
Prequential AUC for Classifier Evaluation and
Drift Detection in Evolving Data Streams

Dariusz Brzezinski and Jerzy Stefanowski

Institute of Computing Science, Poznan University of Technology,
ul. Piotrowo 2, 60–965 Poznan, Poland

{dariusz.brzezinski,jerzy.stefanowski}@cs.put.poznan.pl

Abstract. Detecting and adapting to concept drift makes learning data
stream classifiers a difficult task. It becomes even more complex when
the distribution of classes in the stream becomes imbalanced. Currently,
proper assessment of classifiers for such data is still a challenge, as exist-
ing evaluation measures either do not take into account class imbalance
or are unable to indicate class ratio changes in time. In this paper, we
advocate the use of the area under the ROC curve (AUC) in imbalanced
data stream settings and propose an incremental algorithm that uses
a sorted tree structure with a sliding window to compute AUC using
constant time and memory. Additionally, we experimentally verify that
this algorithm is capable of correctly evaluating classifiers on imbalanced
streams and can be used as a basis for detecting sudden changes in class
definitions and imbalance ratio.

Keywords: AUC, data stream, class imbalance, concept drift

1 Introduction

Many modern information system, e.g. concerning sensor networks, recommen-
der systems, or traffic monitoring, record and process huge amounts of data.
However, the massive size and complexity of the collected datasets make the
discovery of patterns hidden in the data a difficult task. Such limitations are par-
ticularly visible when mining data in the form of transient data streams. Stream
processing imposes hard requirements concerning limited amount of memory
and small processing time, as well as the need of reacting to concept drifts,
i.e., changes in distributions and definitions of target classes over time. For su-
pervised classification, these requirements mean that newly proposed classifiers
should not only accurately predict class labels of incoming examples, but also
adapt to concept drifts while satisfying computational restrictions.

Classification becomes even more difficult if the data complexities also include
class imbalance. It is an obstacle even for learning from static data, as classifiers
are biased toward the majority classes and tend to misclassify minority class
examples. However, it has been also shown that class imbalance ratio is usually
not the only factor that impedes learning. Experimental studies [1, 2] suggest
that when additional data complexities occur together with class imbalance, the



deterioration of classification performance is amplified and affects mostly the
minority class. In this paper, we focus our attention on the complexity resulting
from the combination of class imbalance, stream processing, and concept-drift.

Although for static imbalanced data several specialized learning techniques
have recently been introduced [3, 4], similar research in the context of data
streams is limited to a few papers [5–8]. However, these studies show that evolv-
ing and imbalanced data streams are particularly demanding learning scenarios,
and the problem of effectively evaluating a classifier is vitally important for such
data.

Currently, the performance of data stream classifiers is commonly measured
with predictive accuracy (or respective error), which is usually calculated in a
cumulative way over all incoming examples or at selected points in time when
examples are processed in blocks. However, when values of these measures are
averaged over an entire stream, they loose information about the classifier’s reac-
tions to drifts. Even recent proposals including a prequential way of calculating
accuracy [9] or using the Kappa statistic [10, 11] are not sufficient as they are
unable to depict changes in class distribution, which could appear in different
moments of evolving data streams. Moreover, when the ratio of positive to neg-
ative instances changes in a test set, a classifier chosen using these metrics may
no longer perform sufficiently good, or even acceptably [12].

For static imbalanced problems, a popular alternative to accuracy is the area
under the ROC (Receiver Operator Characteristic) curve (AUC). An important
property of AUC is that it is invariant to changes in class distribution. Moreover,
for scoring classifiers it has a very useful statistical interpretation as the expec-
tation that a randomly drawn positive example receives a higher score than a
random negative example. Thus, it measures the ranking ability of classifiers,
which is especially desirable if one wants to dynamically change the classification
threshold in response to changing class or cost distributions [12]. Finally, several
authors have shown that AUC is more preferable for model evaluation than total
accuracy [13].

However, in order to calculate AUC, one needs to sort a given dataset and
iterate through each example. Because the sorted order of examples defines the
resulting value, adding an example to the dataset forces the procedure to be
repeated. Therefore, AUC cannot be directly computed on data streams, as
this would require O(n) time and memory at each time point, where n is the
current length of the data stream (if previously sorted scores are preserved, one
only needs to insert a new score and linearly scan through the examples to
calculate AUC). Up till now, the use of AUC for data streams has been limited
to estimations on periodical holdout sets [8, 6] or entire streams [5, 7], making it
either potentially biased or computationally infeasible.

In this paper, we propose a new approach for calculating AUC incrementally
with limited time and memory requirements. The proposed algorithm incorpo-
rates a sorted tree structure with a sliding window as a forgetting mechanism,
making it both computationally feasible and appropriate for concept-drifting
streams. According to our best knowledge, such an approach has not been con-



sidered in the literature. Furthermore, we argue that, compared to standard
accuracy, the analysis of changes of prequential AUC over time could provide
more information about the performance of classifiers with respect to different
types of drifts, in particular for streams with evolving class imbalance ratio.
To verify this hypothesis, we carry out experiments with several synthetic and
real datasets representing scenarios involving different types of drift, including
sudden changes in the class imbalance ratio.

The remainder of the paper is organized as follows. Section 2 presents related
work. In Section 3, we introduce an algorithm for calculating prequential AUC
and investigate its properties, while Section 4 shows how prequential AUC can
be used for concept drift detection. In Section 5, we present experimental results
on real and synthetic datasets, which demonstrate the properties of the proposed
algorithms. Finally, in Section 6 we draw conclusions and discuss future research.

2 Evaluating Data Stream Classifiers

In data stream mining, predictive abilities of a classifier are evaluated by using
a holdout test set, chunks of examples, or incrementally after each example [14].
More recently, Gama et al. [9] proposed prequential accuracy with forgetting
as a means of evaluating data stream classifiers and enhancing drift detection
methods. They have shown that computing accuracy only over the most recent
examples, instead of the entire stream, is more appropriate for continuous as-
sessment and drift detection in evolving data streams. Nevertheless, prequential
accuracy inherits the weaknesses of traditional accuracy, that is, variance with
respect to class distribution and promoting majority class predictions.

For imbalanced data streams, Bifet and Frank [10] proposed the use of the
Kappa statistic with a sliding window. Furthermore, this metric has been re-
cently extended to take into account temporal dependence [11]. However, the
Kappa statistic requires a baseline classifier, which is dependent of the current
class imbalance ratio. Furthermore, in contrast to accuracy, the Kappa statistic
is a relative measure without a probabilistic interpretation, meaning that its
value alone does not directly state whether a classifier will predict accurately
enough in a given setting, only that it performs better than general baselines.

The AUC measure has also been used for imbalanced data streams, however,
in a limited way. Some researchers chose to calculate AUC using entire streams [5,
7], while others used periodical holdout sets [8, 6]. Nevertheless, it was noticed
that periodical holdout sets may not fully capture the temporal dimension of
the data, whereas evaluation using entire streams is neither feasible for large
datasets nor suitable for drift detection. It is also worth mentioning that an
algorithm for computing AUC incrementally has also been proposed [15], yet
one which calculates AUC from all available examples and is not applicable to
evolving data streams. Although the cited works show that AUC is recognized
as a measure which should be used to evaluate classifiers for imbalanced data
streams, up till now it has been computed the same way as for static data. In
the following sections, we propose a simple and efficient algorithm for calculating



AUC incrementally with forgetting, and investigate its properties with respect
to classifier evaluation and drift detection in evolving data streams.

3 Prequential AUC

Our main interest in this paper is to evaluate data stream classifiers for evolving
imbalanced data streams. For this purpose, we advocate the use of the area un-
der the receiver operator characteristic curve (AUC). Therefore, we will consider
scoring classifiers, i.e., classifiers that for each predicted class label additionally
return a numeric value (score) indicating the extent to which an instance is
predicted to be positive or negative. Furthermore, we will limit our analysis to
binary classification. It is worth mentioning, that most classifiers can produce
scores, and those that only predict class labels can be converted to scoring clas-
sifiers [12].

We propose to compute AUC incrementally using a forgetting mechanism
that employs a sorted window of classification scores of the most recent examples.
It is worth noting that, since the calculation of AUC requires sorting examples
with respect to their classification scores, it cannot be computed on an entire
stream or using fading factors without using additional memory. To efficiently
maintain a sorted set of scores, we propose to use a red-black tree [16], which
is capable of adding and removing elements in logarithmic time without any
additional memory. Furthermore, a window of scores is required to identify the
age of each score. With these two structures, for each incoming example a new
score is inserted into the window (line 16) as well as the tree (line 11) and, if
the window of examples has been exceeded, the oldest score is removed (lines
5 and 16). After the window has been updated, AUC is calculated by summing
the number of positive examples occurring before each negative example (lines
20–24) and normalizing that value by all possible pairs pn (line 25), where p is
the number of positives and n is the number of negatives in the window. This
method of calculating AUC is equivalent to summing the area of trapezoids for
each pair of sequential points in the ROC curve [12], but is more suitable for
our purposes as it requires very little computation given a sorted collection of
scores. Algorithm 1 lists the pseudo-code for calculating prequential AUC.

Let us now analyze the complexity of the proposed approach. For a window of
size d, the time complexity of adding and removing a score to the red-black tree is
O(2 log d). Additionally, the computation of AUC requires iterating through all
the scores in the tree, which is an O(d) operation. In summary, the computation
of prequential AUC has a complexity of O(d + 2 log d) per example and since
d is a user-defined constant this resolves to a complexity of O(1). It is worth
noticing that if AUC only needs to be sampled every k examples (a common
scenario while plotting metrics in time) lines from 19 to 25 can be executed only
once per k examples. In terms of space complexity, the algorithm requires O(2d)
memory for the red-black tree and window, which also resolves to O(1).

In contrast to error-rate performance metrics, such as accuracy [9, 14] or the
Kappa statistic [10, 11], the proposed measure is invariant of the class distribu-



Algorithm 1 Prequential AUC

Input: S: stream of examples, d: window size
Output: θ̂: prequential AUC after each example

1: W ← ∅; n← 0; p← 0; idx← 0;
2: for all scored examples xt ∈ S do
3: // Remove oldest score from the window

4: if idx ≥ d then
5: scoreTree.remove(W [idx mod d]);
6: if isPositive(W [idx mod d]) then
7: p← p− 1;
8: else
9: n← n− 1;

10: // Add new score to the window

11: scoreTree.add(xt);
12: if isPositive(xt) then
13: p← p+ 1;
14: else
15: n← n+ 1;
16: W [idx mod d]← xt;
17: idx← idx+ 1;
18: // Calculate AUC

19: AUC ← 0; c← 0;
20: for all consecutive scored examples s ∈ scoreTree do
21: if isPositive(s) then
22: c← c+ 1;
23: else
24: AUC ← AUC + c;
25: θ̂ ← AUC

pn
;

tion. Furthermore, unlike accuracy it does not promote majority class predic-
tions. Additionally, in contrast to the Kappa statistic, AUC is a non-relative,
[0, 1] normalized metric with a direct statistical interpretation. As opposed to
previous applications of AUC to data streams [5–8], the proposed algorithm
can be executed after each example using constant time and memory. Finally,
compared to the method presented in [15], the proposed algorithm provides a for-
getting mechanism and uses a sorting structure, making it suitable for evolving
data streams and allowing for efficient sampling.

4 Drift Detection Using AUC

Prequential AUC assesses the ranking abilities of a classifier and is invariant of
the class distribution. These properties differentiate it from common evaluation
metrics for data stream classifiers and could be applied in an additional context.
In particular, for streams with high class imbalance ratios simple metrics, such as
accuracy, will suggest good performance (as they are biased toward recognizing
the majority class) and may poorly exhibit concept drifts. Therefore, we propose



to investigate AUC not only as an evaluation measure, but also as basis for
drift detection in imbalanced streams, where it should better indicate changes
concerning the minority class.

For this purpose, we propose to modify the Page-Hinkley (PH) test [9], how-
ever, generally other drift detection methods could also have been adapted. The
PH test considers a variable mt, which measures the accumulated difference be-
tween the observed values e (originally error estimates) and their mean till the
current moment, decreased by a user-defined magnitude of allowed changes δ:
mt =

∑t
i=1 (et − ēt − δ). After each observation et, the test checks whether the

difference between the current mt and the smallest value up to this moment
min(mi, i = 1, . . . , t) is greater than a given threshold λ. If the difference ex-
ceeds λ, a drift is signaled. In this paper, we propose to use the area over the
ROC curve (1−AUC) as the observed value. Hence, according to the statistical
interpretation of AUC, instead of error estimates, we monitor the estimate of the
probability that a randomly chosen positive is ranked after a randomly chosen
negative. This way, the PH test will trigger whenever a classifier begins to make
severe ranking errors regardless of the class imbalance ratio.

The aim of using prequential AUC as an evaluation measure is to provide ac-
curate classifier assessment and drift detection for evolving imbalanced streams.
In the following section, we examine the characteristics of the proposed metric
in scenarios involving different types of drifts and imbalance ratios.

5 Experiments

We performed two groups of experiments, one showcasing the properties of pre-
quential AUC as an evaluation metric, and another assessing its effectiveness
as a basis for drift detection. In the first group, we tested five different classi-
fiers [14, 17]: Naive Bayes (NB), Very Fast Decision Tree with Naive Bayes leaves
(VFDT), Dynamic Weighted Majority (DWM), Online Bagging with an ADWIN
drift detector (Bag), and Online Accuracy Updated Ensemble (OAUE). Naive
Bayes and VFDT were chosen as incremental algorithms without any forgetting
mechanism, Online Bagging was chosen as an algorithm with a drift detector,
while OAUE and DWM were selected as representatives of ensemble learners.
For the second group of experiments, we only utilized VFDT with Naive Bayes
leaves, similarly as was done in [9].

All the algorithms and evaluation methods were implemented in Java as part
of the MOA framework [18]. The experiments were conducted on a machine
equipped with a dual-core Intel i7-2640M CPU, 2.8Ghz processor and 16 GB
of RAM. For all the ensemble methods (Bag, DWM, OAUE) we used 10 Very
Fast Decision Trees as base learners, each with a grace period nmin = 100, split
confidence δ = 0.01, and tie-threshold τ = 0.05 [14].



5.1 Datasets

For the first group of experiments, with prequential AUC as an evaluation met-
ric, we used 2 real and 10 synthetic datasets1. The real datasets were Airlines
(Air) and PAKDD’09 (PAKDD), representing a balanced and imbalanced dataset
respectively. To create synthetic datasets we used three popular data stream gen-
erators from MOA: SEA (SEA), Hyperplane (Hyp), and Random RBF (RBF) [18].
More precisely, SEA was a dataset without drift, SEAx were datasets with a 1:x
class ratio and three sudden drifts, and SEARC contained three class ratio changes
(1:1→ 1:100→ 1:10→ 1:1). Furthermore, RBF contained two very short changes
(blips), whereas Hypx were datasets with a 1:x class ratio and a slow incremental
drift throughout the entire stream.

For assessing prequential AUC as a measure for monitoring drift, we created
7 synthetic datasets using the SEA (SEA), RBF (RBF), Random Tree (RT), and
Agrawal (Agr) generators [18]. Each dataset tested for a single reaction (or lack
of one): SEANoDrift contained no changes, and should not trigger any drift de-
tector; RT involved a sudden change after 30 k examples; Agr1, Agr10, Agr100
also contained a sudden change after 30 k examples, but had a 1:1, 1:10, 1:100
class ratio, respectively; SEARatio included a sudden 1:1 → 1:100 ratio change
after 10 k examples; RBFBlips contained two blips, which should not trigger the
detector. The main characteristics of all the datasets are given in Table 1.

Table 1. Characteristic of datasets.

Dataset #Inst #Attrs Class ratio Noise #Drifts Drift type

SEA 100 k 3 1:1 10% 3 none
SEAx 1 M 3 1:x 10% 3 sudden
Hypx 500 k 5 1:x 5% 1 incremental
RBF 1 M 20 1:1 0% 2 blips
SEARC 1 M 3 1:1/1:100/1:10 10% 4 virtual
Air 539 k 7 1:1 - - unknown
PAKDD 50 k 30 1:4 - - unknown

SEANoDrift 20 k 3 1:1 10% 1 none
Agrx 40 k 9 1:x 1% 1 sudden
RT 40 k 10 1:1 0% 1 sudden
SEARatio 40 k 3 1:1/1:100 10% 1 virtual
RBFBlips 40 k 20 1:1 0% 2 blips

5.2 Results

All of the analyzed algorithms were tested in terms of accuracy and prequential
AUC. In the first group of experiments, the results were obtained using the

1 Source code, test scripts, generator parameters, and links to datasets available at:
http://www.cs.put.poznan.pl/dbrzezinski/software.php



test-then-train procedure [14], with a sliding window of 1000 examples. Table 2
presents a comparison of average classification accuracy and prequential AUC.

Table 2. Average prequential accuracy (Acc.) and AUC (AUC).

NB VFDT Bag DWM OAUE

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

SEAND 0.86 0.90 0.89 0.89 0.89 0.90 0.89 0.90 0.89 0.90
SEA1 0.84 0.88 0.85 0.87 0.89 0.88 0.89 0.88 0.89 0.88
SEA10 0.84 0.74 0.87 0.73 0.89 0.74 0.89 0.74 0.89 0.74
SEA100 0.89 0.54 0.89 0.54 0.90 0.54 0.90 0.54 0.90 0.54
Hyp1 0.78 0.85 0.81 0.87 0.88 0.93 0.88 0.92 0.88 0.93
Hyp10 0.88 0.80 0.89 0.74 0.91 0.81 0.91 0.76 0.91 0.82
Hyp100 0.94 0.57 0.93 0.53 0.94 0.56 0.94 0.52 0.94 0.55
RBF 0.74 0.83 0.96 0.98 0.99 1.00 0.98 1.00 0.99 1.00
SEARC 0.86 0.77 0.89 0.77 0.90 0.77 0.89 0.77 0.90 0.77
Air 0.65 0.66 0.64 0.65 0.64 0.65 0.65 0.65 0.67 0.68
PAKKD 0.56 0.64 0.73 0.57 0.80 0.63 0.80 0.50 0.80 0.62

By comparing average values of the analyzed evaluation metrics, we can see
that for datasets with a balanced class ratio (SEA, SEA1, Hyp1, RBF, Air) both
measures have similar values. As we expected, for datasets with class imbalance
(SEA10, SEA100, Hyp10, Hyp100, PAKKD, SEARC) accuracy does not demonstrate
the difficulties the classifiers have with recognizing minority class examples. The
differences between accuracy and AUC are even more visible on graphical plots
depicting algorithm performance in time. Figures 1–5 present selected perfor-
mance plots, which best characterize the differences between both metrics.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

A
c
c
u
ra

c
y

Processed instances

VFDT
DWM

NB
Bag

OAUE
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

A
U

C

Processed instances

VFDT
DWM

NB
Bag

OAUE

Fig. 1. Prequential accuracy (left) and AUC (right) on a data stream with sudden
drifts and a balanced class ratio.



0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

A
c
c
u
ra

c
y

Processed instances

VFDT
DWM

NB
Bag

OAUE
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

A
U

C

Processed instances

VFDT
DWM

NB
Bag

OAUE

Fig. 2. Prequential accuracy (left) and AUC (right) on a data stream with sudden
drifts and 1:100 class imbalance ratio.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

50 k 100 k 150 k 200 k 250 k 300 k 350 k 400 k 450 k 500 k

A
c
c
u
ra

c
y

Processed instances

VFDT
DWM

NB
Bag

OAUE
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

50 k 100 k 150 k 200 k 250 k 300 k 350 k 400 k 450 k 500 k

A
U

C

Processed instances

VFDT
DWM

NB
Bag

OAUE

Fig. 3. Prequential accuracy (left) and AUC (right) on a data stream with incremental
drift and a balanced class ratio.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

50 k 100 k 150 k 200 k 250 k 300 k 350 k 400 k 450 k 500 k

A
c
c
u
ra

c
y

Processed instances

VFDT
DWM

NB
Bag

OAUE
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

50 k 100 k 150 k 200 k 250 k 300 k 350 k 400 k 450 k 500 k

A
U

C

Processed instances

VFDT
DWM

NB
Bag

OAUE

Fig. 4. Prequential accuracy (left) and AUC (right) on a data stream with incremental
drift and 1:100 class imbalance ratio.



0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

A
c
c
u
ra

c
y

Processed instances

VFDT
DWM

NB
Bag

OAUE
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

A
U

C

Processed instances

VFDT
DWM

NB
Bag

OAUE

Fig. 5. Prequential accuracy (left) and AUC (right) for data with class ratio changes.

Comparing Figures 1 and 2, we can notice how the class imbalance ratio
affects both prequential accuracy and AUC. The accuracy plot visibly flattens
when class imbalance rises, but absolute values almost do not change. AUC on
the other hand flattens but its value drastically changes, showing more clearly
the classifiers’ inability to recognize the minority class.

A similar situation is visible on Figures 3 and 4, where the classifiers were
subject to an ongoing slow incremental drift. When classes are balanced, the
plots are almost identical, both in terms of shape and absolute values. However,
when the class ratio is equal 1:100, the accuracy plot flattens and its average
value rises, while the AUC plot still clearly shows that classifiers are unstable
and additionally its average value signals poor performance.

Finally, Figure 5 depicts classifier performance for a data stream with class
ratio changes, which are sometimes called virtual drift. Apart from NB, all the
tested classifiers kept the same accuracy after each drift making the changes
invisible on the performance plot. However, on the AUC plot, ratio changes are
clearly visible providing valuable information about the ongoing processes in the
stream. In fact, the absolute values of AUC hint the severity of class imbalance in
a given moment in time. This situation illustrates the advantages of prequential
AUC as a measure for indicating class ratio changes.

The second group of experiments involved using the PH test to detect drifts
based on changes in prequential accuracy and AUC. To compare both metrics,
we used window sizes (1000–5000) and test parameters λ = 100, δ = 0.1, as
proposed in [9]. Table 3 presents the number of missed versus false detection
counts, with average delay time for correct detections. The results refer to total
counts and means over 10 runs of streams generated with different seeds.

Concerning datasets with balanced classes, both evaluation metrics provide
similar drift detection rates and delays. However, for datasets with high class im-
balance the PH test notes more missed detections for accuracy. This is probably
due to the plot “flattening” caused by promoting majority class predictions. On
the other hand, detectors which use AUC have less missed detections for highly
imbalanced streams, but still suffer from a relatively high number of false alarms.
This suggests that detectors using AUC should probably be parametrized dif-



Table 3. Number of missed and false detections (in the format missed:false) obtained
using the PH test with accuracy (Acc) and AUC (AUC). Average delays of correct
detections are given in parenthesis, where (-) means that the detector was not trig-
gered or datasets did not contain any change. Subscripts in column names indicate the
number of examples used for estimating errors.

Acc1k Acc2k Acc3k Acc4k Acc5k

SEANoDrift 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-)
Agr1 0:2 (1040) 0:1 (1859) 0:0 (2843) 1:0 (4033) 5:0 (4603)
Agr10 0:9 (1202) 0:3 (1228) 0:2 (1679) 0:2 (2190) 0:2 (2817)
Agr100 2:12 (1610) 2:17 (2913) 2:10 (3136) 3:12 (3903) 3:10 (4612)
RT 6:0 (1843) 7:0 (2621) 8:0 (2933) 8:0 (3754) 8:0 (4695)
SEARatio 10:0 (-) 10:0 (-) 10:0 (-) 10:0 (-) 10:0 (-)
RBFBlips 0:2 (-) 0:1 (-) 0:0 (-) 0:0 (-) 0:0 (-)

AUC1k AUC2k AUC3k AUC4k AUC5k

SEANoDrift 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-)
Agr1 2:2 (1042) 3:1 (1760) 4:1 (2726) 4:0 (3773) 7:0 (4640)
Agr10 0:5 (868) 0:5 (1539) 0:1 (1506) 0:1 (1778) 1:1 (2197)
Agr100 0:19 (1548) 0:18 (2461) 1:9 (2664) 1:11 (3563) 2:9 (4835)
RT 3:0 (1815) 5:0 (2407) 6:0 (3105) 6:0 (4121) 7:0 (4725)
SEARatio 0:0 (1339) 0:0 (2249) 0:0 (3152) 0:0 (4057) 0:0 (4959)
RBFBlips 0:3 (-) 0:1 (-) 0:0 (-) 0:0 (-) 0:0 (-)

ferently than those using accuracy. However, the most visible differences are for
streams with class ratio changes. The PH test misses all virtual drifts when using
accuracy as the base metric, but detects all the drifts when prequential AUC is
used. This shows, that in imbalanced evolving environments the use of AUC as
an evaluation measure could be of more value than standard accuracy.

6 Conclusions

In case of static data, AUC is a useful metric for evaluating classifiers both on
balanced and imbalanced classes. However, up till now it has not been sufficiently
popular in data stream mining, due to its costly calculation. In this paper, we
introduced an efficient method for calculating AUC incrementally with forgetting
on evolving data streams. The proposed algorithm, called prequential AUC,
proved to be useful for visualizing classifier performance over time and as a
basis for drift detection. In particular, experiments involving real and synthetic
datasets have shown that prequential AUC is capable of correctly identifying
poor classifier performance on imbalanced streams and detecting virtual drifts,
i.e., changes in class ratio over time.

As our ongoing research, we are analyzing the possibility of using variations
of AUC, such as scored AUC [12], to detect drifts more rapidly. Furthermore, we
plan to analyze ROC curves plotted over time as a means of in-depth assessment
of classifier performance on evolving data streams.



Acknowledgments. The authors’ research was partially funded by the Polish
National Science Center under Grant No. DEC-2013/11/B/ST6/00963.

References

1. Batista, G., Prati, R.C., Monard, M.C.: A study of the behavior of several meth-
ods for balancing machine learning training data. ACM SIGKDD Explorations
Newsletter 6(1) (2004) 20–29

2. Japkowicz, N., Stephen, S.: The class imbalance problem: A systematic study.
Intell. Data Anal. 6(5) (2002) 429–449

3. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data
Eng. 21(9) (2009) 1263–1284

4. He, H., Ma, Y., eds.: Imbalanced Learning: Foundations, Algorithms, and Appli-
cations. Wiley-IEEE Press (2013)

5. Ditzler, G., Polikar, R.: Incremental learning of concept drift from streaming
imbalanced data. IEEE Trans. Knowl. Data Eng. 25(10) (2013) 2283–2301

6. Hoens, T.R., Chawla, N.V.: Learning in non-stationary environments with class
imbalance. In: KDD, ACM (2012) 168–176

7. Lichtenwalter, R., Chawla, N.V.: Adaptive methods for classification in arbitrarily
imbalanced and drifting data streams. In: PAKDD Workshops. Volume 5669 of
Lecture Notes in Computer Science., Springer (2009) 53–75

8. Wang, B., Pineau, J.: Online ensemble learning for imbalanced data streams. CoRR
abs/1310.8004 (2013)

9. Gama, J., Sebastião, R., Rodrigues, P.P.: On evaluating stream learning algo-
rithms. Machine Learning 90(3) (2013) 317–346

10. Bifet, A., Frank, E.: Sentiment knowledge discovery in twitter streaming data. In:
Discovery Science. Volume 6332 of Lecture Notes in Computer Science., Springer
(2010) 1–15

11. Zliobaite, I., Bifet, A., Read, J., Pfahringer, B., Holmes, G.: Evaluation methods
and decision theory for classification of streaming data with temporal dependence.
Machine Learning (2014)

12. Wu, S., Flach, P.A., Ramirez, C.F.: An improved model selection heuristic for
AUC. In: ECML. Volume 4701 of Lecture Notes in Computer Science., Springer
(2007) 478–489

13. Huang, J., Ling, C.X.: Using AUC and accuracy in evaluating learning algorithms.
IEEE Trans. Knowl. Data Eng. 17(3) (2005) 299–310

14. Gama, J.: Knowledge Discovery from Data Streams. Chapman and Hall (2010)
15. Bouckaert, R.R.: Efficient AUC learning curve calculation. In: Australian Confer-

ence on Artificial Intelligence. Volume 4304 of Lecture Notes in Computer Science.,
Springer (2006) 181–191

16. Bayer, R.: Symmetric binary b-trees: Data structure and maintenance algorithms.
Acta Inf. 1 (1972) 290–306

17. Brzezinski, D., Stefanowski, J.: Combining block-based and online methods in
learning ensembles from concept drifting data streams. Information Sciences 265
(2014) 50–67

18. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive Online Analysis.
J. Mach. Learn. Res. 11 (2010) 1601–1604


