
International Journal of Software Engineering and Knowledge Engineering
© World Scientific Publishing Company

1

DESIGNING CUSTOMIZED AND TAILORABLE
VISUAL INTERACTIVE SYSTEMS

MARIA FRANCESCA COSTABILE1, DANIELA FOGLI2, ANDREA MARCANTE3, PIERO MUSSIO3,
LOREDANA PARASILITI PROVENZA3, ANTONIO PICCINNO1

1Dipartimento di Informatica, Università degli Studi di Bari, via Orabona 4,
Bari, 70125, Italy

costabile@di.uniba.it, piccinno@di.uniba.it
http://ivu.di.uniba.it/people/costabile.htm

2Dipartimento di Elettronica per l’Automazione, via Branze 38,
Brescia, 25123, Italy

fogli@ing.unibs.it
3Dipartimento di Informatica e Comunicazione, Università degli Studi di Milano, via Comelico 39/41,

Milano, 20135, Italy
marcante@dico.unimi.it, mussio@dico.unimi.it, parasiliti@dico.unimi.it

Received (Day Month Year)
Revised (Day Month Year)

Accepted (Day Month Year)

The paper presents a novel participatory approach to the design of customized and tailorable visual
interactive systems; it includes end users, as domain experts, in the design team. A design method is
described, which leads to two different visual specifications, one suitable for end users and the other
suitable for software engineers. It is also shown how this second specification is directly mapped to
the implementation architecture, based on XML technology. The discussion is supported by the
description of an example in the mechanical engineering domain.

Keywords: Participatory design, End-User Development, Design specification, XML, specification
languages.

1. Introduction

The continuous evolution of technology is determining a parallel evolution of work
organizations, creating new research possibilities and challenges for the design and
implementation of interactive systems that support people’s activities in various work
practices. In order to study proper approaches to the design and development of
interactive systems, software engineers need an in-depth understanding of the influence
of the various problematic aspects characterizing the Human-Computer Interaction (HCI)
process. Among these problematic aspects, we primarily consider: the communication
gap between designers and users [1][2][3], due to the fact that users, HCI experts and
designers possess distinct types of knowledge and follow different approaches and
reasoning strategies for modeling, performing and documenting the tasks to be carried
out in a given application domain; tool grain [4], i.e. the system’s (or tool’s) tendency to
push users towards certain behaviors that are often alien to their habits; implicit

M. F. Costabile, D. Fogli, A. Marcante, P. Mussio, L. Parasiliti Provenza, A. Piccinno

2

information [2], embedded in user documents and notations; tacit knowledge users have
of the application domain [5]; the ample user diversity, present even in the same
community, as users are different in terms of culture, goals, tasks; the co-evolution of
systems and users [6] [7] [8]. The latter is of special interest in the overall life cycle of
the system, since it is well known that “using the system changes the users, and as they
change they will use the system in new ways” [9]. The system must then evolve to satisfy
the needs of the evolved user. As a consequence, software engineering paradigms are
changing in order to cope with system continuous evolution [10].

Co-evolution also requires a change in the personalization capabilities of interactive
systems, so that users can participate in the process by tailoring the system to their needs,
i.e. modifying the system in the context of its use, rather than development [11]. This
activity results in continuous adaptation of a system and, being performed by the final
users of applications, it exploits the potential benefits of task-oriented and skill-based
system adaptation that can only be made by end users. In order to tailor their systems,
users may create or modify software artifacts, i.e. they may perform End-User
Development (EUD) activities, which are currently attracting a lot of attention in many
research communities [12] [13].

Because of user diversity, systems designed for specific communities of users must
be customized by taking into account users’ culture, notations, and standard rules [14]
and so better supporting people in their specific field of activity. Such systems should
also be tailorable, to allow end users to adapt them more fully to their needs.

This work presents a novel approach to designing customized and tailorable visual
interactive systems. The approach is based on a new conceptual model that exploits the
workshop metaphor [15]: in the same way as artisans (joiners, blacksmiths, etc.) keep in
their workshops all the tools, and only those, necessary for their specific activities (lathes,
mills, etc.), users should find in their software environments, called Software Shaping
Workshops (SSWs), all the tools, and only those, needed to carry out their activities
supported by the computer system. The design of customized systems is achieved thanks
to the collaboration of several stakeholders - end users, HCI experts, software engineers -,
each contributing to the design, from her/his own point of view. To this end, each
stakeholder uses an SSW customized to her/his own culture, skills, background. The
system conceptual model yields a network of workshops, some used to perform the
activities required to accomplish tasks in the specific domain and work practices, and
some used to develop and customize other workshops in the network.

To overcome the communication gap, the conceptual model design is presented in
two different visual languages. On one hand, each workshop is specified using a visual
language customized to communicate the conceptual model to end users and HCI experts.
This visual language is specified in terms of a visual rewriting system, including rules
describing how the workshop evolves under the effect of user actions. On the other hand,
each workshop is specified using a visual language - the statechart visual language -
customized to communicate the conceptual model to software engineering implementers.
The sentences in this visual language specify control finite state automata, which are used

 Designing Customized and Tailorable Visual Interactive Systems

3

to express the rewriting rules in a notation understood by software engineers, who can
subsequently translate automata into programs. The two specifications are coherent and
complementary and are directly reflected in the implementation architecture that we
propose, based on XML technology.

The paper has the following organization. Section 2 provides some considerations
about the need for participatory approaches in the design of visual interactive systems;
End-User Development features are also emphasized, supporting the co-evolution of
users and systems. Section 3 describes the proposed conceptual model based on the
workshop metaphor. Section 4 presents the formal basis for system design. Section 5
describes the visual languages adopted to specify the systems for end users, HCI experts
and software engineers. Section 6 presents the approach to system implementation.
Section 7 discusses the related literature and Section 8 concludes the paper.

2. Recognizing the need for participatory design and End-User Development

The design of an interactive system requires more knowledge than is possessed by a
single software engineer or HCI expert. End users, for example, are the “owners of
problems”, and have a domain-oriented view and a knowledge of the processes to be
automated, which must be taken into account in the design. In turn, software engineers
have a knowledge of tools and techniques for system development and HCI experts have
a knowledge of system usability and human behaviour. They are necessary to the
development of the system because they are the only ones who can guarantee the
usability and performance of the system. All these experts must contribute their
experience to the design and implementation, but no one is more important than the
others. This means that the design must be developed by a team that has to include at
least software engineers, HCI experts and representatives of end users - called here
domain expert users. All of them must recognize: 1) that each member of the team
complements the ignorance of the others, 2) the need to reach a mutual understanding,
and 3) the need for peer collaboration [16].

In this view, end users play two roles: a) as domain experts they reason about their
own work activity and design their own work environment; b) as competent practitioners
they perform their work activities, finding solutions to their problems in their own
domain and possibly adapting virtual tools to their needs. For example, a physician, as a
competent practitioner, uses the system to carry out all the activities required to reach a
diagnosis in a specific case and, as a domain expert, participates in the design of the
interactive system that supports the diagnostic activity [14][15].

Once the system is in use, the design team will observe end user activities, the new
usages of the system, the new procedures induced by the evolving organization, and will
monitor end user complaints and suggestions about the system. On the basis of these
observations, the design team can update the system and sometimes also the underlying
software technologies. Co-evolution results, therefore, in a cyclic process, in which usage

M. F. Costabile, D. Fogli, A. Marcante, P. Mussio, L. Parasiliti Provenza, A. Piccinno

4

of the system induces an evolution in the user culture and organization, which in turn
induces an evolution of the system and of the technology.

Facing co-evolution is not an easy task, also because the end user population is not
uniform, but includes people with different cultural, educational, training, and
employment backgrounds, novice and experienced computer users, the very young and
the elderly, people with different types of disabilities. Moreover, these users operate in
various interaction contexts and scenarios of use and their aim is to exploit computer
systems to improve their work.

End users do not always perform repetitive activities; often, they are required to face
unforeseen situations, in which they need to create new procedures and tools or to adapt
existing procedures and tools to solve problems that cannot be predicted in advance. End
users are increasingly required to be able to produce their own software, developing
software artefacts in support of organizational tasks [17]. On the whole, end users need to
act as designers in some steps of their activities and as traditional users in others [18].

In literature, end-user programming and end-user computing are often used as
interchangeable terms, for example in [19], the authors discuss “enhancing editors with
end-user programming capabilities”. They also say that “end-user computing is needed
in domains or applications where the activity cannot be planned in advance” and that it
should have the flavor of “on-the-fly” computing, i.e., it should emerge during the user
activity, when the user needs to create a combination/repetition/abstraction construct, in
response to some concrete situation. Brancheau and Brown describe end-user computing
as "the adoption and use of information technology by people outside the information
system department, to develop software applications in support of organizational tasks"
[17].

An interactive system should be designed to support end users both when they are
simply using the interactive system and when they are acting as designers of their
software tools. These activities last throughout the life of the interactive system and,
therefore, the design team remains active for the whole life of the interactive system. In
this view, “End-User Development” denotes the set of methods, techniques and tools that
allows end users to create or modify the interactive system whenever necessary and can
support the continuous co-evolution of the system and its users [8][20].

3. The conceptual model

Our approach to the design of visual interactive systems that are customized to users’
needs, preferences, culture, skills, but also permit users to further tailor them, has
originated from observing professional people - mechanical engineers, geologists,
physicians - in their work practices. Software Shaping Workshops (SSWs) dedicated to
these end users are organized in analogy to an artisan workshop, i.e., a small
establishment where an artisan, such as a blacksmith or a joiner, manipulates raw
materials in order to manufacture artifacts; to this aim, the artisan equips her/his work
bench with only the tools needed.

 Designing Customized and Tailorable Visual Interactive Systems

5

Following the analogy, an SSW is designed as a virtual workshop, in which end users
find all the (virtual) tools, and only those, whose shape, behavior and management are
familiar to them. In the virtual workshop, a virtual bench is present on which the end user
can perform the desired activities. For each activity, s/he can select the tools best suited
to the performance. On the whole, the Software Shaping Workshop allows end users to
carry out their activities and adapt environment and tools without the burden of using a
traditional programming language, but using high level visual languages tailored to their
needs. While traditional artisans shape real supplies, end users shape software artifacts.
This is the reason why they are called Software Shaping Workshops.

To better illustrate the proposed approach, we refer herein to a case study in the
mechanical engineering field. The work is the result of our collaboration with a company
that produces systems for factory automation, to be sold to the company clients, who use
them in their work processes. In this scenario, the company must produce systems which
clients may customize according to the specific needs of their workers. The company has
the following needs: 1) to create systems for factory automation that are customized to its
clients, i.e. easy to learn, to use, and to adapt for experts in a given domain, different
from computer science and automation science; 2) to rely on software tools which
support the company personnel in the development, testing, and maintenance of such
systems. The company personnel is organized in different categories of people with
different responsibilities and skills, who need to perform various tasks with the software
tools. In our prototype, two software environments for this case study have been
developed: one devoted to assembly-line operators who control the automation systems
in the factory, and one that permits mechanical engineers to create the software
environment for assembly-line operators.

Fig. 1 shows the SSW devoted to an assembly line operator controlling a pick-and-
place robot, developed for a case study in the mechanical engineering field. Fig. 1a shows
the initial state of the system. The functionalities required by the assembly line operators
for such an environment include: different modalities of using the robot (automatic,
manual, diagnostic, setting, etc.), the possibility to choose among various tools to be
associated with the robot to modify its behavior and the task to perform and, finally, a
number of options to create annotations, get online help, save the work, etc. The robot
operation modality is chosen by clicking on one of the buttons in the upper button panel
in Fig. 1a; the tools to be associated with the robot may be selected from the archives of
pieces, engines, trajectories and grippers shown on the right side of the SSW; the
behavior of the machine is then shown in the work area in the center. For example, after
the button “Automatico” (“Automatic”) has been clicked, the system presents in this area
a schematic version of the robot, including the parts to be checked before its activity may
start (Fig. 1b). When the user clicks the button “avvia” (“start”), the robot starts in an
automatic modality. The user can thus observe in the working area that the engine
(“Motore”), the gripper (“Pinza”) and the piece (“Pezzo”) are checked. Finally, at the
bottom, a message area presents messages orienting the user during her/his interaction

M. F. Costabile, D. Fogli, A. Marcante, P. Mussio, L. Parasiliti Provenza, A. Piccinno

6

with the system and a button panel offers the options of annotation, help, saving, logging,
exiting.

The design methodology derived from the approach based on SSWs requires each
SSW to be able to exploit the language and notation adopted by the specific user
community to which it is addressed. In order to convey implicit information, data are
organized according to the user’s culture and work context, and tools are presented by
images, texts, or icons, expressive to the users of that particular domain. For example,
images of grippers and engines on the right side of figures 1a and 1b are meaningful to
practitioners in the automation systems field. Furthermore, each SSW enables actions that

(a)

(b)
Fig. 1. The SSW devoted to assembly-line operators.

 Designing Customized and Tailorable Visual Interactive Systems

7

resemble those in the traditional real contexts to be performed. For instance, in the
workshop devoted to assembly-line operators, users may push buttons to start the
machine and to control its subsequent operation. In this way, users are facilitated by
being able to exploit their tacit knowledge while performing their work task.

The methodology emphasizes a meta-design perspective [21], which goes beyond,
but includes user-centered design and participatory design [22]. Meta-design, consists in
the design of workshops that end user representatives may use to design for themselves
the workshops for end users. This can bridge the communication gap between end users,
HCI experts and software designers, and support co-evolution. Moreover, involving end
users in system design permits the development of software environments that do not
speak a computer-oriented language and do not induce tool grains [4]. The users
themselves are aware of the needs, background, skills and habits of the community they
belong to and may build environments that are more acceptable than those directly
created by software engineers. As already mentioned in the previous section, end users
play two main roles in the lifecycle of interactive software systems: 1) they perform their
work tasks; 2) they participate in the development of software environments as
stakeholders of the domain. In the first role, end users interact with a type of SSWs,
called application workshops. During the use of an application workshop, the users can
tailor it according to their preferences and working needs. For example, the SSW devoted
to assembly-line operators (Fig. 1) can be tailored to make the robot perform different
trajectories or manufacture different products, but also to manage different kinds of
robots. In the second role, as members of the design team, end users participate directly
in the development and customization of application workshops using different
workshops, called system workshops. Referring to our case study, Fig. 1 shows the
application workshop developed for the assembly line operator through the system

Fig. 2. A screenshot of the system workshop devoted to mechanical engineers.

M. F. Costabile, D. Fogli, A. Marcante, P. Mussio, L. Parasiliti Provenza, A. Piccinno

8

workshop shown in Fig. 2. Such a SSW is a software environment customized to the
culture and background of mechanical engineers (domain experts), which makes it
possible both to generate and update or customize application workshops just by direct
manipulation, through simple drag-and-drop activities. The screenshot in Fig. 2 was taken
during the interaction of a domain expert who was creating the application workshop
shown in Fig. 1. The application workshop in the figure is partially composed. The
mechanical engineer was positioning a new button (“Diagnostica”) on the upper button
panel and changing its position by simply moving the visual object.

In the SSW methodology, the concept of the system workshop is general: actually,
system workshops are developed to allow the members of each community involved in
the design and validation of the system to participate in this activity. For example, system
workshops for HCI experts and software engineers are used. Each member of the design
team can examine, evaluate and modify an application workshop using tools shaped to
her/his culture. In this way, this approach yields a workshop network that aims to
overcome the differences in language among the experts of the different disciplines
(software engineering, HCI, application domain), who can cooperate to develop computer
systems customized to the needs of the user communities.

The SSW network is structured so that the different stakeholders can participate in the
application workshop’s design, implementation, and use without being disoriented. In
general, a network is organized in levels (Fig. 3). At each level, one or more workshops

Fig. 3 The network of SSWs.

 Designing Customized and Tailorable Visual Interactive Systems

9

can be used, which are connected by communication paths. Fig. 3 presents a generic
workshop network including three levels:

a) the meta-design level, where software engineers use a system workshop, called W-
SE, to prepare the tools to be used and to participate in the design, implementation, and
validation activities;

b) the design level, where HCI experts and domain experts cooperate in the design,
implementation, and validation of application workshops; a design member belonging to
the community X uses a system workshop W-ReprX, created by the software engineers
and customized to the needs, culture and skills of community X; the various experts
design customized application workshops and also tailor their own system workshop;

c) the use level, where end users cooperate to achieve a task, using application
workshops customized to their needs, culture, and skills: end users belonging to the
community X participate in task achievement using the application workshop W-End-
UserX customized to their needs, culture, and skills [8] [15].

As far as SSW adaptation is concerned, at the meta-design and design levels the
customization of SSWs to be used at the next levels is performed. At the use level, end
users may tailor their application workshop to their own needs and preferences.

The proposed conceptual model includes all the SSWs organized in a network. On the
whole, both meta-design and design levels include all the system workshops that support
the design team in performing the activity of participatory design. Such system
workshops can be considered User Interface Development Environments (UIDEs) [23].
The novel idea is that the UIDEs used by domain experts are very much oriented to the
application domain and have specific functionalities, so that they are easy for domain
experts to use.

4. Software Shaping Workshop design

Model-based approaches to HCI attempt to identify a unifying framework - a model - to
describe the interaction process. The model is used to identify the causes of usability
difficulties affecting interactive systems. An HCI model can thereafter be used to derive
design procedures, which allow the implementation of systems in which these difficulties
are eliminated or at least reduced. The work presented here is based on the model of the
HCI process and on the theory of visual sentences developed in [24]. In that approach,
HCI is modelled as a process in which systems of different natures (the cognitive human
- the ‘mechanical’ machine) cooperate to achieve a task. From this point of view, HCI is
a process in which user and computer communicate by materializing and interpreting a
sequence of messages at successive instants in time. The characterizing aspect of such a
HCI model is the recognition of two interpretations of the exchanged messages: one
performed by the human based on the human’s cognitive criteria, and the other by the
computer based on the programs implemented by the designers.

In WIMP interaction, a message exchanged between the user and the computer is the
whole image i represented on the computer screen, formed by texts, pictures, icons, etc.

M. F. Costabile, D. Fogli, A. Marcante, P. Mussio, L. Parasiliti Provenza, A. Piccinno

10

Humans look at the screen and interpret the visual message - the image - currently shown
by the computer within the context of their activity, by recognizing characteristic
structures, css, i.e., sets of pixels representing functional or perceptual units for the
humans (e.g., the button “Automatico” shown in Fig. 1). On the machine side, each
characteristic structure, cs, is the physical manifestation of an entity, referred to as a
virtual entity, which exists because the computer interprets a program P specifying its
appearance and behavior. A virtual entity (ve) is a virtual dynamic open system. It is
virtual in that it exists only as the result of the execution of the program P by a computer;
dynamic in that its behaviour evolves over time; open in that its evolution depends on its
interaction with the environment. The program P, whose execution creates and maintains
active a virtual entity ve, is composed of a set of programs: some of which, In (Input)
programs, acquire the input events for the ve generated by the user actions; some, AP
(APplication) programs, compute the ve reactions to these events; and some, Out
(output) programs, materialize the ve reactions by showing the characteristic structure
representing the new state of the ve to be shown to the user. The program P synthesizes
how the designers understand the activities to be performed.

The ve state is defined as a characteristic pattern cp=<cs, u, <intcs, matcs>>,
where intcs (interpretation) is a function, mapping the current cs of the ve into the
current computational state u of the program AP and matcs (materialization) is a
function mapping u into cs.

The user interprets a characteristic structure cs (of a ve) within the image i and
produces her/his messages by performing an operation on the cs through the input
devices available in the computer at hand. On the other side, the computer, captures input
events generated by user actions and reacts by providing a visual feedback allowing the
human to evaluate the correctness of the action being performed.

An interactive system (an SSW in our terminology) is constituted by virtual entities
interacting with one another and with the user through the I/O devices. The user sees the
SSW as a whole ve, whose computational state u is materialized at each instant as an
image i on the screen. This association can be specified as a triple vs=<i, u, <int, mat>>,
where i is the array of pixels constituting the current image, u is a suitable description of
the current state of the process determining the reaction of the whole system to user
activities, int and mat are two functions relating elements of i with components of u. This
triple is called a visual sentence (vs) in [24], and specifies the state of the whole virtual
entity (i.e. the whole SSW). More details on this model can be found in [25].

5. Design specification

The design activity results in two kinds of specification. The first one exploits a notation
(a visual language) understandable by end users (then also by HCI experts), based on the
visual elements which should appear on the screen as a consequence of user actions and
computer reactions. The second kind of specification exploits another visual language

 Designing Customized and Tailorable Visual Interactive Systems

11

that conforms to software engineers’ experience and background, and it is used as starting
point for the implementation activity.

5.1. Specification for end users and HCI experts

Being the state of the virtual entity representing a whole SSW a visual sentence, the set of
admissible states of a SSW is a set of vss. Visual sentences result from the composition
of simpler characteristic patterns, i.e. of the states of the virtual entities composing the
SSW.

The design activity aims at specifying the set of vss of a SSW and the
transformations between vss. It is thus necessary to define first a finite set (visual
alphabet) of cp prototypes, whose instances may be composed to form vss [26]. More
precisely, a cp prototype is the initial state of a virtual entity composing the SSW, from
which it is possible to obtain all the other states (cps) of the virtual entity as a result of
the interaction with the user or with other ves. The visual alphabet is designed in a
participatory way by all stakeholders, and is based on user language and notation. Next, a
Visual Conditional Attributed Rewriting system (vCARW) [24] must be defined on the
visual alphabet. A vCARW system contains a set R of visual rewriting rules, which are
used to transform a visual sentence vs1 into another visual sentence vs2, by introducing
new cps or modifying existing ones.

VCARWs are characterized by rules in which only the pictorial part is made explicit
to the design team, that includes end users and HCI experts, besides software engineers.
Therefore, the physical appearance – i.e. topology, geometry and shape – of each cs
involved in the rewriting step is defined. On the other hand, the computational meaning
of the rules is described in a textual form, or by animations or prototypes, while the
technical details about the internal representation of the rules are not explicitly discussed
at this stage of development.

The rewriting rules are exploited to specify how the interaction process evolves. In
each state of the interaction a finite number of user activities can be performed. As a
consequence of a user activity, a visual sentence vs1 is transformed into a visual sentence
vs2. The interaction process is specified as a sequence of such transformations. For
example, the visual sentence whose image part is in Fig. 1a is transformed into the visual
sentence whose image part is in Fig. 1b, as a consequence of the user clicking the button
“Automatico”.

In a transformation, vs1 and vs2 share a common part, while the variable part of vs1 is
transformed into the variable part of vs2 through the application of a transformation rule
in the form tr: <a, r>, where a is the user activity and r is a rewriting rule in R.

M. F. Costabile, D. Fogli, A. Marcante, P. Mussio, L. Parasiliti Provenza, A. Piccinno

12

Fig. 4 shows the pictorial part of the transformation rule that fires when the user
clicks the button “Automatico” while interacting with the application workshop shown in
Fig. 1. The user activity is specified as a pair a=<op, cs>, where op is a physical
operation performed by the user (a mouse click in this case) and cs is the set of pixels to
which op is referred. The visual rewriting rule defines which css are transformed from
one state to the other: in this case, they are three disjointed sets of pixels denoting the
resources required to apply the rule. The computational meaning of the rule may be
described as follows: the state of the button “Automatico” changes from non selected to
selected; the state of the working area changes in order to present a schematic depiction
of the composition of the robot; the state of the button panel under the working area
changes by presenting the operators needed to start and check the robot. This actually
means that the states of three virtual entities change, and, as a whole, the system reaches
a state in which it is possible to start the machine in the automatic modality and observe
the ongoing automatic check process.

In summary, each SSW is formally designed in a collaborative way by software
engineers, HCI experts and end users by specifying: 1) a visual alphabet of cp
prototypes; 2) an initial state, vs0, of the workshop, which is instantiated when the user
first accesses the system; 3) a set of rewriting rules R; 4) a set of transformation rules
TR. Even though the computational meaning of transformation rules is also discussed by
stakeholders verbally or through prototypes, this kind of specification focuses more on
the visual aspects of the system transformations.

5.2. Specification for software engineers

The four design components described above can be specified in a program-oriented way
by using Control Finite State Machines. We use Harel’s statecharts [27] to specify a SSW
as a complex virtual entity. The hierarchical structure of an SSW, obtained in terms of ve
composition, can be easily specified by statecharts permitting the modeling of systems at
different levels of abstraction.

Fig. 4. The pictorial part of a transformation rule.

 Designing Customized and Tailorable Visual Interactive Systems

13

In the case of SSWs, according to the level of abstraction adopted for the description,
the states of the statechart may represent classes of equivalent vss or instances of vss,
which are in turn compositions of cps [25]. For example, Fig. 5 shows a portion of the
statechart specifying the application workshop devoted to assembly-line operators at the
highest level of abstraction. The states of this statechart are classes of visual sentences:
for instance, the state “Login” is the class of the visual sentences associated with the
login screen shot. Once both login and password have been filled and “Insert” is selected,
a new screen shot appears, changing the class of visual sentences representing the next
state of the SSW. The transitions from one state to another occur as a consequence of
user activities, namely of operations performed with reference to some css included in
the image part of the current visual sentence. For example, in Fig. 5, “select
DoAutomatic” refers to a selection activity performed on the button “Automatico”, i.e. a
mouse click on the cs of this virtual entity.

The transformation rules are thus translated into the transition and output functions of
the statechart. In a transformation rule <a, r>, user activity a is the input event firing a
transition, r is the rewriting rule to be applied, and thus it specifies which will be the next
state in the statechart to be reached (transition function) and which computational activity
will be activated (output function) [25].

This kind of specification lays more emphasis on the computational meaning of
transformations and easily drives software engineers during the SSW implementation.

6. System implementation

The workshops in a SSW network are implemented as IM2L programs. IM2L (Interaction
Multimodal Markup Language) is an XML-based language that provides the rules for the
definition of the virtual entities that compose the SSW: its markup tags encode a
description of the storage organization and logical structure of the virtual entities. In the
following, we call IM2L fragment a piece of an XML document identifying a virtual
entity, be it elementary or complex. For example, the virtual entity “button” will be

Fig. 5. A portion of the statechart specifying the SSW devoted to assembly-line operators.

M. F. Costabile, D. Fogli, A. Marcante, P. Mussio, L. Parasiliti Provenza, A. Piccinno

14

defined by the text included within the opening tag <button> and the closing tag
</button>. As shown in Fig. 6, an IM2L program includes some XML-based or XML-
compliant (ECMAscript) documents and is interpreted by a web browser (see tick
arrows), which coordinates the activities of a standard XML processor, an ECMAscript
interpreter and an SVG viewer. SVG is the W3C standard for vector graphics [28].

In particular, an IM2L program implementing a workshop includes (see Fig. 6):
a) a Starter SVG. This is the starter system linking the IM2L document with its

interpreter;
b) an IM2L document, composed of one or more IM2L fragments specifying the

contents and the logical structure of the workshop and of the ves composing it;
c) the set of SVG prototypes, specifying the physical materialization of the ves and

their topological relations;
d) the set of instantiation functions, which are used to instantiate the SVG

prototypes with the information included in the IM2L document, to compute
their materialization features, such as geometry, color, appearance. The result of
the instantiation is used by the viewer to establish the whole image on the
screen;

e) the set of interaction managing functions, which implement the transformation
rules of virtual entities defined in the design phase. They manage the interaction
of the user with the workshop, possibly re-calculating the topological and
geometrical features of virtual entities whenever their appearance or position
must be modified or starting some computational activity in reaction to the user
action.

Details about the initial state instantiation within the web browser of a SSW and how
the interaction with it occurs can be found in [29]. Herein, we would like to underline the
direct mapping existing between the design specification and the implementation.

Fig. 6. The web-based architecture of a system workshop and the generation of a daughter workshop.

 Designing Customized and Tailorable Visual Interactive Systems

15

The IM2L document contains the description of the initial states of the ves composing
the SSW: actually, it specifies the vs0 of the SSW independently of its materialization.
Materialization details are specified in the SVG prototypes, and the instantiation
functions permit the creation at runtime of the vs0 of the SSW by combining the
information present in the IM2L document and in the SVG prototypes.

The interaction managing functions implement the transformation rules: the
interaction of the user with the current state of the SSW means that a particular ve
composing the SSW receives an input event and that a related function is called. Such a
function may react by: 1) transforming the current state (cpi) of the ve into another state
(cpi+1) so transforming the current state of SSW (vsi) into another state (vsi+1), being a
composition of the cps of the active ves; 2) generating a new ve in its initial state cp0, so
transforming the current state of SSW (vsi) into another state (vsi+1) by adding a new cp
to vsi.

We will now discuss the generation of a daughter workshop while interacting with a
system workshop. To this end, two special archives of data are exploited. These archives
contain IM2L fragments defining the virtual entities that the user will select to compose
daughter workshops, and the interaction managing functions implementing the
transformation rules of such virtual entities (see top left of Fig. 6). The IM2L program
implementing a daughter workshop is thus generated by the IM2L program, implementing
a system workshop in the following way:
(1) The archives containing the SVG prototypes and the instantiation functions are

simply replicated. The underlying hypothesis is that only software engineers are in
charge of preparing such kinds of information, since they are written using
computer-oriented languages that are not easily manageable by end users and HCI
experts.

(2) The IM2L document is generated as a consequence of the selection of virtual entities
from those available in suitable repositories and their combination into complex
virtual entities, up to the whole workshop. The user interacts with the system
workshop by direct manipulation, dragging virtual entities from repositories
visualized on the screen to the working area (see Fig. 2); as a consequence, the
IM2L fragments defining the selected virtual entities are automatically searched for
in the external archive of IM2L fragments.

(3) The interaction managing functions of the daughter workshops are also searched for
in the data archive as a consequence of the virtual entities selection: in fact, they
implement the activities to be performed when the user interacts with the virtual
entities in the daughter workshop, so links to them are present in the IM2L
fragments defining the virtual entities. All interaction managing functions linked to
the IM2L fragments, chosen during the daughter workshop composition, are
therefore included in the archive of interaction managing functions.

(4) The starter SVG is generated in the saving phase of the daughter workshop to permit
the initial loading of the IM2L document into the browser.

M. F. Costabile, D. Fogli, A. Marcante, P. Mussio, L. Parasiliti Provenza, A. Piccinno

16

7. Related work

Many researchers in HCI and Software Engineering (SE) have studied and tried to solve
the communication gap existing between users and software designers. As already said,
such stakeholders possess distinct types of knowledge and follow different approaches
and reasoning strategies for modelling, performing and documenting the tasks to be
carried out in a given application domain: users do not understand designers’ jargon and
designers in general do not understand the user’s specific domain jargon [15]. It is
important to notice that HCI experts, often called upon to represent user views in the
design, own a specific knowledge themselves, which is not that of the users or of
software designers [30]. Only users are able to read the screen thanks to their tacit
knowledge, and understand what is misleading or difficult to interpret for them, but they
are not able to think as HCI experts or propose adequate HCI solutions [31]. Neither
users nor HCI experts can evaluate the technical consequences of their proposals nor the
influence of the adopted technologies, i.e. they are not able to think as software engineers
[1]. The loop is closed by software engineers, who know the technology, but in turn have
difficulties in thinking as users or HCI experts. As emphasized by activity theory studies,
the implicit knowledge is embedded in the tools and notations users adopt: tools and
notations that depend on the context of activity and work organization [32].

SE and HCI experts are aware of the gaps existing among them and of the need to
communicate and share their different points of view during the VIS design process.
Lauesen [30] proposes the virtual window method, an early graphical realization of the
data presentation to bridge the gap between software engineers and HCI experts. Folmer
et al. [33] propose bridging patterns, which describe a usability design solution and
consist of a user interface part and an architecture/implementation part. Borchers [34]
recognizes the need to capture the knowledge of end users, together with HCI and SE
expertise, by forging a lingua franca that makes the design experience understandable by
domain experts, HCI experts and software engineers. He proposes a pattern framework in
which three design pattern languages are used to bridge the gaps: the first describes the
application domain, the second leads from domain and task analysis to interaction design
and the third proposes software design solutions for the interactive system. The languages
are formally structured in a hypertext graph notation, which underlies the definition and
organization of the three pattern languages. Following this view, our approach to system
modelling and design is based on the definition and use of at least two visual languages,
one devoted to end users and HCI experts and the other to software engineers, each one
permitting to specify the process of user-system interaction from a different point of
view. The languages are not independent because they link the user views and jargons to
the software engineer views and jargons, thus bridging the communication gap.

Sketching and modeling are integral features of the design process, critical for both
the generation of ideas, and the communication of concepts to others for discussion and
evaluation, particularly in the context of human-centered design. For this reason, a lot of
interest has recently been devoted to Rapid Prototyping (RP) techniques, although in fact

 Designing Customized and Tailorable Visual Interactive Systems

17

RP has been a research topic of HCI researchers for more than 20 years [35]. Rapid
prototyping is extensively used in Computer-Aided Design (CAD) and refers to a class of
technologies that can automatically construct physical models from CAD data.

In the software engineering field, rapid prototyping offers a means to explore the
essential features of a proposed system [36], [37], promoting early experimentation with
alternative design choices and allowing engineers to pursue different solutions without
any efficiency concerns [38]. Today, while there have been advances in the tools used,
user interface prototyping remains the most effective way to gather requirements,
communicate concepts between developers and users and evaluate usability in a cost-
effective manner. RP is useful in software engineering to show the developed prototypes
to the customers, but professional software tools are required to develop such prototypes,
which are not suitable for use by end users. Each software environment developed
according to the SSW methodology actually adopts RP techniques, but it is designed and
developed to be suitable for end users who are professional people, but not experts in
computer science.

In cooperative prototyping [39], prototyping is viewed as a cooperative activity
between users and designers. Prototypes are developed by software engineers, then
discussed with users, and possibly experienced by them in work-like situations. Prototype
modifications may be made immediately by direct manipulation, also by users, during
each session of participatory design. However, in this approach prototypes just represent
an interactive digital evolution of paper-based mockups: real systems are then re-
programmed and all modifications require a heavy programming effort, and are
postponed and made by designers after each session.

In the SSW methodology, prototyping is also viewed as a cooperative incremental
activity; in which the stakeholders participate in the actual development of the final
system. Each stakeholder operates on prototypes according to their own view, through the
use of SSWs. Moreover, end users are allowed to tailor their own SSW at run time.

Adaptation is currently a fundamental requirement in software systems. Adaptation is
understood in the SSW methodology as the result of customization and tailoring of the
workshops, both characterized by the explicit activity of the user; in literature the users’
possibility to adapt the system to their needs is called adaptability [40], while adaptivity
is the system’s capability to automatically adapt itself to each individual end user [4][41].
In a workshop network, two different user populations participate to adapt a workshop:
the domain experts in the design team, which use system workshops at design level, and
end users, which use application workshops at use level. The term “customization”
denotes the activity performed by the design team to develop application workshops for a
specific community of users and the term “tailoring” denotes the activity performed by
end users to adapt the system at run time to their current activity and context of work.

The SSW methodology emphasizes the need to develop different software
environments for end users working in the same domain with different roles. Similarly,
DAISY (Design Aid for Intelligent Support System) is a design methodology for building
decision support systems in complex, experience-centered domains [42]. It provides a

M. F. Costabile, D. Fogli, A. Marcante, P. Mussio, L. Parasiliti Provenza, A. Piccinno

18

technique for identifying the specialized needs of end users within a specific range of
domain experience. In this sense, DAISY is a design methodology supporting the
development of customized systems. In other domains, systems can have multiple end
users with multiple roles. As an example, DIGBE (Dynamic Interaction Generation for
Building Environments) is a system that creates end-user interfaces adapted to the
multiple end users with different roles that collaborate to the management of a building
control system [43]. Unlike software shaping workshops, software environments created
using DIGBE are adaptive systems.

Software technology has advanced to the point where we can build tools end users
can adopt to design systems by interacting with icons and menus in graphical micro
worlds. Several researchers working on EUD have capitalized on this, and described
technologies for component-based design environments, libraries of patterns, and
templates (e.g. [11]). There are various proposed design environments that do not require
users to program per se; instead, they design by instructing the machine to learn from
examples [44]. From this perspective, system workshops devoted to domain experts
permit the creation of programs just by visually composing virtual entities selected from
repositories, as described in our case study in the mechanical engineering field.

8. Conclusions and discussion

The paper describes a design methodology for customized and tailorable visual
interactive systems, that exploits the artisan’s workshop metaphor. The emphasis on the
proposed conceptual model and its relationship with the formal design are the novelties
of this paper, which capitalizes on work previously performed by some of the authors
(e.g., [15][24]). The objective of our work is to generate interactive systems that better fit
users’ needs and expectations. For this reason, our approach takes into account various
problematic aspects of the Human-Computer Interaction process.

The users involved in the case study described in the paper understood and
appreciated the novel approach of being involved in collaborative design processes,
through which they can have a more active role than that of simple consumers of new
technologies. The chance of having software environments that they can easily adapt to
their needs is a new perspective that excited them very much. The results we have
obtained so far, by observing people using the developed prototypes and collecting their
comments and observations, are a clear sign that this approach may also determine an
increase in end user productivity and performance, as well as more pleasure and fun in
their overall experience with new technology.

The implementation architecture, supporting the recursive generation of SSWs as web
applications, is also a novel proposal in the field.

Acknowledgements

The authors wish to thank G. Fresta for his contribution to the implementation of the
prototypes. We are grateful to ETA Consulting in Brescia (and particularly to S. Biazzi)

 Designing Customized and Tailorable Visual Interactive Systems

19

for collaboration in the case study. We also wish to thank Ms M.V. Pragnell, B.A. for her
help in correcting the English. This work was partially supported by the Italian MIUR
and by EU and Regione Puglia under grant DIPIS.

References

1. D.J. Majhew, Principles and Guideline in Software User Interface Design (Prentice Hall,
Englewood Cliffs, NJ, 1992).

2. P. Mussio, E-Documents as tools for the humanized management of community knowledge,
Keynote Address in Proc. ISD 2003, Melbourne, AUS, 2003.

3. E. Folmer, M. van Welie, and J. Bosch, Bridging patterns: An approach to bridge gaps
between SE and HCI, Journal of Information and Software Technology 48(2) (2005), 69-89.

4. A. Dix, J. Finlay, G. Abowd, and R. Beale, Human Computer Interaction (Prentice Hall,
London, UK, 1998).

5. M. Polanyi, The Tacit Dimension (Rouledge & Kegan Paul, London, UK, 1967).
6. J.M. Carroll, and M.B. Rosson, Deliberated Evolution: Stalking the View Matcher in design

space. Human-Computer Interaction 6(3 and 4) (1992) 281-318.
7. G. Bourguin, A. Derycke, and J.C. Tarby, Beyond the Interface: Co-evolution inside

Interactive Systems - A Proposal Founded on Activity Theory, in Proc. IHM-HCI 2001.
8. M.F. Costabile, D. Fogli, A. Marcante, and A. Piccinno, Supporting Interaction and Co-

evolution of Users and Systems, in Proc. AVI 2006, Venezia, Italy, 2006, pp. 143-150.
9. J. Nielsen, Usability Engineering (Academic Press, San Diego, CA, 1993).

10. V. Rajlich, Changing the paradigm of software engineering, Communications of ACM 49(8)
(2006) 67-70.

11. A.I. Mørch, and N.D. Mehandjiev, Tailoring as Collaboration: The Mediating Role of
Multiple Representations and Application Units, Computer Supported Cooperative Work, 9(1)
(2000) 75-100.

12. H. Liberman, F. Paternò, and V. Wulf (Eds.), End User Development (Springer, Dordrecht,
The Netherlands, 2006).

13. A. Sutcliffe, and N. Mehandjiev (Guest Editors), End-User Development, Communications of
the ACM 47(9) (2004) 31-32.

14. M.F. Costabile, D. Fogli, R. Lanzilotti, P. Mussio, and A. Piccinno, Supporting Work Practice
through End User Development Environments, Journal of Organizational and End User
Computing 18(4) (2006) 43-65.

15. M.F. Costabile, D. Fogli, P. Mussio, and A. Piccinno, End-User Development: the Software
Shaping Workshop Approach, in End User Development, eds. H. Liberman, F. Paternò, and V.
Wulf, (Springer, Dordrecht, The Netherlands, 2006), pp. 183-205.

16. H. Rittel, Second-Generation Design Methods, in Developments in Design Methodology, ed.
N. Cross, (John Wiley & Sons, New York, 1984), pp. 317-327.

17. J.C. Brancheau, and C.V. Brown, The Management of End-User Computing: Status and
Directions, ACM Computing Surveys 25(4) (1993) 437-482.

18. G. Fischer, Beyond 'Couch Potatoes’: From Consumers to Designers and Active Contributors,
FirstMonday (Peer-Reviewd Journal on the Internet),
http://firstmonday.org/issues/issue7_12/fischer/.

19. M. Balaban, E. Barzilay, and M. Elhadad, Abstraction as a Means for End-User Computing in
Creative Applications, IEEE Trans. on Systems, Man, and Cybernetics - Part A, 32(6) (2002)
640-653.

20. EUD-Net Thematic Network, http://giove.cnuce.cnr.it/eud-net.htm.

M. F. Costabile, D. Fogli, A. Marcante, P. Mussio, L. Parasiliti Provenza, A. Piccinno

20

21. G. Fischer, and E. Giaccardi, Meta-Design: A Framework for the Future of End-User
Development, in End User Development, eds. H. Liberman, F. Paternò, and V. Wulf,
(Springer, Dordrecht, The Netherlands, 2006), pp. 427-457.

22. D. Schuler, and A. Namioka, Preface, Participatory Design, Principles and Practice,
(Lawrence Erlbaum Ass. Inc., Hillsday vii, NJ, 1993).

23. J. Preece, Human-Computer Interaction (Addison-Wesley Longman Ltd, Essex, UK, 1994).
24. P. Bottoni, M.F. Costabile, and P. Mussio, Specification and Dialogue Control of Visual

Interaction through Visual Rewriting Systems, ACM TOPLAS. 21(6) (1999) 1077-1136.
25. D. Fogli, A. Marcante, P. Mussio, L. Parasiliti Provenza, and A. Piccinno, A., Multi-facet

Design of Interactive Systems through Visual Languages, in Visual Languages for Interactive
Computing: Definitions and Formalization, ed. F. Ferri, (Idea Group Inc. Publication, in
print).

26. B.A. Myers, and B.Vander Zanden, Environment for rapidly creating interactive design tools,
The Visual Computer; International Journal of Computer Graphics 8(2) (1992) 94-116.

27. D. Harel, On visual formalisms, Communications of the ACM, 31(5) (1988) 514-530.
28. W3C: Scalable Vector Graphics (SVG), http: //www.w3.org/Graphics/SVG/.
29. D. Fogli, G. Fresta, A.. Marcante, and P. Mussio, IM2L: A User Interface Description

Language Supporting Electronic Annotation, in Proc. Workshop on Developing User Interface
with XML: Advances on User Interface Description Languages, Gallipoli (LE), Italy, 2004,
pp. 135-142.

30. S. Lauesen, User Interface design - A software engineering perspective (Addison-Wesley,
2005).

31. D.A. Norman, Human-centered design considered harmful. Interactions 12(4) (2005) 14-19.
32. K. Kuutti, Activity Theory as a Potential Framework for Human-Computer Interaction, in

Context and Consciousness: Activity Theory and Human Computer Interaction, ed. B. Nardi,
(MIT Press, Cambridge, MA, 1995), pp. 17-44.

33. E. Folmer, M. van Welie, and J. Bosch, Bridging patterns: An approach to bridge gaps
between SE and HCI, Journal of Information and Software Technology, 48(2) (2005) 69-89.

34. J. Borchers, A pattern approach to interactive design (John Wiley & Sons Ltd., Chichester,
UK, 2001).

35. M. Helendar (Ed.), Handbook of Human Computer Interaction (Elsevier Press, Amsterdam,
North-Holland, 1987).

36. W. Hasselbring, Programming Languages and Systems for Prototyping Concurrent
Applications, ACM Computing Surveys 32(1) (2000) 43–79.

37. Luqi, Computer Aided System Prototyping, in Proc. 1st Int’l Workshop on Rapid System
Prototyping, Los Alamitos, CA, USA, 1992, pp. 50-57.

38. R. Budde, K. Kuhlenkamp, L. Mathiassen, and H. Zullighoven (Eds.), Approaches to
Prototyping (Springer-Verlag, New York, NY, USA, 1984).

39. S. Bødker, and K. Grønbæk, Design in action: From prototyping by demonstration to
cooperative prototyping, in Design at work: Cooperative design of computer systems, eds. J.
Greenbaum, and M. Kyng (Lawrence Erlbaum Associates, 1991), pp. 197-218.

40. M. Krogsæter, R. Oppermann and C. G. Thomas, A User Interface Integrating Adaptability
and Adaptivity, in Adaptive User Support. Ergonomic Design of Manually and Automatically
Adaptable Software, ed. R. Oppermann, (Lawrence Erlbaum Associates, Hills dale, NJ, 1994),
pp. 97-125.

41. L. Findlater, and J. McGrenere, A comparison of static, adaptive, and adaptable menus, in
Proc. of ACM CHI 2004, Vienna, Austria, 2004, pp. 89-96.

42. C.B. Brodie, and C.C. Hayes, DAISY: A Decision Support Design Methodology for Complex,
Experience-Centered Domains, IEEE Trans. on Systems, Man, and Cybernetics - Part A 32(1)
(2002) 50-71.

 Designing Customized and Tailorable Visual Interactive Systems

21

43. R.R. Penner, and E.S. Steinmetz, Model-Based Automation of the Design of User Interfaces to
Digital Control Systems, IEEE Trans. on Systems, Man, and Cybernetics - Part A 32(1) (2002)
41-49.

44. H. Lieberman, Your Wish is My Command: Programming by Example (Morgan Kaufman, San
Francisco, CA, 2001).

