]

NORTH-HOLLAND

Evaluating Predictive Quality Models Derived from
Software Measures: Lessons Learned

Filippo Lanubile

Department of Computer Science, University of Maryland, College Park, Maryland

Giuseppe Visaggio

Dipartimento di Informatica, University of Bari, Bari, Italy

This paper describes an empirical comparison of sev-
eral modeling techniques for predicting the quality of
software components early in the software life cycle.
Using software product measures, we built models
that classify components as high-risk, i.e., likely to
contain faults, or low-risk, i.e., likely to be free of
faults. The modeling techniques evaluated in this study
include principal component analysis, discriminant
analysis, logistic regression, logical classification mod-
els, layered neural networks, and holographic net-
works. These techniques provide a good coverage of
the main problem-solving paradigms: statistical analy-
sis, machine learning, and neural networks. Using the
results of independent testing, we determined the
absolute worth of the predictive models and compare
their performance in terms of misclassification errors,
achieved quality, and verification cost. Data came from
27 software systems, developed and tested during
three years of project-intensive academic courses. A
surprising result is that no model was able to effec-
tively discriminate between components with faults
and components without faults. © 1997 Elsevier Sci-
ence Inc.

1. INTRODUCTION

The construction of predictive systems is one of the
main purposes of software measurement. Predictive
systems have been built from product metrics by
applying different kinds of modeling techniques.

Filippo Lanubile is on sabbatical from University of Bari.

Address correspondence to Filippo Lanubile, Department of Com-
puter Science, A.V. Williams Building, University of Maryland, Col-
lege Park, MD 20742.

J. SYSTEMS SOFTWARE 1997; 38:225-234
© 1997 Elsevier Science Inc. All rights reserved.
655 Avenue of the Americas, New York, NY 10010

Multiple linear regression analysis has been used to
predict the number of corrective changes (Khosh-
goftaar et al., 1992; 1993). Discriminant analysis has
been applied to detect fault-prone modules (Munson
and Khoshgoftaar, 1992; Khoshgoftaar et al., 1996).
Logistic regression has been used for modeling to
identify high-risk components (Briand et al., 1993a;
1993b). Principal component analysis has often been
used to improve the accuracy of discriminant models
(Munson and Khoshgoftaar, 1992; Khoshgoftaar
et al,, 1996) or regression models (Briand et al,
1993a; 1993b; Khoshgoftaar et al., 1993). Logical
classification models have been used extensively to
identify high-risk modules (Selby and Porter 1988;
Porter and Selby, 1990; Briand et al., 1993a; 1993b;
Porter 1993) and reusable software components
(Esteva and Reynolds, 1991). Layered neural net-
works have already been applied to building reliabil-
ity growth models (Karunanithi et al., 1992a; 1992b),
to predicting the gross change (Khoshgoftaar and
Szabo, 1994), and the degree of reuse (Boetticher
et al.,, 1993). Holographic networks, a nonconnec-
tionist type of neural network, have been proposed
for predicting software quality (Lanubile and Visag-
gio, 1994). Empirical investigations have not yet
been performed in the software engineering field
but have in other areas, such as financing (Soucek et
al., 1994) and manufacturing (Jensen, 1994).

Many of the past studies have focused on predict-
ing the presence of faults early in the software life
cycle. Being able to know just after the coding
phase, or even design phase, which parts are more
subject to fail, allows software managers to focus
their resources on inspecting or testing those error-

0164-1212,/97 /$17.00
PII S0164-1212(96)00153-7

226 J. SYSTEMS SOFTWARE

1997; 38:225-234

prone components. The expected benefit is to achieve
a more reliable product at a lower cost. However, all
the studies have applied a very few candidate tech-
niques (usually two or three). Furthermore, we can-
not directly compare the results across the studies
because of the lack of common evaluation criteria.

Theories and models become accepted by the
scientific communities when different researchers
obtain the same results running independent empiri-
cal studies. Thus, we began this study with the goal
of externally replicating these past studies, and thus,
to understand which modeling technique, if any, is
better in predicting the fault-proneness of software
components. Our replication is characterized by the
following features:

e Use of product measures in predicting the fault-
proneness of software components.
Software product metrics are very popular as pre-
dictor variables of quality models. Unfortunately,
quality is such a general concept that it needs to
be decomposed in terms of other attributes which
are directly measurable. Among the existing prod-
uct quality attributes, we have focused on fault-
proneness because most of the development time
and cost is spent on detecting and fixing faults. We
measured the fault-proneness of software compo-
nents in terms of the number of faults found
during testing. To predict fault-proneness, most
studies measure both design and code attributes.
However, there is no unique set of product met-

Table 1. Predictor Variables

F. Lanubile and G. Visaggio

rics that all the studies use. Our predictor vari-
ables measure the following product attributes:
coupling, size, control-flow structure, data struc-
ture, and documentation. Detailed definitions of
the metrics are found in Table 1. They are essen-
tially the same as those used by Munson and
Khoshgoftaar (1992) to construct their predictive
models.

Reduction of the prediction problem to a classifi-
cation problem.

A major problem in predicting software quality
using the number of component faults as a direct
metric is the highly skewed distribution of faults
because the majority of components have no faults
or very few faults. Instead of estimating the num-
ber of potential faults in a software component,
we determine whether a component is likely to be
fault-prone or not. In this case, the direct metric
of software quality is the class to which the soft-
ware component belongs (high risk or low risk),
and the prediction model is reduced to a classifi-
cation model.

Broader coverage of the modeling techniques al-
ready used in practice for classification.

Our study compares the following modeling tech-
niques: discriminant analysis, logistic regression,
logical classification models, layered neural net-
works, and holographic networks. Principal com-
ponent analysis has also been included as an
optional preprocessing step before applying dis-

Symbol Name /Description
Size
LOC Number of lines of code
NCLOC Number of noncomment lines of code
N Halstead program length, where N = N1 + N2 and N1 is the total number of operators
\4 Halstead volume, where V = Nx*log, n and n = nl + n2 is the program vocabulary

Control Flow Structure

VG McCabe cyclomatic complexity, where VG = ¢ — n + 2 for a flowchart with e edges

and n nodes

Data Structure

n2 Halstead number of unique operands
N2 Halstead total number of operands
Coupling
fanin Henry & Kafura fanin, where the fanin of a module M is the number of local flows
that terminate at M, plus the number of data structures from which information is
retrieved by M
fanout Henry & Kafura fanout, where the fanout of a module M is the number of local
flows that emanate from M, plus the number of data structures that are updated by M
IF Henry & Kafura information flow, where IF = (fanin = fanout)*
Documentation
DC Density of comments, where DC = CLOC /LOC and CLOC is the number of

comment lines of program text

Evaluation of Predictive Quality Models

criminant analysis and logistic regression. Al-
though this list of techniques cannot be consid-
ered exhaustive, it includes the main general ap-
proaches used to solve classification problems:
statistical analysis, machine learning, and neural
networks. Statistical techniques, like discriminant
analysis and logistic regression, usually try to find
an explicit numerical formula which determines a
classification completely. Machine learning meth-
ods, like logical classification trees, try to deduce
exact if-then-else rules that can be used in the
classification process. The neural network ap-
proach, including layered neural networks and
holographic networks, trains a neural network to
reproduce a given set of correct classification ex-
amples without providing formulas, rules, or any
insight in how learning and predictions are accom-
plished.

The next section characterizes the software envi-
ronment and the data used in the empirical study.
The third section describes how the modeling tech-
niques were used to build the predictive models. The
intent of this section is that an independent re-
searcher should be able to review our implementa-
tion choices and perform external replications of
this study. The fourth section shows the criteria that
we used to validate and compare the models. The
fifth and sixth sections report, respectively, the re-
sults of testing our predictive models against the
evaluation criteria, and the results from other simi-
lar studies. Finally, the last section summarizes the
lessons we learned from this study.

2. DATA DESCRIPTION

The data for this study was collected from projects
performed by 27 teams of three students, during
three years of a software engineering course at the

J. SYSTEMS SOFTWARE 227
1997, 38:225-234

University of Bari, Italy. Each team developed a
business application based on the same require-
ments specification but independently designed and
coded over a period of 4-10 months. The resulting
software systems range in size from 1100 to 9400
lines of Pascal source code.

From each system, we randomly selected a group
of 4 to 5 components, ranging in size from 60 to 530
lines of code, for a total of 118 components. Here,
the term software component refers to a functional
abstraction of code such as a procedure, function, or
main program. Each group of 4 to 5 components was
tested by a different student team from another
software engineering course. Faults found during
testing were attributed to individual components.

The distribution of faults discovered during the
independent unit testing, shown in Figure 1, was
heavily skewed in favor of components with no faults
or only one fault. To build unbiased classification
models, we decided to have an approximately equal
number of components in the classes of reliability.
Thus, we defined as high risk any software compo-
nent where faults were detected during testing, and
low risk any component with no faults discovered.
The same criterion has been used by Porter (1993)
and Briand et al. (1993b) for distinguishing between
high-risk and low-risk components.

Besides the fault data, 11 software product met-
rics were used as predictor variables to construct the
predictive models. Table 1 shows the product met-
rics we used in this study. The metrics have been
selected to measure both the implementation and
the design attributes of the components, such as
size, control flow structure, data structure, and cou-
pling; one documentation metric is also measured.

Our prediction models were based on software
developed and tested by small student teams. Al-
though this can be considered as a threat to the

Figure 1. Distribution of faults per software component.

6 7 8 9
No. of faults

10 N 12 13 14 15

228 J. SYSTEMS SOFTWARE
1997; 38:225-234

external validity of the study, there is no theory
which restricts the use of product metrics as predic-
tors of fault-proneness to some specific domain,
environment, or engineering experience. On the
contrary, in the early results of the application of the
Personal Software Process (PSP), there is only a
weak relationship between defect rates and experi-
ence, before learning PSP, and no relationship at
the completion of the training (Humphrey, 1996).

3. BUILDING THE PREDICTIVE MODELS

For each of the 118 components, we had 11 product
metrics and the risk class resulting from testing. We
divided the data set into two groups. Two-thirds of
the components (79 observations) were randomly
selected to create and tune the predictive models.
The remaining third of the components (39 observa-
tions) provided the data to test the models. From
now on, the first group of observations will be called
the training set and the second one the testing set.

There are many ways to build a predictive model
using a given modeling technique. We describe our
implementation choices to make possible the repli-
cation of the experiment in other environments as
well as improvement in the application of the tech-
niques.

3.1 Principal Component Analysis

Linear modeling applications, such as regression and
discriminant analysis. can produce unstable models
when the independent variables are strongly related.
In this case, principal component analysis is applied
to reduce the dimensions of the metric space and
obtain a smaller number of orthogonal domain met-
rics (Dillon and Goldstein, 1984).

In our study, we used the FACTOR procedure in
the SAS statistical package (SAS, 1989) to extract
the principal components, rotate them, and compute
the scoring coefficients. As input parameters to the
procedure, we set all prior communalities to 1.0 for
the eleven product metrics, and defined the mini-
mum eigenvalue criterion as 0.9. As a result, three
distinct domain metrics were retained. An orthogo-
nal rotation was then applied, using the varimax
method. In Table 2, each column shows the degree
of relationship between the eleven metrics and the
three orthogonal domains. Values in bold print indi-
cate which domain dominates a metric. Domain 1
includes the metrics measuring implementation at-
tributes; domain 2 contains those metrics related to
design attributes; and domain 3 consists of the only
metric that was intended to capture the documenta-

F. Lanubile and G. Visaggio

Table 2. Rotated Factor Pattern

Metric Domain 1 Domain 2 Domain 3
V 0.98338 0.07621 —0.04700
N 0.98209 0.09208 —0.04874
LOC 0.97486 0.07603 —0.02989
NCLOC 0.97448 0.06976 —0.05521
N, 0.95392 0.11957 —0.06178
v(G) 0.87488 0.19214 —0.01642
, 0.73870 0.01342 -0.00998
fanout 0.16845 0.88696 0.01091
IF -0.01610 0.85161 0.02215
fanin 0.12539 0.82472 —0.12569
DC -0.07395 —0.06408 0.99215
Eigenvalues 6.30601 2.10209 0.98032
before rotation
Eigenvalues 6.10241 2.27254 1.01348
after rotation
% Variance 55.47642 20.65942 9.21344
Cumulative 55.47642 76.13584 85.34928
% Variance

tion characteristics. The three principal components
account for 85% of the variability in the eleven
metrics. For each software component of our data
set, the values of the three domain metrics were
derived and used as input to discriminant analysis
and logistic regression.

3.2 Discriminant Analysis

Discriminant analysis develops a discriminant func-
tion or classification criterion to place each observa-
tion into one of a set of mutually exclusive groups
(Dillon and Goldstein, 1984). It requires that there
exists a prior knowledge of the classes, in our case,
low-risk and high-risk components. To develop the
classification criterion, we used the DISCRIM pro-
cedure in the SAS statistical package (SAS, 1989).
The DISCRIM procedure applies a parametric
method that uses a measure of generalized square
distance. The procedure was set to compute the
measure of generalized square distance on the basis
of the pooled covariance matrix. The generalized
square distance from an observation x to a class j is
given by

J J

—\T —
D} (x) = (x —x-) S"l(x - x-)
where x is the vector containing the variables of the
observation, x; is the vector containing means of the
variables in the group j, and S is the pooled covari-
ance matrix.

The posterior probability of an observation x be-
longing to class j is

() = efo.su}(x)/z(e—o.spf(x))
i

Evaluation of Predictive Quality Models

where i and j, in the case of two classes such as low
and high risk, are, respectively, 1 and 2. An observa-
tion is classified in the class with the largest poste-
rior probability value.

We built two different discriminant models: the
first one, applying discriminant analysis directly on
the original eleven product metrics, and the second
one, using as input the three domain metrics ob-
tained from the principal component analysis.

3.3 Logistic Regression

Logistic regression is a special type of regression
analysis which models the response variable by cal-
culating a function of the response probabilities to
fit a linear model (Agresti, 1990). The standard
response function computes the probability of class
membership according to the following equation:

P n
log(l_p) =cp+ Y X

i=1

where p can be interpreted as the probability that a
software component is high risk, while the predictor
variables x; are the product metrics.

Unlike discriminant methods, logistic regression is
not based on normality assumptions and thus is
preferable to discriminant analysis when the vari-
ables do not have multivariate normal distributions
within classes (Press and Wilson, 1978).

In our study, we used the CATMOD procedure in
the SAS statistical package (SAS, 1989) to perform
logistic regression. The regression coefficients c;
were computed through a maximum-likelihood esti-
mation.

As for the discriminant analysis, two regression
models were built: the first one is based on the
eleven product measures, while the second one uses
the three domain metrics that have been generated
from the principal component analysis.

3.4 Logical Classification Models

Logical classification models are classifiers that can
be expressed as decision trees or sets of production
rules. They are generated through a recursive algo-
rithm that, at each step, selects the attribute that
best discriminates between components within a tar-
get class and those outside it. To build the classifi-
cation model, we used the C4.5 system (Quinlan,
1993), an extension of the ID3 system (Quinlan,
1986). The C4.5 system partitions continuous at-
tributes, in our case, the product metrics, finding the
best threshold among the set of training cases. We

1. SYSTEMS SOFTWARE 229
1997; 38:225-234

used the gain criterion to select the best attribute to
branch on at each step of the tree building. The
recursive partition method continues to split the
training set until each subset in the partition con-
tains cases of a single class, or until no split gives a
gain in information. If a subtree is found to misclas-
sify at least as many items as does replacing the
subtree with a leaf, then the subtree is replaced with
the leaf. The decision tree built using the training
set had 12 levels composed of 11 decision nodes and
12 leaf nodes. The decision tree was then converted
to a set of production rules by forming a rule corre-
sponding to each path from the root of the tree to
each of its leaves. To simplify the collection of rules,
C4.5 dropped conditions using a pruning heuristic
based on pessimistic error estimation. We set the
pruning confidence level to 0.05. As a final result,
C4.5 produced a rule classifier made up of 12 rules
ranging from one to five compound conditions.

3.5 Layered Neural Networks

We used a typical feed-forward neural network
(Rumelhart et al., 1986), characterized in our experi-
ment by one input layer of 11 neurons, each con-
nected to a product metric, one output layer of only
one neuron that provides the predicted risk, and one
layer of 50 hidden neurons. Among the supervised
algorithms, we chose the most popular one, the
back-propagation algorithm, which adjusts network
weights by iteration until a user-defined error toler-
ance is achieved, or a maximum number of itera-
tions has been completed. For the neural network
simulation software, we used a freeware program
developed at University of Bari. The network weights
were initially set to random values between —1.0
and 1.0 using a sigmoid distribution. We trained the
network with a value of 0.1 for the error tolerance, 1
for the learning rate, and 0.7 for the momentum
rate. After many trials over more than twenty hours,
the neural network could not converge to an optimal
solution including all the 79 observations of the
training set. Thus, we stopped the training process
after 9000 iterations with a trained state accounting
for 78 observations.

Since the network’s input and output are bounded
between 0 and 1, we reduced the input data using a
direct scaling. When testing the network, we in-
creased the error tolerance to 0.5 so that low-risk
components correspond to observations with an out-
put value in the first half of [0,1] and high-risk
components to observations with an output value in
the second half.

230 J. SYSTEMS SOFTWARE
1997; 38:225-234

3.6 Holographic Networks

With holographic networks, information is encoded
inside holographic neurons rather than in the con-
nection weights between neurons (Sutherland, 1990).
A holographic neuron holds a correlation matrix
that enables memorizing stimulus-response asso-
ciations. Individual associations are learned deter-
ministically in one noniterative transformation.
Holographic neurons internally work with complex
numbers in polar notation so that the magnitude
(from 0.0 to 1.0) is interpreted as the confidence
level of data, and the phase (from 0 to 27) serves as
the actual data value.

In our study, we used HNet Discovery System, a
single cell forward system capable of mapping up to
1000 stimulus inputs to 100 response outputs. Input
data were converted to the range [0,2#] using a
sigmoid function and interpreted as phase orienta-
tion of complex values with a unity magnitude. On
the other hand, the response was converted using a
linear interpolation. These conversion methods pro-
vided the maximum symmetry in the distribution of
data. We trained the network to obtain a maximum
error of 0.1 for each observation.

4. EVALUATION CRITERIA

To evaluate the predictive models, we used a set of
criteria that are based on the analysis of categorical
data. In our study, we have two variables, real risk
and predicted risk, that can assume only two discrete
values, low and high, in a nominal scale. Thus, the
data can be represented by a two-dimensional con-
tingency table, shown in Table 3, with one row for
each level of the variable real risk and one column
for each level of the variable predicted risk. The
intersections of rows and columns contain the fre-
quency of observations (n,;) corresponding to the
combination of variables. Row totals (#n,.) and col-
umn totals (n.;) correspond to the frequency of
observations for each of the variables. In our con-
text, the first row contains low-risk components, i.e.,
with no faults, while the second row contains high-
risk components, including at least one fault. The
first column contains components that the models

Table 3. Two-Dimensional Contingency Table

Predicted Risk

Real Risk Low High
low ny, ny, ny.
high Ny, nj, ny.
n., n., n

F. Lanubile and G. Visaggio

classify as low risk, while the second column con-
tains components classified as high risk.

The evaluation criteria are predictive validity, mis-
classification rate, achieved quality, and verification
cost. We use the criterion of predictive validity for
assessment since we determine the absolute worth
of a predictive model by looking at its statistical
significance. A model that does not meet the crite-
rion of predictive validity should be rejected. The
remaining criteria can be used to perform a
cost/benefit analysis on the models which have
passed the predictive validity criterion. Depending
on the project priorities, a software engineering
manager can compare the accepted models and make
different choices. If software quality is a critical
requirement, he might choose the predictive model
that identifies most of the high-risk components,
even if a great part of the verification effort is
wasted because of wrong predictions. On the other
hand, if the effort must be minimized, he could
choose the predictive model that requires the lowest
verification effort, even if the quality achieved at the
end of the verification is lower than for other mod-
els.

4.1 Predictive Validity

Predictive validity is the capability of the model to
predict the future component behavior from present
and past behavior. The present and past behavior
are represented by data in the training set while the
future behavior of components is described by data
in the testing set. Having data represented by a
contingency table, we apply the predictive validity by
testing the null hypothesis of no association between
the row variable (real risk) and the column variable
(predicted risk), i.e., the predictive model is not able
to discriminate low-risk components from high-risk
components. The alternative hypothesis is one of
general association. A chi-square (x?) statistic
(Conover, 1971) with a distribution of one degree of
freedom is applied to test the null hypothesis.

4.2 Misclassification Rate

For our predictive models, which classify compo-
nents as either low risk or high risk, two misclassifi-
cation errors are possible. A Type 1 error is made
when a high-risk component is classified as low risk,
while a Type 2 when a low-risk component is classi-
fied as high risk. It is desirable to have both types of
error small. However, since the two types of errors
are not independent, software engineering managers
should consider their different implications. As a

Evaluation of Predictive Quality Models

result of a Type 1 error, an actual high-risk compo-
nent could pass quality control. This would cause the
release of a lower quality product and more fix
effort when a failure happens. As a result of a Type
2 error, an actual low-risk component will receive
more testing and inspection effort than needed.

In the contingency table, the number of Type 1
and Type 2 errors is given, respectively, by n,, and
ny,. We use the following measures of misclassifica-
tion (Schneidewind, 1994):

e Proportion of Type 1: P, = n,, /n;
e Proportion of Type 2: P, = n,,/n;
» Proportion of Type 1+ Type 2: P, = (n, +

ny,)/n.

4.3 Quality Achieved

We are interested in measuring how effective the
predictive models are in terms of the quality achieved
after the components classified as high risk have
undergone an extra verification activity. We suppose
that the verification will be so exhaustive as to find
all the faults in the components that are actually
high risk. So if all the high-risk components are
properly classified, all defects will be removed by the
extra verification, and perfect quality will be
achieved. However, quality will be degraded with
each high-risk component that is not identified.

We measure the criterion of achieved quality us-
ing the completeness measure (Briand et al., 1993a)
which is the percentage of faulty components that
have been actually classified as such by the model.

e Completeness: C = ny,/n,.

4.4 Verification Cost

Quality is achieved by increasing the cost of verifi-
cation due to an extra effort in inspection and
testing for the components that have been flagged as
high-risk. We measure the verification cost by using

Table 5. Comparison of Predictive Models

J. SYSTEMS SOFTWARE 231
1997; 38:225-234

two indicators. The former inspection (Schneide-
wind, 1994), measures the overall cost by considering
the percentage of components that should be veri-
fied. The latter wasted inspection is the percentage
of components that do not contain faults but have
been verified because they have been incorrectly
classified.

e Inspection: I =n.,/n;
e Wasted Inspection: WI = n,,/n ,.

5. RESULTS

We applied the evaluation criteria on the testing set
and analyzed the resulting data.

Table 4 shows the associations of the predictions
and the real behavior of the components. The right-
most two columns show the chi-square values and
the probabilities of incorrectly rejecting the null
hypothesis which is incorrectly saying that there is a
significant association. The most popular probability
value used as a threshold to establish significance is
0.05. If p is less than 0.05, there is a significant
association and it is correct to reject the null hypoth-
esis. Since all the probability values are much higher
than 0.05, we must accept the null hypothesis of no
association between predicted risk and real risk.

Table 5 shows the results of comparing the predic-
tive models to each other with respect to the remain-
ing criteria. All the data are represented as percent-

Table 4. Assessment of Predictive Models

Modeling Techniques X’ p*
Discriminant analysis 0.244 0.621
Principal components + Discriminant analysis 0.685 0.408
Logistic regression 0.648 0.421
Principal components + Logistic regression 1.761 0.184
Logical classification model 0215 0.643
Layered neural network 0.648 0.421
Holographic network 0227 0.634

*p is the probability of incorrectly rejecting the null hypothesis of
no association between predicted and real risk.

Misclassification Achvd Verification
rate quality cost

Modeling Techniques P, P, P, C 1 wI

Discriminant analysis 28.21 25.64 53.85 42.11 46.15 55.56
Principal comp. + Discriminant analysis 15.38 41.03 56.41 68.42 74.36 55.17
Logistic regression 28.21 2821 56.41 4211 48.72 57.89
Principal comp. + Logistic regression 12.82 46.15 58.97 73.68 82.05 56.25
Logical classification model 25.64 20.51 46.15 47.37 43.59 47.06
Layered neural network 28.21 28.21 56.41 42.11 48.72 57.89
Holographic network 25.64 28.21 53.85 47.37 51.28 55.00

232 J. SYSTEMS SOFTWARE
1997; 38:225-234

ages. The first three columns of data show the
misclassification rates. Recall that a random predic-
tion should have a proportion of Type 1 + Type 2
errors of 50%, and proportions of Type 1 and Type 2
errors of 25% each. In this study, the proportions of
Type 1 + Type 2 errors range between 46 and 59%.
Discriminant analysis and logistic regression, when
applied in conjunction with principal component
analysis, have high proportions of Type 2 error (re-
spectively, 41 and 46%) in comparison with the
proportions of Type 1 error (respectively, 15 and
13%). On the other hand, the other models have
balanced values of Type 1 and Type 2 error, ranging
between 20 and 28%.

Looking at the achieved quality and verification
cost results, it is possible to better interpret the
misclassification results. The highest values of qual-
ity correspond to the models built with principal
component analysis followed by either discriminant
analysis or logistic regression (completeness is, re-
spectively, 68 and 74%). However, these high values
of achieved quality are obtained by inspecting the
great majority of components (inspection is, respec-
tively, 74 and 82%), thus wasting more than one half
of the verification effort (wasted inspection is, re-
spectively, 55 and 56%). None of the other models
discovers even half of the high-risk components and
waste nearly half or more of the verification effort.

6. RELATED WORK

Some empirical studies, relevant to this work, are
summarized in the following.

Briand et al. (1993b) presented an experiment for
predicting high-risk components using two logical
classification models (Optimized Set Reduction and
classification tree) and two logistic regression mod-
els (with and without principal components). Design
and code metrics were collected from 146 compo-
nents of a 260 KLOC system. OSR classifications
were found to be the most complete (96%) and
correct (92%), where correctness is the complement
of our wasted inspection. The classification tree was
more complete (82%) and correct (83%) than logis-
tic regression models. The use of principal compo-
nents improved the accuracy of logistic regression,
from 67 to 71% completeness and from 77 to 80%
correctness.

Porter (1993) presented an application of classifi-
cation trees to data collected from 1400 components
of six FORTRAN projects in a NASA environment.
For each component, 19 attributes were measured,
capturing information spanning from design specifi-
cations to implementation. He measured the mean

F. Lanubile and G. Visaggio

accuracy across all tree applications according to
completeness (82%) and to the percentage of com-
ponents whose target class membership is correctly
identified (72%), that is, the complement of the
Proportion of Type 1 and Type 2 error.

Munson and Khoshgoftaar (1992) detected faulty
components by applying principal component analy-
sis and discriminant analysis to discriminate between
programs with less than five faults and programs
having five or more faults. The data set included 327
program modules from two distinct Ada projects of a
command and control communication system. They
collected 14 metrics, including Halstead’s metrics
together with other code metrics. Applying discrimi-
nant analysis with principal components resulted in
correctly recognizing 79% of the modules with a
total misclassification rate of 5%.

Khoshgoftaar et al. (1996) again applied principal
component analysis and discriminant analysis to
identify fault-prone modules (modules with five or
more faults) in a large telecommunications system.
They used 1980 modules consisting of 194 new, 917
reused but modified, and 869 reused without modi-
fication. For product metrics, they used three call-
graph-based metrics and six control-flow-graph-based
metrics. They also used reuse information as addi-
tional categorical predictor variables. They classified
38.0% of the modules as fault prone when using
product metrics only, and 31.4% when including the
reuse variables too. The real percentage of faulty
modules was 12.1%. The Proportion of Type 1 error
(Type II misclassification rate in their study) was
21.25% with product metrics only, and 13.75% with
also reuse variables. The Proportion of Type 2 error
(Type I misclassification rate in their study) was,
respectively, 32.4% and 23.8%. Finally, the Propor-
tion of Type 1 and Type 2 error combined was
31.1% using only product metrics and 22.6%, includ-
ing the reuse variables.

7. LESSONS LEARNED

This empirical investigation of the modeling tech-
niques for identifying high-risk components has
taught us three main lessons:

e Principal component analysis does not always pro-
duce a better input for predictive models.
In our study, we built two classification models for
both discriminant analysis and logistic regression.
The first pair of models was based on the eleven
original product measures, while the second pair
used the three orthogonal domain metrics that
had been generated from the principal component

Evaluation of Predictive Quality Models

analysis. An unexpected result of using the princi-
pal component analysis as a preprocessing step is
that the improved quality was exclusively the re-
sult of classifying most of components to be high
risk.

e It is not always possible to successfully predict the
future behavior of software products.
Despite the variegated selection of modeling tech-
niques, no model satisfied the criterion of pre-
dictive validity; that is, no model was able to dis-
criminate between components with faults and
components without faults. This result is in con-
trast with the software measurement literature
which always reports successful results in recogniz-
ing fault-prone components from product mea-
sures. The previous section provides some exam-
ples.

» Predictive modeling techniques are only as good
as the data they are based on.
The relationship between software product mea-
sures and the presence of faults cannot be consid-
ered an assumption that holds for any data set and
project. An assumption is a statement that is pos-
tulated to be true without the need to be verified.
Past positive findings at showing correlation be-
tween product measures and number of faults
have built a confidence that this relationship is a
general property. However, the underlying phe-
nomena continue to be poorly understood, and we
do not really know what findings can be reused
across environments and projects. Whereas the
research underlying the validation of software
product measures as internal attributes of soft-
ware quality is not novel, it is only within the past
few years that researchers have begun to worry
about a rigorous and local validation (Schneide-
wind, 1992; Fenton, 1994; Briand et al.,, 1995;
Kitchenham et al, 1995; Pfleeger, 1995). Predictive
models are very attractive to build, but they can be
a waste of time if we rely on false assumptions
instead of building a local process for selecting
valid predictors.

ACKNOWLEDGMENTS

This work was partially supported by NASA under grant
01-5-26775 and the Italian MURST under the 40% project
“V &YV in software engineering.”

We would like to thank the students from the University of
Bari for providing the fault data used in this study, Aurora
Lonigro and Giulia Festino for their support in processing and
analyzing the data, Carolyn Seaman, and the anonymous
reviewers for their suggestions and comments on a first draft
of this paper. This work has also benefited from the encour-

J. SYSTEMS SOFTWARE 233
1997; 38:225-234

agement of the participants at the 20th Annual Software
Engineering Workshop, Goddard Space Flight Center.

REFERENCES

Agresti, A., Categorical Data Analysis, John Wiley & Sons,
New York, 1990.

Boetticher, G., Srinivas, K., and Eichmann, D., A neural
net-based approach to software metrics. In: Proc. 5th
Int. Conf. Software Eng. and Knowledge Eng., 1993, pp.
271-274.

Briand, L. C., Thomas, W. M., and Hetmanski, C. J.,
Modeling and managing risk early in software develop-
ment. In: Proc. 15th Int. Conf Software Eng., 1993a, pp.
55-65.

Briand, L. C,, Basili, V. R., and Hetmanski, C. J., Develop-
ing Interpretable Models with Optimized Set Reduction
for Identifying High-Risk Software Components. IEEE
Trans. Software Eng., 19 (11), 1028-1044 (November
1993b).

Briand, L., El Eman, K., and Morasca, S., Theoretical and
empirical validation of software product measures, IS-
ERN-95-03, International Software Engineering Re-
search Network, 1995.

Conover, W. 1., Practical Nonparametric Statistics, Wiley,
New York, 1971.

Dillon, W. R., and Goldstein, M., Multivariate Analysis:
Methods and Applications, John Wiley & Sons, New
York, 1984,

Esteva, J. C., and Reynolds, R. G., Identifying Reusable
Software Components by Induction, Int. J. Software
Eng. and Knowledge Eng., 1 (3), 271-292 (1991).

Fenton, N. E., Software Measurement: A Necessary Scien-
tific Basis. IEEE Trans. Software Eng., 20 (3), 199-206
(March 1994).

Humphrey, W. S., Using a Defined and Measured Per-
sonal Software Process. IEEE Software, 13 (3), 77-88
(May 1996).

Jensen, G., Quality control in manufacturing based on
fuzzy classification. In: Frontier Decision Support Con-
cepts (V. L. Plantamura, B. Soucek, G. Visaggio, eds.),
John Wiley & Sons, New York, 107-118, 1994,

Karunanithi, N., Whitley, D., and Malaiya, Y. K., Predic-
tion of software reliability using connectionists models,
IEEE Trans. Software Eng., 18 (7), 563573 (July 1992).

Karunanithi, N., Whitley, D., and Malaiya, Y. K., Using
Neural Networks in Reliability Prediction. IEEE Soft-
ware, 53-59 (July 1992).

Khoshgoftaar, T. M., Munson, J. C,, Bhattacharya, B. B,
and Richardson G. D., Predictive Modeling Techniques
of Software Quality from Software Measures. IEEE
Trans. Software Eng., 18 (11), 979-987 (November 1992).

Khoshgoftaar, T. M., Lanning, D. L., and Munson, J. C., A
comparative study of predictive models for program
changes during system testing and maintenance. In:
Proc. Conf. Software Maintenance 1993, pp. 72-79.

Khoshgoftaar, T. M., Allen, E. B., Kalaichelvan, K. S, and
Goel, N., Early Quality Prediction: A Case Study in

234 J. SYSTEMS SOFTWARE
1997; 38:225-234

Telecommunications. IEEE Software, 65-71 (January
1996).

Khoshgoftaar, T. M., and Szabo, R. M., Improving code
churn prediction during the system test and mainte-
nance phases. In: Proc. of the Int. Conf. Software Main-
tenance 1994, pp. 58-67.

Kitchenham, B., Pfleeger, S. L., and Fenton, N., Towards-a
Framework for Software Measurement Validation IEEE
Trans. Software Eng., 21 (12), 929-943 (December 1995).

Lanubile, F., and Visaggio, G., Quality evaluation on
software reengineering based on fuzzy classification. In:
Frontier Decision Support Concepts (V. L. Plantamura, B.
Soucek, G. Visaggio, eds.), John Wiley & Sons, New
York, 119-134, 1994,

Munson, J. C,, and Khoshgoftaar, T. M., The Detection of
Fault-Prone Programs. IEEE Trans. Software Eng., 18
(5), 423-433 (May 1992).

Pfleeger, S. L., Maturity, Models, and Goals: How to Build
a Metric Plan. J. Syst. Software, 31, 143~155 (1995).

Porter, A. A., Developing and analyzing classification rules
for predicting faulty software components. In: Proc. 5th
Int. Conf. Software Eng. and Knowledge Eng. 1993,
453-461.

Porter, A. A., and Selby, R. W., Empirically Guided Soft-
ware Development Using Metric-Based Classification
Trees. IEEE Software, 46-54 (March 1990).

Press, S. J., and Wilson, S., Choosing Between Logistic
Regression and Discriminant Analysis. J. of the Ameri-
can Statistical Association, 73, 699—705 (1978).

F. Lanubile and G. Visaggio

Quinlan, J. R,, Induction of decision trees. Machine Learn-
ing, 1 (1), 81-106 (1986).

Quinlan, J. R., C4.5: Programs for Machine Learning, Mor-
gan Kauffman Publishers, San Mateo, CA, 1993.

Rumelhart, D., Hinton, G., and Williams, R., Learning
internal representations by error propagation. In: Paral-
lel Distributed Processing, Vol. I, MIT Press, Cambridge,
MA, 318-362, 1986.

SAS Institute Inc., SAS/STAT User’s Guide, Version 6,
Fourth Edition, 2 vols.,, Cary, NC: SAS Institute Inc.,
1989. -

Schneidewind, N. F., Methodology for Validating Software
Metrics. IEEE Trans. Software Eng., 18 (5), 410-422
(May 1992).

Schneidewind, N. F., Validating Metrics for Ensuring
Space Shuttle Flight Software Quality. Computer, 50-57
(August 1994).

Selby, R. W, and Porter, A. A., Learning from Examples:
Generation and Evaluation of Decision Trees for Soft-
ware Resource Analysis, JEEE Trans. Software Eng., 14
(12), 1743-1757, (December 1988).

Soucek, B., Sutherland, J., and Visaggio, G., Holographic
decision support system: credit scoring based on quality
metrics. In: Frontier Decision Support Concepts (V. L.
Plantamura, B. Soucek, G. Visaggio, eds.), John Wiley
& Sons, New York, 171-182, 1994.

Sutherland, J., A Holographic Model of Memory, Learn-
ing and Expression. Int. J. Neural Syst., 1 (3), 259-267
(1990).

