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Abstract. The better understanding of variants of the genomes may
improve the knowledge of the causes of different response to drugs of
individuals. The Affymetrix DMET (Drug Metabolizing Enzymes and
Transporters) microarray platform offers the possibility to determine the
gene variants of a patient and correlate them with drug-dependent ad-
verse events. The analysis of DMET data is a growing research area.
Existing approaches span from the use of simple statistical tests to more
complex strategies based, for instance, on learning association rules.
To support the analysis, we developed GenotypeAnalytics, a RESTFul-
based software service able to automatically extract association rules
from DMET datasets. GenotypeAnalytics is based on an optimised algo-
rithm for learning rules that can outperform general purpose platforms.
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1 Introduction

One of the problems related to drug-development and clinical practice is the
variability of the response to the same drug. Pharmacogenomic is a relatively
new discipline based on the rationale that this variability is due to different
variants in the genome of patients. [18]. In particular, it has been shown that a set
of genes, defined to as drug absorption, distribution, metabolism and excretion
genes (ADME-genes) [16] are related to such processes [17, 7]. Such genes present
known Single Nucleotide Polymorphisms (SNPs), e.g. variants on the sequence
of nucleotides, related to different drug responses [13, 5].

To study genome variants, we need: (i) an experimental platform for inves-
tigating the presence of SNPs in the ADME genes (among others we consider
the Affymetrix DMET platform) [8, 14], (ii) a computational platform to as-
sociate single or multiple SNPs to drug response. Although such analysis is
usually performed through statistical analysis, in the following, we will con-
sider analysis approaches based on data mining, i.e. association rule mining.
From a computer science point of view, the result of a DMET experiment is
a n × m matrix of alleles, where n is the number of probes (n = 1936 in the
current DMET plate) and m is the number of samples (patients). Each cell of
such table contains a string value including two alleles symbols i.e. a1/a2, where
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a1, a2 ∈ A = {A,C,G, T,−}, see for instance Table 1 that reports a fragment of
DMET data.

Table 1. A simple DMET SNP microarray data set. S and P respectively refer to
sample and probe identifiers.

Probes

Samples
S1 . . . SN

P1 G/A · · · T/T

PM G/A · · · T/C

Usually, the algorithms for the analysis of DMET data try to correlate the
presence of genomic variants to the phenotype of patients. Early approaches to
the analysis were based mainly on statistical approaches, i.e. DMET-Analyzer
[12] employed the well-known Fisher test and several statistical corrections such
as Bonferroni or False Discovery Rate. Although DMET-Analyzer has demon-
strated its validity in several clinical studies [17, 19, 7, 8], DMET-Analyzer is not
able to cope with multiple variants. To overcome those limitations, we devel-
oped DMET-Miner, a novel methodology for the simultaneous analysis of ge-
nomic variants in more than a gene. DMET-Miner employs the association rules
mining methodology [4], a well-known method in the data mining field. Despite
the innovation introduced by DMET-Miner, it presents some disadvantages due
to the Apriori method i.e. the generation of the candidate itemsets could be
extremely slow and require a massive amount of main memory [15, 9, 10].

To avoid memory issues and to improve the computation of association rules,
we here extended the core of DMET-Miner by implementing a modified FP-
Growth algorithm able to deal with SNP data efficiently and we implemented
it into a new software named GenotypeAnalytics. The main of FP-Growth con-
cerning Apriori is that FP-Growth does not need to generate candidate set and it
needs to read the input data-set only twice, as opposed to Apriori that reads the
input data-set on each iteration. GenotypeAnalytics improves the performances
of DMET-Miner by using optimised data structures that give good performance
results in rule extraction also with massive DMET datasets. Also, GenotypeAna-
lytics can extract relevant knowledge by computing frequent item-sets efficiently
as well as mining association rules [2] that link allelic variants in more than
one probe with the health status of patients (e.g. subjects responding or not re-
sponding to drugs). Paper is structured as follows: Section 2 discusses the related
approaches, Section 3 introduces the problem, Section 4 discusses the proposed
algorithm and its implementation, Section 5 presents some experimental results,
Section 6 concludes the paper.



3

2 Related Work

Existing approaches of analysis of DMET data, span from preprocessing of raw
data, e.g. Affymetrix-power-tools, Affymetrix-DMET-Console, to the correlation
of variants of different patient conditions, e.g. DMET-Analyzer [12], Cloud4snp
[1], coreSNP [15], and DMET-Miner [3].

The apt-dmet-genotype software of the Affymetrix Power Tools suite, or
the DMET Console platform [20], generally allows only the sequential prepro-
cessing of binary data and simple data analysis operations. DMET-Analyzer
[12] is a software platform for the automatic statistical analysis of DMET data
that employs the well-known Fisher test and several statistical corrections such
as Bonferroni or False Discovery Rate. Although DMET-Analyzer has demon-
strated its validity in several clinical studies [17, 19, 7, 8], DMET-Analyzer is not
able to cope with multiple variants, and it is not able to group all of them in a
single, easy to understand, and biologically relevant information. Cloud4SNP is
the Cloud-based version of DMET-Analyzer. Cloud4SNP allows to statistically
test the significance of the presence of SNPs in two classes of samples using the
well known Fisher test. To cope with high dimensional dataset deriving from
the screening of population, we developed coreSNP, a parallel version of DMET-
Analyzer.

To overcome limitations of the analysis, we developed DMET-Miner, a novel
methodology for the simultaneous analysis of genomic variants in more than
one gene. DMET-Miner uses on the association rules mining methodology [?], a
well-known method in the data mining field. Despite the innovation introduced
by DMET-Miner, it presents some disadvantages due to the Apriori method.

3 Problem Statement

DMET datasets are represented as a m × n SNP DMET table. In particular,
m is the number of probes (in the current version of the DMET chip is equals
to 1936), whereas n is the number of subjects (patients) gathered for the class
of membership i.e. Healthy and Diseased or responding and not responding to
the drug . Each element (i, j) of the table contains the allele recognised on the
ith probe and at the jth sample. An example of synthetic SNP DMET dataset
randomly generate is reported in Table 2.

To extract relevant rules, we need to convert the input DMET data set into
a transaction database. The conversion of DMET data set includes the following
steps:

– loading and transposing of the input DMET dataset and (let see e.g. Table
2) obtaining a n×m table of alleles named AllelesTable AT (see Table 3).
In this way, each row of the AT contains a transaction and related items.
Table 3 shows the transformed matrix AT for the input dataset of Table 2.

– choose of desired support and confidence
– ATTable 3 is then used to extract frequent itemsets.
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Table 2. A simple DMET SNP microarray data set. S and P respectively refer to
sample and probe identifiers.

Probes

Samples
S1 S2 S3 · · · SN

P1 G/A A/G A/G · · · T/T

P2 G/A A/G A/G · · · T/C

.

.

.

.

.

.

.

.

.

.

.

. · · ·

.

.

.

PM G/A A/G A/G · · · T/C

Table 3. The AllelesTable AT obtained transposing the input DMET microarray
dataset. S and P respectively refer to sample and probe identifiers.

Samples

Probes
P1 P2 · · · PM

S1 G/A G/A · · · G/A

S2 A/G A/G · · · A/G

S3 A/G A/G · · · A/G

...
...

...
...

...

SN T/T T/C · · · T/C

– Biological interpretation of extracted rules

To explain the overall process, we here recall main concepts.
Let I = {i1, i2, . . . , in} be a set of items (alleles), where an item is identified

by a specific SNP into a cell (i, j) of AT . Let T the set of transactions, formally a
transaction over I is a couple T = (tid, I), where tid is the transaction identifier,
and I is an item or item set. The number of items present in a transaction is
defined as transaction width. A transaction Tj contains an itemset J , if J is a
subset of Tj, this is J ⊂ T . Let D = {t1, t2, . . . , tm} be a set of transactions,
called DMET-Dataset D hereafter. Each transaction in D is identified by an
unique ID of the corresponding sample or patient.

Now we may start the mining phase by performing the following steps:

1. prune all the items that present a support value lower than the specified
minimum frequency threshold.

2. add all the frequent items to the FP-Tree.
3. mine association rules from the FP-Tree.

The power of frequent item sets extraction concerns with the ability to
discover interesting relationships hidden in large data sets. This feature re-
lies on a fundamental property of the itemset also known as Support. Sup-
port refers to the number of transactions that contain a particular item or item
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set. Formally, the Support S(·) of an item X , S(X) can be defined as follows:
S(X) = |{∀ti ⊂ X∧ti ∈ T }|, where |·| denotes the cardinality of the set. In other
words, S(X) is the fraction of transactions in T containing the item/item-set X .

Association models extract rules that express the relationships among items
into frequent itemsets. For example, a rule belonging to the frequent itemsets
composed by the following elements {A/A,G/C,C/T }, and might be stated as:
IF (A/A∧G/C) THEN C/T and, can be read as: if A/A and G/C are included
in the transaction, then C/T likely should also be included.

4 The optimised FP-Growth algorithm of

GenotypeAnalytics

This section illustrates the core algorithm of GenotypeAnalytics and its op-
timisations used to reduce the space search and to minimise the number of
mined association rules. The goal of GenotypeAnalytics given a SNPs dataset
D is to discover all the frequent patterns above a user support threshold named
minsupport (Minimum Support).

Before to convert the input dataset in a transaction database, GenotypeAna-
lytics tries to reduce the search space through a suitable preprocessing method-
ology able to decrease the number of possible transactions. The preprocessing
method is based on the use of the well known Fisher’s Test as a filter, which
allows removing all the rows from the original DMET dataset for which it is not
possible to accept the null hypothesis. The discharging of this rows does not lead
to lost useful information, rather allow to improve the mining of the association
rules (see for a better explanation [3]). After the filtering step, the resulting ta-
ble is transformed into a transaction database. Such transformation is necessary
since the extraction of frequent itemsets is more efficient with this data format.
Alleles of different probes have some time the same name. Therefore, we mod-
ified the variables adding information related to the probe to which each allele
belongs using the following notations (i.e. X.A/A and Y.A/A).

The resulting table is stored in a data-structure called Transaction DB (TDB).
In the TDB the transaction id (TID) is the entry of the table and the matching
items set (value) are encoded into hash-set using a hash-function. Thus, it is pos-
sible to compress the items and to ensure constant time for standard operations
such as: inserting, deleting and searching items in the hash-set.

Despite the preprocessing phase of the input dataset, the number of items
that compose the TDB is huge enough. Thus, a further compression step is nec-
essary to manage the enumeration and generation of frequent itemsets better.
For this reason, we decided to implement a customized version of the FP-Growth
algorithm, able to deal with SNPs data. The FP-Tree, allows storing in a com-
pressed way the TDB into the main memory named FP-Tree. The FP-Tree keeps
track of the same item contained in different transactions by connecting the pre-
fix tree nodes indicating the same item into a frequent items list The mining of
the associative rules is done using a Depth-First-Search, (DFS, in short), sorting
in descending order the items in each transaction. The reason behind this choice
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is that the average size of the conditional TDB tends to be smaller if the items
are processed in this order. Moreover, the order of the items influences only the
search time, not the result of the algorithm.

The GenotypeAnalytics core algorithm needs to scan twice the TDB. The
first pass is necessary to discover the frequency of each item I into the TDB

for which S(I) ≥ minsup and sorting the items according to their descending
frequency. The second TDB scan is necessary to delete the items for which their
support is S(I) < minsup. Sorting the items in descending order of frequency
allows to further compress the FP-Tree, by limiting the number of different
possible prefixes. Now all the items into the TDB can be mapped on the FP-
Tree. The mapping is performed by means the support-update and node-creation

functions. If during the mapping, the current element in the transaction matches
the current element in the FP-Tree, the function support-update, which updates
the support of the current node, is invoked. Whereas, if the current node in
the FP-Tree and the current node in the transaction do not match the function
node-creation is called. The node-creation function starting from the current
item creates a new node, adding it as children of the current FP-Tree node.
The other items in the current transaction are appended as children of the last
created FP-Tree node.

5 Performance Evaluation

In this section, we present the performance evaluation of our version of the
FP-Growth algorithm with respect to the FP-Growth algorithm available in
SPMF an Open-Source Data Mining Library [11], and the version proposed in
[6]. Experiments have been ran on the same data sets, namely ”Vote.arff”, ”Su-
permarket.arff” and a synthetic ”DMET-SNP” data set. As proof-of-principle,
we report the performance evaluation results of all the FP-Growth implemen-
tations. All the experiments have been executed on a machine equipped with a
Pentium i7 2.5 GHz CPU, 16 GB RAM and a 512 GB SSD disk. The reported
execution times refer to average times; each value has been computed repeating
10 times the experiments with the same settings. In this way, it is possible to
ensure that the results are comparable.

Figures 1,2, and 3 convey, the execution times obtained analyzing the data
sets by the three different implementation of the FP-Growth algorithms. All the
execution time are obtained by varying the minimum support values. The solid
black line refers to our implementation of the FP-Growth algorithm, the dashed
green line refers to the FP-Growth version available in SPMF, and finally the
dash-dot red line refers to the FP-Growth version proposed in [6].

Among these implementations of FP-Growth, all show good performance on
the classical Vote and Supermarket data sets. Our implementation of FP-Growth
does not present so much differences with the other two methods, showing very
similar performance to those of other tools. With the exception of the synthetic
SNP data set, on which they are bet with an appreciable margin by our imple-
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mentation of FP-Growth, because our version of FP-Growth is highly optimized
to dig with SNPs data, thus clearly performs best.
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Fig. 1. Execution times of the different FP-Growth algorithm on the Vote data set.
The execution times are obtained varying the value of minimum support.

6 Conclusion

Analysing genotyping datasets presents various challenges due to the huge vol-
umes of data and due to the specific characteristics of SNPs data. Thus, using
general purpose data mining implementation is not feasible and for this reason
we implemented GenotypeAnalytics, a specialised association rule mining system
system to mine association rules from DMET genotype data. It includes an op-
timised version of the implementation of the FP-Growth algorithm. Preliminary
experiments show how our solution outperformes off the shelf implementation of
FP-Growth. As future work we will investigate automatic methods to rank the
extracted rules on the basis of their biological significance and memory by using
real DMET dataset in the oncology domain.
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Fig. 2. Execution times of the different FP-Growth algorithm on the Supermarket data
set. The execution times are obtained varying the value of minimum support.
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Fig. 3. Execution times of the different FP-Growth algorithm on the Vote data set.
The execution times are obtained varying the value of minimum support.
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