parameter 
values: 

min_sup[1]=0.1, min_sup[2]=0.1, min_sup[3]=0.05, 
min_conf[1]=0.3, min_conf [2]=0.2, min_conf [3]=0.1. 

Despite the above constraints, SPADA generates 413 rules from a set of 100791 
candidates.  A rule returned by SPADA at the first level is the following: 

is_a(A, ward), crossed_by_urbanarea(A, B), is_a(B, urban_area),  
 townsendidx_rate(A, high) � mortality_rate(A, high)                (40.72%, 72.47%) 

Fig. 3. Spatial hierarchies defined for four Greater Manchester layers: road net, rail net, 
urban area and green area. 
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which states that a high mortality rate is observed in a ward A that includes an urban 
area B and has a high value of Townsend index. The support (40.72%) and the high 
confidence (72.47%) confirm a meaningful association between a geographical factor 
such as living in deprived urban areas and a social factor such as the mortality rate. It 
is noteworthy that SPADA generates the following rule: 

is_a(A,ward), crossed_by_urbanarea(A,B), is_a(B, urban_area),  
           � mortality_rate(A, high)       (56.7%, 60.77%) 
which has a greater support and a lower confidence. These two association rules show 
together an unexpected association between Townsend index and urban areas. 
Apparently, this means that this deprivation index is unsuitable for rural areas. 
At a granularity level 2, SPADA specializes the task relevant object B by generating 
the following rule which preserve both support and confidence: 

is_a(A, ward), crossed_by_urbanarea(A, B), is_a(B, urban_areaL), 
 townsendidx_rate(A,high) �   mortality_rate(A, high) (40.72%, 72.47%) 

This rule clarifies that the urban area B is large. 
Similarly, SPADA discovers association rules involving low mortality wards. For 

instance, at the first granularity level, the rule: 
is_a(A, ward), crossed_by_urbanarea(A, B), is_a(B, urban_area), 
townsendidx_rate(A, low) �  mortality_rate(A, low)             (21.13%, 56. 94%)  

states that a low valued Townsend index ward A that (partly) includes an urban area B 
presents a low mortality rate.  

7. Conclusions 

In this paper the discovery of spatial association rules by means of ARES in two real-
world case studies, namely document image analysis and geo-referenced census data 
analysis, is illustrated. We also present some criteria to reduce the pattern search 
space and to filter extracted rules in order to discover interesting association rules 
according to user preferences. This is achieved by exploiting the high expressive 
power of rule miner SPADA 3.0, integrated in ARES, and allowing the definition of a 
language bias. Results show that ARES mines interesting rules at different granularity 
levels.  

For future work we plan to investigate the improvement of ARES in order to 
implement a tight-coupling between SPADA and the spatial database. 
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