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Abstract. In this paper we propose a novel (multi-)relational classification 
framework based on propositionalization. Propositionalization makes use of 
discovered relational association rules and permits to significantly reduce 
feature space through a feature reduction algorithm. The method is 
implemented in a Data Mining system tightly integrated with a relational 
database. It performs the classification at different granularity levels and takes 
advantage from domain specific knowledge in form of rules that support 
qualitative reasoning. An application of classification in real-world geo-
referenced census data analysis is reported.  

1 Introduction 

Classification is one of the fundamental tasks in data mining and in the traditional 
data mining classification setting [15] data are generated independently and with an 
identical unknown distribution P on some domain X and are labeled according to an 
unknown function g. The domain of g is spanned by m independent (or predictor) 
random variables Xi (both numerical and categorical), that is X=X1×X2×…×Xm, while 
the range of g is a finite set Y={C1, C2, …, CL}, where each Ci is a distinct class. A 
data mining algorithm takes a training sample S={(x, y) ∈ X × Y | y=g(x) } as input 
and returns a function f which is hopefully close to g on the domain X. In practice, the 
goal is to learn the target concept associated with each class by finding regularities in 
examples of a class that characterize the class in question and discriminate it from the 
other classes. This formalization of the classification problem well faces with the 
single-table assumption [17] underlying most of classification methods proposed in 
the literature. Data are represented as a single table, where each row corresponds to an 
example and each column to a predictor variable or to the target variable Y. However, 
the growing importance of knowledge discovery and data mining in practical real 
world requires increasingly sophisticated solutions for classification problems when 
data consists of a large amount of records that may be stored in several tables of a 
relational database. In this context, single table assumption appears too restrictive 
since both the predictor variables and the target variable are represented as attributes 
of distinct tables (relations).  

(Multi-) relational data mining [16] is the branch of data mining research that 
overcomes limitations imposed by single table assumption and investigates methods 



able to extract knowledge from data stored in multiple relational tables. (Multi-) 
relational data mining methods are typically based on two alternative approaches: a 
structural approach and a propositional approach. While in the first case the whole 
hypothesis space is directly explored by the mining method, in the second case, 
known as propositionalisation, a transformation of relational learning problems into 
attribute-value representations amenable for conventional data mining methods is 
performed. In principle, methods implementing structural approaches are more 
powerful than methods implementing propositional approaches since information 
about how data were originally structured is not lost. Nevertheless, approaches to 
(multi-)relational data mining based on propositionalisation have gained significant 
interest in the last few years. This is mainly due to the fact that in many practical 
cases propositionalisation allows the reduction of the search space to a minimal subset 
including features obtained as transformation of the original (multi-)relational feature 
space. Another reason is given by the observation that the transformation of an 
original (multi-)relational problem into a single table format allows one to directly 
apply conventional propositional data mining methods, thus making a wider choice of 
robust and well-known algorithms available [9].  

Several multi-relational data mining methods based on propositionalisation have 
been proposed in literature for classification tasks. Generally, they assume an 
individual-centered data transformation such that there is a one-to-one 
correspondence between each tuple in the original target table (table containing the 
target attribute) and each tuple in the single table obtained after the 
propositionalisation process. At now, multi-relational classification through 
propositionalization problems has been extensively investigated by resorting to the 
field of Inductive Logic Programming (ILP). For instance, LINUS [10] as well as its 
successor SINUS [9] and ST [8] are able to construct a set of boolean features defined 
in terms of conjunctions of literals starting from relational data expressed in some 
first-order formalism. Nevertheless, a different approach to propositionalisation is 
supported by systems that directly work with relational databases. Indeed, they 
generally construct a single central relation by simply summarizing and/or 
aggregating information found in other tables and performing join operations 
according to foreign key constraints [7]. In both cases, propositional features are 
constructed by considering the structure imposed on data by relationships (e.g. foreign 
key constrains) between tuples in the target table and tuples in related tables, while 
ignoring the structure eventually imposed by hierarchical relationships on tuples of 
the same table. This means that these methods are not able to derive a propositional 
description of the same individual exploiting different levels of granularity. This turns 
to be an interesting aspect in many applications that would benefit from concept 
hierarchies [6]. Another limitation in the existing approaches is the huge number of 
new features they produce. In particular, propositionalisation tends to produce large 
numbers of features, many of which are highly correlated or even logically redundant. 
A simple example of a redundant feature is one which is never (or always) satisfied: 
e.g., ‘a molecule having an atom which has a bond with itself’. While some forms of 
redundancy can be recognised at feature generation time, others can only come to 
light by examining the data [2]. 

In this paper we propose a novel multi-relational propositionalisation-based 
classification framework that makes use of discovered multi-level association rules in 



the propositionalisation step. Association rules are extracted by means of a (multi-) 
relational association rule discovery system embedded in the framework that is able to 
generate association rules at multiple levels of granularity according to some domain 
knowledge. This allows the classification at different levels of granularity by taking 
advantage from a qualitative reasoning on a domain specific knowledge expressed in 
form of rules. Discovered rules are subsequently used to create a relational table for 
each granularity level where each column represent a boolean feature. Moreover, a 
feature reduction algorithm has been integrated to remove redundant features and 
improve efficiency of classification step without affecting accuracy of classifier. 
Finally, four well-known data mining algorithms are applied to the resulting table for 
classification purposes. 

The paper is organized as follows. In the next section we present the architecture of the 
proposed framework. In section 3 we briefly present the process of mining of multi-level 
relational association rules while the propositionalization approach is described in 
Section 4. Finally, an application to in real-world geo-referenced census data analysis is 
reported in Section 5 and some conclusions are drawn. 

2 System Architecture 

The framework we present in this paper has been implemented in the system MSRC 
(Multi-Step Relational Classifier).  

The problem solved by MSRC can be formalized as follows:  
Given: 
− a training set represented by means of h relational tables S={T0,T1,…,Th-1} of a 

relational database D; 
− a set of primary and foreign key constraints on tables in S; 
− a target relation (table) T∈S; 
− a target discrete attribute y in T, different from the primary key of T; 
− a background knowledge BK including some hierarchies Hk, k∈{j∈ℵ | 0≤j≤h-1 ∧ 

Tj≠T} (one for each table Tk∈ S-{T}) on tuples in S-{T}. Hierarchies Hk define is-
a (i.e., taxonomical) relationship of objects represented as tuples in the table Tk; 

− M granularity levels  in the descriptions (1 is the highest while M is the lowest),  
− a set of granularity assignments ψk which associate each object in Hk with a 

granularity level,  
− a couple of thresholds minsup[l] and minconf[l] for each granularity level. 
Find multi-level classifiers which predict the value of y for some individual 
represented as a tuple in T (with possibly UNKNOWN value for y) and related tuples 
in S according to foreign key constraints. 

In Figure 1, the architecture of the multi-relational propositionalization-based 
classifier MSRC is presented.  

The MRSC Engine manages the system by allowing user interaction and by 
coordinating the activity of all other components. It interfaces the system with the 
database module in order to store intermediate information.  

The Association rules discovery module is in charge of the extraction of association 
rules from data. In particular, given a database schema, a background knowledge and 



a Language Bias, the system is able to extract association rules and store them in an 
appropriate repository for subsequent use. The system embeds, for this task, SPADA 
[1] that mines association rules at multiple levels of granularity. The expressive power 
of the language bias of SPADA allows us to filter out rules that are not useful for 
classification purposes (see section 3). 

The Propositionalization Module is in charge of the transformation of the tables in 
S in a single relational table. In the resulting table, columns represent the extracted 
rules, rows represent instances of the target table T and values are obtained by means 
of the propositionalization step (see section 4).   

The Feature Reduction Module reduces the number of columns in order to remove 
redundant features that would uselessly increase the complexity of the learning task 
and negatively affect the classification effectiveness (see section 4).  

Finally, the Classification Module is in charge of executing both the learning 
process and the classification process. The learning process takes as input the reduced 
relational table and returns a classification model. The classification process, takes in 
input the classification model and a tuple in T (with possibly UNKNOWN value for 
y) and returns the value of y. The classification model can be computed by means of 
four different learning algorithms, namely the JRIP[3], C4.5 [16], 1-NN and the 
Naive Bayesian classifier (NBC) [4]. 

In the following Sections, we first introduce the problem of discovering multi-level 
relational association rules and then we describe how these rules can be used to 
construct boolean features to be used in the classification step. 

Figure 1. MSRC architecture.
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3 Relational Association rules Mining. 

The discovery of relational association rules is a descriptive mining task that aims at 
detecting associations between target objects (represented as tuples of the target table 
T) and some target-relevant objects (represented as tuples in S-{T}). The former are 
the main subject of the description, while the latter are objects that are relevant for the 
task in hand and are related (by means of foreign key constraints) to the former.  

In general, association rules are a class of regularities that can be expressed by the 
implication: P�Q (s, c), where P (body) and Q (head) are a set of literals, called 
items, such that P∩Q = ∅, the support s estimates the probability p(P∪Q), and the 
confidence c, estimates the probability p(Q | P). The conjunction P∧Q is called 
pattern. An example of relational association rule is: 

is_a(X, molecule), contains(X,Y), is_a(Y, atom), charge_of(Y,[0.7... 0.88] )� 
contains(X, Z), is_a(Z, atom), charge_of(Z,[0.2 ... 0.3] ), Z≠ Y (91%, 100%) 

to be read as “If a molecule X contains an atom with charge between 0.7 and 0.88, 
then X contains another atom Z distinct from Y with charge between 0.2 and 0.3 with 
91% support and 100% confidence.” By taking into account some kind of taxonomic 
knowledge on target-relevant objects (e.g. atom is specialized as atom_A and 
atom_B) it is possible to obtain descriptions at different granularity levels (multiple-
level association rules). For instance, a finer-grained association rules can be the 
following: 

is_a(X, molecule), contains(X,Y), is_a(Y, atom_A), charge_of(Y,[0.7... 0.88]) 
� contains(X, Z), is_a(Z, atom_B), charge_of(Z,[0.2 ... 0.3] ), Z≠ Y  

(65%, 85%) 
In this context, the process of discovery multi-level relational association rules 

correspondes to mine strong multi-level relational association rules, that is, relational 
association rules involving target-relevant objects at different granularity levels. 

Hierarchies Hk define is-a (i.e., taxonomical) relationship of objects in the same table 
(e.g. atom-A is-a atom). Objects of each hierarchy are mapped to one or more of the M 
user-defined description granularity levels in order to deal uniformly with several 
hierarchies at once. Both frequency of patterns and strength of rules depend on the 
granularity level l at which patterns/rules describe data. Therefore, a pattern P (s%) at 
level l is frequent if s≥minsup[l] and all ancestors of P with respect to Hk are frequent at 
their corresponding levels. An association rule Q → R (s%, c%) at level l is strong if the 
pattern Q∪R (s%) is frequent and c≥ minconf[l].  

In MSRC, rules are extracted by means of the algorithm SPADA [12] that operates 
in three steps for each granularity level: i) pattern generation; ii) pattern evaluation; 
iii) rule generation and evaluation. SPADA takes advantage of statistics computed at 
granularity level l when computing the supports of patterns at granularity level l+1. In 
particular, SPADA exploits the expressive power of first-order logic to specify both 
the background knowledge BK, such as hierarchies and domain specific knowledge, 
and the language bias LB. Hierarchies allow to represent and manage objects at 
different levels of granularity, while the domain specific knowledge stored as a set of 
rules supports qualitative reasoning. On the other hand, the LB is relevant to allow 
data miners to specify his/her bias for interesting solutions, and then to exploit this 
bias to improve both the efficiency of the mining process and the quality of the 



discovered rules. In SPADA, the language bias is expressed as a set of constraint 
specifications for either patterns or association rules. Pattern constraints allow 
specifying a literal or a set of literals that should occur one or more times in 
discovered patterns. During the rule generation phase, patterns that do not satisfy a 
pattern constraint are filtered out. Similarly, rule constraints are used do specify 
literals that should occur in the head or body of discovered rules. In a more recent 
release of SPADA (3.1) [1] new pattern (rule) constraints have been introduced in 
order to specify exactly both the minimum and maximum number of occurrences for a 
literal in a pattern (head or body of a rule). An additional rule constraint has been 
introduced to eventually specify the maximum number of literals to be included in the 
head of a rule. In this way we are able to constraint the head structure of a rule 
requiring the presence of only the literal representing the class label and obtain 
patterns useful for classification purposes. 

4 Transforming Association Rules in boolean features. 

Once relational association rules having only the class label in the head have been 
extracted for each level, they are converted in a set of boolean features such that the 
result can be used as input for attribute-value classification algorithms. More 
precisely, for each granularity level l, boolean features construction is performed by 
transforming the original set of tables S in a single relational table B whose columns 
correspond to each body of association rules discovered at level l. Before describing 
how B is obtained, we introduce: 
− R’: a set of relational association rules whose head contains a literal representing 

the class label; 
− Ii ∈T : a target object instance (tuple of T); 
− B: the output table with |R’|+1 attributes. Tuples in B correspond to tuples in T. 

The instance Ii can be logically represented as a set of ground facts describing both 
the target tuple in T and all target-relevant tuples that are related (e.g. foreign key 
associated) to the target table (see Figure 2). The body of a rule Rj∈R’ covers Ii∈T if 
there exists a substitution θ, such that body(Rj)θ ⊆ I.  

In the case that the body of the rule Rj covers Ii, the j-th value of the tuple in B 
associated to the i-th instance of T is true, otherwise it is false. The  (|R’|+1)-th 
column in B represents the target attribute y.  

It is noteworthy that the number of attributes of B depends on the number of 
discovered association rules in R’.  Since, the number of discovered association rules is 
usually high and many rules are strongly correlated, this may lead to generate boolean 
features which are highly correlated or even logically redundant.   

The definition of feature redundancy we adopt in this work properly follows from 
reducts in rough sets theory [14], in which boolean features are redundant if their 
removal does not change the set of example-pairs having the same value for each 
feature. Hence, a feature f can be identified as redundant with respect to another 
feature g for distinguishing positive from negative examples of a class c if f is true for 
at least the same positive examples as g, and false for at least the same negative 
examples as g. Coherently with this definition, we may combine the association rule 
based propositionalisation with redundant feature elimination (feature reduction) in 



order to reduce the hypothesis space by excluding boolean features (or literals in ILP) 
which are redundant for learning. For this purpose, we integrate REFER [2], that is, a 
feature reduction method for multi-class problems that operates in an ILP setting.  

Central to REFER is the notion of a neighborhood that is a subset of examples 
belonging to the same class such that the number of different features between 
examples is relatively small. Each neighbourhood is uniquely identified by two 
examples. The first example is where the neighbourhood construction starts and the 
second one is the termination point. Let es be a random starting example for the 
construction of a neighbourhood, the corresponding termination point is the closest 
example in et tagged with a different class label, referred to here as the point (or 
example) of class change. The neighbourhood E(es, et) contains the set of training 
examples 

ksss , ..., e, ee
21

 such that: 

)()()(
1 ksss eclass   eclasseclass === � , ),(),( tsss eeee

h
distancedistance ≤    ∀h=1,...,k 

where the distance between two examples is computed as the Hamming distance, that 
is, the number of features whose values differ between the two examples. The 
neighbourhood construction proceeds in E \ E(es, et) by considering the last example 
of class change as the current starting point and the process is repeated until the entire 
set of training examples is partitioned in neighbourhoods.  

Redundant features are then eliminated by applying a revised version of REDUCE 
[11] method to each pair of neighbourhoods of different class. In particular, let El and 
Em be a pair of neighbourhoods in E of different classes (Cl ≠ Cm), the goal is to detect 
which features f ∈ B describing examples in El ∪ Em are non-redundant for 
discriminating between the classes Cl and Cm. We thereby eliminate features 
estimated redundant according to properties and dependencies among the features. 
Formally, a feature f ∈ F covers a feature g ∈ F with respect to El ∪ Em if T(g) ⊆ T(f) 
and F(g) ⊆ F(f), where T(f) (T(g)) is the set of all examples ei ∈ El such that f (g) has 
the value true for ei and F(f) (F(g)) is the set of all example ej ∈ Em such that f (g) has 
the value false for ej. The intuition is that a feature f is better than another feature g for 
distinguishing Cl from Cm if f is true for at least the same Cl examples as g, and false 
for at least the same Cm examples as g. The implicit assumption is that class Cl is the 

MoleculeId Ind Mutagenecity 
m_1 1 yes 
m_2 0 yes 
m_3 1 no 

 

MoleculeId AtomId 
m_1 a_1 
m_1 a_2 
m_2 a_1 
m_2 a_3 

 

begin (m_1) 
is_a(m_1,molecule). 
mutagenecity(m_1,yes). 
contains(m_1,a_1). 
is_a(a_1,atom). 
is_a(a_1,atom_A). 
charge(a_1,+0.5). 
contains(m_1,a_2). 
is_a(a_2,atom). 
is_a(a_2,atom_A). 
charge(a_2,+0.7). 
end(m_1) 
… 

Figure 2. Set of ground atoms representing relational data concerning molecules (target objects) 
and atoms (target-relevant objects). In this case a two level hierarchy is defined on atom, that 
is, atom is specialized as atom_A and atom_B. 

AtomId Type Charge 
a_1 A +0.5 
a_2 A +0.7 
a_3 B -0.5 
 



positive class we are trying to describe. This suggests the notion of useless features, 
those for which T(f) = ∅ or F(g) = ∅. Such features can be immediately removed 
from the set of features F regardless of the properties of other features. Furthermore, a 
feature g ∈ F is considered as a redundant feature to be removed if there exists 
another feature f ∈ F (f ≠ g) such that f covers g.   

Since, it is proved that REFER preserves the existence of a complete and consistent 
theory for each class label when eliminating redundant features [2], this method appears 
well-suited to reduce the set of features describing data at each granularity level, thus 
improving efficiency of classification step without comprising the existence of some 
classification model discriminating between examples tagged with different class label. 

5 Experimental Results. 

In this section we present a real-world application MSRC in geo-referenced census data 
interpretation. For this study we consider both census and digital map data provided in 
the context of the European project SPIN! (Spatial Mining for Data of Public 
Interest). These data concern Greater Manchester, one of the five counties of North 
West England (NWE). Greater Manchester is divided into ten metropolitan districts, 
each of which is decomposed into censual sections or wards, for a total of two 
hundreds and fourteen wards. Census data are available at ward level and provide 
socio-economic statistics (e.g. mortality rate, that is, the percentage of deaths with 
respect to the number of inhabitants) as well as some measures describing the 
deprivation level of each ward according to information provided by Census 
combined into single index scores. We consider Jarman Underprivileged Area Score 
that is designed to measure the need for primary care, the indices developed by 
Townsend and Carstairs that is used in health-related analyses, and the Department of 
the Environment's Index (DoE) that is used in targeting urban regeneration funds. The 
higher the index value the more deprived a ward is. Both deprivation indices values as 
well as mortality rate are all numeric, but discrete values are here obtained by 
applying the Relative Unsupervised DiscrEtization RUDE algorithm [13] that 
discretizes each continuous variable in the context defined by remaining continuous 
variables. More precisely, Jarman index, Townsend index, DoE index and Mortality 
rate have been automatically discretized in (low, high), while Carstairs index has been 
discretized in (low, medium, high).  

By considering Greater Manchester wards as target objects, we focus our attention 
on mining a classification model to predict discrete value of DoE index by exploiting 
not only socio-economic factors represented in census data but also geographical 
factors represented in some linked topographic maps. Spatial analysis is then enabled 
by the availability of vectorized boundaries of the 1998 census wards as well as by other 
Ordnance Survey digital maps of NWE, where several interesting layers  (road net, rail 
net, water net, urban area and green area) forming target-relevant objects are found (see 
Table 1). Both ward-referenced census data and map data are stored in an Object-
Relational spatial database, i.e., Oracle Spatial 9i database, as a set of spatial tables, one 
for each layer. Each spatial table includes a geometry attribute that allows storing the 
geometrical representation (e.g. point, line, and region in a 2D context) and the 



positioning of a spatial object with respect to some reference system in a single 
geometry field within a spatial table.  

Table 1. Geographic layers. 

Layer name Geometry Number of objects 
Road net A-road; B-road; Motorway; Primary road Line 2798 
Rail net Railway Line 1054 

Urban area Large urban area; Small urban area Line 381 
Green area Wood; Park: Line 13 
Water net Water; River; Canal Line 1067 

Ward Ward Region 241 

It is noteworthy that the spatial nature of both target objects and target-relevant objects 
poses two main degree of complexity that is the granularity of the spatial objects and 
the implicit definition of spatial relations. The former is due to the fact that non-target 
objects can be described at multiple levels of granularity. In this case, five different 
hierarchies can be defined to describe target-relevant layers (see Fig. 3). The 
hierarchies have depth three and are straightforwardly mapped into three granularity 
levels. The second source of complexity refers to the fact that both geometrical 
representation and relative positioning define implicitly spatial relations of different 
nature (e.g. topological) which can be explicitly modeled as many relational tables as 
the number of objects type and spatial relations. Modeling these spatial relations has a 
key role in this classification problem, since both the attribute values of the object to be 
classified and the attribute values of spatially related objects may be relevant for 
assigning an object to a class from the given set of classes.  

We adopt here some geometrical and topological algorithm based on the 9-
intersection model [5] to extract topological relationships between target objects and 
target-relevant objects. For instance the relationship crosses(ward_135, urbareaL_151) 
denotes that ward_135, that is a specific Greater Manchester ward, is crossed by 
urbanareaL_151 that is a large urban area. The number of computed relationships is 
784,107.  

To support a spatial qualitative reasoning, a domain specific knowledge (BK) is 
expressed in form of a set of rules. Some of these rules are: 

ward_urbanarea(X,Y) :- is_a(X,ward), connects(X,Y), is_a(Y, urban_area).  … 
ward_urbanarea(X,Y) :- is_a(X,ward), inside(X,Y), is_a(Y, urban_area). 

The use of the predicate is_a hides the fact that a hierarchy is defined for spatial 
objects which belong to the urban area layer. According to spatial relations introduced 
with BK, we easily obtain a relational representation of classification problem in 
question (see Figure 4).  

Performances of MSRC are evaluated by means of a 10-fold cross validation.  
The first step consists in the extraction of association rules at different levels of 

granularity according to hierarchies defined on target-relevant objects. Rules contain 
useful information about relational patterns frequently occurring in data. For instance, 
by analyzing spatial association rules extracted with parameters minsup = 0.1, minconf = 

Figure 3. Spatial hierarchies defined for road net, water net, urban area and green area. 
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0.6 we discover  the following rule: 
doe (A, low) ← is_a(A, ward), ward_urbanarea(A, B), 

is_a(B, urban_area), jarman (A, low)     (52.6%, 100%) 

which states that a low DoE index value is observed in a ward A that includes an 
urban area B and has a low value of Jarman index. The support (52.6%) and the high 
confidence (100%) confirm a meaningful association between a geographical factor, 
such as living in urban areas where primary care are well satisfied, and  low level of 
derivation when considering targeting urban regeneration funds. In the feature 
construction step, this rule defines the boolean feature “is_a(A, ward)∧ 
ward_urbanarea(A, B) ∧ is_a(B, urban_area) ∧ jarman (A, low)” that is true for each 
Greater Manchester ward  with a low value of Jarman index such that there is at least an 
urban area that is topologically related (e.g. connects or inside) to the ward in question.  
At a granularity level 2, SPADA specializes the target-relevant object B by generating 
the following rule that preserves both support and confidence: 

doe (A, low) ← is_a(A, ward), ward_urbanarea(A, B), 
is_a(B, large_urban_area), jarman (A, low)    (52.6%, 100%) 

This rule clarifies that the urban area B is large. 
By varying  granularity level as well as the value of minsup, minconf  and the number 

of refinement steps K (pattern length) in association rule discovery, we obtain several 
experimental settings. For each setting, the set of discovered rules is transformed in a set 
of boolean features that is the conjuctions of literals derived from the body of each rule, 
and redundant features are removed to reduce feature space without affecting the 
existence of a complete and consistent theory for each class label. Finally, we apply the 
four classification learners embedded in MSRC and compare the percentage of correct 
classification averaged over 10-folds of cross-validation. Results on average reduction 
percentage and average accuracy are reported in both Table 2. Results confirms that 
high number of association rules typically lead to redundant features. Pergentage of 
feature reduction increases when the refinement step increases. This is due to the high 
number of similar rules (thus producing redundant features). Another consideration is 
that the average predictive accuracies of classification models discovered at higher 
granularity levels (i.e. level=2) are sometimes better than the corresponding accuracies 
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Figura 4. Relational data describing ward-referenced census data and map data 
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at lowest levels. This means that the classification model takes advantage of the use of 
the hierarchies defined on spatial objects.  In this case, results at different abstraction 

levels provide insights on what are the non-target objects that affect the classification. 
For instance, when K=7, minsup = 0.1 and minconf = 0.6, naïve-bayes classification is 
strongly improved when considering the size of the urban area, the type of road, and so 
on.�Moreover, results show that by decreasing the number of extracted rules (higher 
support and confidence) we have lower accuracy. This means that there are boolean 
features that strongly influence classification results and often these features correspond 
to rules which are not characterized by high values of support and confidence. Finally, 
we observe that, in this specific task, the higher the number of refinement steps (boolean 
features involving more literals) not necessarily means the better the model. This is 
mainly due to the fact that rules become very specific. 

6 Conclusions  

In this paper we present MSRC (Multi-Step Relational Classifier) that exploits relational 
association rules mining for inducing (multi-)relational classifiers. Classification is 
based on a propositionalization step where features are constructed by considering the 
structure imposed on data by relational association rules discovered at multiple levels of 
granularity according to some domain knowledge. This allows MSRC to support multi-
level classification that is highly demanded in many real-world applications that would 
benefit from concept hierarchies. Since the number of features constructed starting from 
relational association rules is usually high for each level of granularity, MSRC 
integrates a feature reduction method that reduces feature space by removing redundant 
features without compromising classification effectiveness. 

An application of the MSRC framework to a classification task in geo-referenced 
census data interpretation is reported and results shows that multi-level classification 
provides insights on what target-relevant objects really affect the classification. It is 
also noteworthy that, in our study, support and confidence do not seem to be valid 

Table 2. DoE Index  average accuracy 

Avg. Accuracy  min 
sup 

min 
conf 

Granularity 
level 

 
K 

Avg. number 
of original 

features 

Avg. perc. of 
feature 

reduction NBC 1-NN C4.5 JRIP 

0.2 0.8 5 27.5 37% 81.64 80.73 83.01 83.01 
0.2 0.8 6 221.1 44% 80.28 80.73 83.01 83.01 
0.2 0.8 

1 
7 982.3 73% 75.56 80.28 83.01 83.01 

0.2 0.8 5 492.8 29% 82.55 82.55 81.64 81.93 
0.2 0.8 6 278.3 11% 82.10 82.55 82.10 83.01 
0.2 0.8 

2 
7 1860.1 66% 80.28 82.55 81.19 81.02 

0.1 0.6 5 233.2 48% 83.01 80.73 83.01 83.01 
0.1 0.6 6 374 57% 80.28 80.73 83.01 83.01 
0.1 0.6 

1 
7 904.2 74% 80.73 80.73 83.01 83.01 

0.1 0.6 5 442.2 28% 83.01 81.30 82.10 81.02 
0.1 0.6 6 635.8 27% 82.55 79.65 80.28 81.64 
0.1 0.6 

2 
7 3051.4 68% 80.73 79.31 81.19 81.02 



criterion to filter rules, since rules characterized by low values of support and 
confidence positively affect classification results. As future work we intend to extend 
experimental evaluation by comparing MSRC with a (multi-)relational structural 
approach to multi-level classification. 
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