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Abstract. Brand reputation is an open issue for several companies de-
livering services through dedicated apps. The latter are often targeted
by malicious developers who spread unauthorized (fake, malicious, obso-
lete or deprecated) versions through alternative distribution channels and
app stores. The aim of the work is the early detection of these alternative
markets advertised through social media such as Twitter of Facebook or
hosted in the Dark Web. Specifically, we propose a semi-automatic ap-
proach to monitor these media and to recommend web pages that are
likely to represent alternative marketplaces. The underlying predictive
platform allows to analyze web pages extracted from the Web and ex-
ploits an ensemble classification model to distinguish between real app
stores and similar pages (i.e. blogs, forums, etc.) which can be erroneously
returned by a common search engine. An experimental evaluation on a
real dataset confirms the validity of the approach in terms of accuracy.

1 Introduction

Nowadays, smartphones and tablets are widespread devices used by millions of
users. Their popularity is mainly due to their reduced dimensions and the avail-
ability of a wide range of useful applications provided by marketplaces and app
stores. A major threat for such devices is the exposure to counterfeit apps which
can compromise the security of the devices and eventually the reputation of the
original developer. Indeed, unaware users might install unauthorized (e.g. fake,
malicious, obsolete and deprecated) apps, which can potentially harm the device
and consequently the brand reputation of the copyright owner. There’s an ex-
ponential growth of virus and trojans able to attack commonly used devices [3].
It is quite easy to develop variants of well-known malware [2], and many pop-
ular security tools are not able to counteract common malware transformation
techniques [18].

In many cases, these malicious programs are disguised as popular apps spread-
ing via official or alternative market places (e.g. Amazon app store for Android3).
As an example [4], in July 2016 approximately two hundred mobile apps were
diffused as an official version of the Pokémon Go game,4 most of which being

3 https://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011
4 http://www.pokemongo.com/

https://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011
http://www.pokemongo.com/


malicious applications able to permanently lock the device. Other examples are
the PayPal App clones and counterfeits which aim at stealing the login data of
unaware users who accidentally update the original app to the malicious version.

Besides representing a risk for the end user, the spread of these applications
represents a serious threat even for the original service providers and developers.
Being directly or indirectly associated with harmful apps can cause users to give
up on their services, thus causing a reputational damage. That’s why the early
detection of these apps is becoming strategic from a Brand Protection point of
view [22]. Notice that the problem is relevant even in situations where there
are no security issues, but just the possibility of being associated with poorly
designed apps and services. For example, the mobile app BancoSaldo is a third-
party app providing many utilities for handling financial services of the Italian
postal service “Poste Italiane”. The whole app (UI and Logo) has been designed
to look a legitimate Poste Italiane product. Hence it’s easy for an end user to
confuse this app for an official one distributed by Poste Italiane, thus attributing
all the potential failures to Poste Italiane itself.

The problem is that typically, malicious, fake or obsolete apps spread via
unofficial channels (e.g. alternative marketplaces and app stores) accessible both
via regular and Dark Web and therefore they are difficult to be discovered. The
capability of identifying and monitoring alternative marketplaces both on Reg-
ular and Dark Web is an relevant and challenging task. These marketplaces are
extremely dynamic and often do not monitor the published apps, and typically,
they are advertised through social media posts. Notably, companies set up teams
of experts and specialized personnel to discover these alternative markets and to
inspect whether potentially harmful apps are available which can be associated
with them. Anyway, the whole process to detect unauthorized app stores is usu-
ally performed manually by exploiting suitable queries on well-known research
engines (e.g. by employing google hacking techniques) and they strongly rely on
the skills of the operator.

Defining semi-automatic monitoring protocols is crucial for effectively coun-
teracting the malicious mobile app diffusion, since it allows human operators
to analyze a wider web search space. Our main aim, in this work, is to pro-
pose an intelligent infrastructure for continuously monitoring and analyzing the
Web in order to detect alternative or unofficial marketplaces that may contain
unauthorized mobile apps.

The current literature has mainly focused on the problem of monitoring and
detecting malicious mobile apps, and little effort has been devoted to the detec-
tion of alternative markets.

To the best of our knowledge this is the first attempt to tackle this problem.
To summarize, the main contributions of this work are:

– A prototype platform for proactively discovering (alternative) app stores on
Regular and Dark Web;

– A learning approach for accurately classifying and ranking web pages ac-
cording the probability to be a real mobile apps marketplace (UASD).



The rest of the paper is organized as follows. After introducing some pre-
liminary concepts in Section 2, we present our solution approach for discovering
alternative app stores. An empirical analysis on a real case study is then dis-
cussed in Section 3. Finally, the section 4 concludes the paper and presents some
interesting future developments.

2 The UASD Framework

UASD stands for Unauthorized App Store Discovery , and it is a semi-automatic
machine learning approach that supports human operators recommending the
most likely alternative app stores in a (Dark) Web research space. UASD is
composed by three main macro components shown in Fig. 1: Information Re-
trieval, Knowledge Discovery and Interaction with the operator. The details of
the modules are as follows.
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Fig. 1. Logical flow of UASD.



2.1 Information Retrieval

Human experts devise a set of web queries by exploiting Advanced Google Search
Operators [1] or specify some URLs in order to identify possible alternative mobile
markets in regular Web or in the TOR network (Dark Web). Typically, these
queries contain keywords referring to the names of the most popular mobile op-
erative systems, app categories (such as e.g. “arcade games”, “puzzles”), specific
mobile apps or even mobile devices. The Information Retrieval module is fed
with these queries. Its task is to interpret them and extract the related pages.
The URL Retriever retrieves the URLs from the query results. If a URL belongs
to the TOR network, then a Tor Proxy allows the system to access the page in
the dark web and collect its content. At the end of this process a Knowledge
Base is populated with all the extracted pages in HTML format. The Web Page
Data Extractor allows to store in the Knowledge Base the html text (raw data)
contained in the selected web pages.

2.2 Knowledge Discovery

This component allows to learn a classification/prediction model from the data
(knowledge base) gathered by the information retrieval module. We can devise
three components in it.

Data Transformation. Collected data need to be transformed and filtered in
order to be provided as input to the machine learning process. A crucial step
for this task is performed by a Statistical Feature Extractor, that allows to
devise a set of (discriminative) structural features for each web page, denoted
as embedded attributes. These features are based on the assumption that
the Web can be modeled as a graph whose nodes are the web pages and edges
are the hyperlink references. Each node has a neighborhood composed by those
nodes that are directly linked to it. Hence, given a raw web page, the current
implementation of the Statistical Feature Extractor builds a set of discriminative
features (embedded attributes) based on target page’s neighborhood. Table 1
summarizes the main features extracted from the pages.

Besides the embedded attributes, content features can be extracted directly
from the HTML code of the page. Specifically, the page is described by the META
tags and the keywords belonging to its BODY (where HTML tags are removed).
The Data Preprocessing Module filters such a content and produces further
attributes: specifically, META tags are directly converted in (logical) relational
attributes, text extracted from the BODY is converted by exploiting Text Mining
techniques.

The merging of embedded attributes, meta tags and textual features repre-
sents the general schema upon which to characterize an extracted web page.

Prediction Model. The output of the Data Preprocessing Module is a Cleaned
Data Set that can be used for generating a classifier capable to discriminate



Table 1. Embedded attributes.

Attribute Description

isTorLink a boolean flag highlighting whether the
page was extracted from the Dark Web

NumberIntraDomainLinks the number of neighbors within the same
web domain of the target page

IntraDomainLinkPercentage the ratio between the
NumberIntraDomainLinks and the neigh-
borhood size

IntraDomainDistinctLinkPercentage similar to IntraDomainLinkPercentage

but distinct links are considered

NumberDownloads number of direct download links for apps
(e.g. .apk) or keywords (e.g. install) that
allow a user to get a mobile application

NumberKeywords Number of keywords typically included in
app stores (suggested by domain experts):
e.g. android, apk, ios, access, app, cate-
gories, market, price, best, popular, top,
rated, ios, windows phone, etc.

NumberDownloadFirstLevel the cumulative NumberDownloads for the
neighbors within the same domain of the
target page

NumberKeywordsFirstLevel the cumulative NumberKeywords for the
neighbors within the same domain of the
target page

between records corresponding to actual app store pages and records referring
to regular Web. UASD relies on an Ensemble classifier [9].

An Ensemble is a combination of two or more classifiers (typically at least
three) according to different strategies in order to achieve a better prediction:
the idea is that classification errors are less likely with several classifiers rather
than a single classifier. In literature different combination strategies have been
proposed, the most known of them are three: Bootstrap aggregation (bagging)
[5], Boosting [20] and Stacking [23]. In our solution, we use a stacking approach
since the amount of labeled data is limited. Small data sets are more prone to the
overfitting problem and it is well known from the literature that stacking is more
robust in this setting. The Stacking approach, also called stacked generalization,
is a two-step strategy. In the first step, several different classifiers, Base Learners,
are trained on the whole data set: each one of them will enrich the data with
its prediction. A new data set, often called Stacked-View, is then built by the



combination of all the predictions and the original data. The stacked-view is
provided as input for one last classifier, called meta-classifier. The prediction
process of a new record will follow two steps: firstly, the record will be equipped
with the base learners’ predictions, then the meta-classifier returns the final
prediction about the enriched record.
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Fig. 2. UASD Ensemble Model.

The structure of the stacking method adopted in UASD is shown in Fig.
2. We chose 9 different base learners, in order to promote the diversity of the
single predictions. These base learners are algorithms which work particularly
well in unbalanced scenarios (i.e. where a dominant class exists). This is exactly
the situation we cope with: the frequency of apps stores in the training data is
extremely lower than the regular web pages’ one. The complete list of the cho-
sen algorithms is the following: AODE [21], Hidden Naive Bayes [24], Maximum
Entropy [14], Mine Rule AODE [7], Mine Rule Naive Bayes [7], Bayesian Ap-
proach (Discretization) [10], Bayesian Approach (Kernel Transformation) [10],
Nearest Neighbors [8] and Logistic Regression [13]. The predictions of these base
learners are combined in a stacked view that feeds a Neural Network [16] as a
meta-learner.

Evaluation We assess the quality of the devised predictive engine by comput-
ing some accuracy metrics. As aforesaid, the discovering of novel app stores is
an unbalanced classification problem: the number of positive examples (actual
app store) is overwhelmed by the negatives (rest of the web pages). Different
evaluation metrics have been proposed in literature for testing the effectiveness
of classification models in presence of a rare class. Indeed, the usage of metrics
that do not adequately accounts for the rarity of such a minority class may lead
to overestimating the real capability of a classifier to correctly recognize the
instances of that class. Typically, some core metrics are based on the following



statistics: (i) True Positives (TP ), i.e. the number of positive cases correctly
classified as such; (ii) False Positives (FP ), i.e. the number of negative cases
incorrectly classified as positive; (iii) False Negatives, i.e. the number of positive
cases incorrectly classified as negative; and (iv) True Negatives, i.e. the number
of negative cases correctly classified as such.

We exploit such statistics to compute the standard Precision (P ) and Recall
(R) measures[6] on the minority class, in order to support fine grain analyses on
the misclassification errors made over those instances:

Prec = TP
TP+FP

Rec = TP
TP+FN

The F-measure, defined as

F1 =
2 ∗ Prec ∗ Rec

Prec + Rec

represents the harmonic mean of the above measures and it is used to combine
them in a single score [19].

2.3 Human Interaction and Incremental Learning

The set up phase is the initial process of the system, during which the first model
is generated. This phase requires a small seed set of manually labeled web pages.
The overall process is monitored by human experts, as described in Fig. 3 which
represents the steady and operational states of the system. An operator defines
a set of queries and selects a set of target links to submit to the URL Retriever.
Relevant data is extracted and preprocessed from the links, and the resulting
pages are submitted to the prediction engine which performs the prediction and
sorts the pages according to their likelihood to represent a marketplace. The list
is returned to the operator, and her feedbacks are again exploited to enrich the
original training data and consequently update the prediction model.

3 Experimental Evaluation

In this section, we discuss the experiments carried out on a real application
scenario. The scenario and the data at hand are discussed first. We next discuss
the setting adopted to evaluate the quality of discovered models and evaluate
the results of the performed test.

Case Study. The evaluation is performed on a crawl of 440 pages examined by
domain experts at Poste Italiane. Within these, 40 web pages represent actual
app stores and the remaining pages represent normal sites. The pages under-
went the preprocessing module and a final dataset characterized by the feature
described in Section 2 was created.
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Fig. 3. Interaction with the operator.

The dataset clearly devises an unbalanced classification problem where the
number of examples, belonging to the class of interest, is significantly lower
than the majority class. The data preparation phase generates almost 12,000
attributes (mostly textual features and META tags), which are further prepro-
cessed by the feature evaluator and consequently reduced to approximately 3,000
relevant attributes.

Performance Measures and Evaluation Setting. The model evaluation is accom-
plished relying on Stratified 10-fold Cross Validation [17], and measuring Pre-
cision (i.e., confidence of a prediction), Recall (i.e., coverage of a prediction)
and F-Measure (the harmonic mean between precision and recall, also called
F1-Score) [15].

Experimental Results. The purpose of the analysis is twofold.

– First, we aim at evaluating the role of the embedding attributes. Under this
perspective, we evaluate the performance of the base classifiers by consider-
ing the full set of features and by excluding the embedding attributes.

– Second, we evaluate the role of the stacking architecture. In principle, the
addition of a further level where the set of available features is enriched
should allow to better balance the prediction.

In the context we are analyzing, the objective is to obtain a good balance
between precision and recall with regard to the minority class label. In fact,



the aim is to increase the number of covered marketplaces by simultaneously
minimizing the number of false positives, i.e. the incorrect suggestions to the
operator. In this respect, F1 − Score represents a good choice to evaluate the
performance of the classification model.

Table 2. Evaluation of F1 − Score, Precision and Recall on base models compared to
UASD.

Use embedded attributes Model F 1-Score Precision Recall

N

AODE 0,712 0,788 0,650
Hidden Naive Bayes 0,687 0,852 0,575
Max-Ent 0,693 0,743 0,650
Mine Rule AODE 0,699 0,674 0,725
Mine Rule Naive Bayes 0,658 0,694 0,625
Bayesian Approach (Discretization) 0,692 0,711 0,675
Bayesian Approach (Kernel Transformation) 0,687 0,917 0,550
Nearest Neighbors 0,667 0,846 0,55
Logistic Regression 0,694 0,781 0,625

Y

AODE 0,740 0,818 0,675
Hidden Naive Bayes 0,722 0,813 0,650
Max-Ent 0,707 0,690 0,725
Mine Rule AODE 0,690 0,659 0,725
Mine Rule Naive Bayes 0,700 0,700 0,700
Bayesian Approach (Discretization) 0,725 0,725 0,725
Bayesian Approach (Kernel Transformation) 0,725 0,862 0,625
Nearest Neighbors 0,694 0,781 0,625
Logistic Regression 0,743 0,867 0,650

UASD Approach 0,757 0,824 0,700

In Table 2 we report the results of this analysis. The role of the embedding
attributes can be clearly appreciated and it increases the general performance
of the base classifiers by 5%. The stacker is also a winner in the evaluation, as
its adoption further boost the prediction quality.

3.1 UASD in action

UASD is currently employed by a Poste Italiane expert team to monitor the
introduction of potentially harmful apps. The platform, integrated in MASM5 an
advanced security system for the analysis of mobile apps, provides the operator
with a set of graphical tools for querying the recommendation engine which
returns a ranked list of URLs ordered according the estimated probability to be
a market.

In figure 4, we show an example screenshot, where the result of a specific
query returns a set of potentially matching (unknown) marketplaces. Within
the figure, we can notice the first four matches, representing three true posi-
tive examples (with a probability above 97%) and a false positive example (the
wikipedia page for “app store” deemed as an app store with probability 60%).

5 http://www.posteitaliane.it/en/innovation/technology_centre/certcyb.

shtml
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It is interesting to highlight that the latter contains many terms that typically
characterize an actual marketplace and exhibits a similar structure in terms of
intra-domain links, and at the same time the lack of other embedded features
(such as direct download links to apk) lowers the positiveness of the likelihood.

Fig. 4. Dashboard of MASM integrating UASD.

4 Conclusion

Detecting malicious behaviors of mobile apps is a challenging task and it com-
prises a continuous monitoring of the apps available in marketplaces. Most of the
current approaches assume prior knowledge about the marketplaces to be mon-
itored. Due to the continuous growth and dynamism of mobile app providers,
identifying these app stores is becoming a difficult and time-consuming task. In
this work, we propose a semi-automatic machine learning approach based on a
suitable set of (derived) discriminative features and an ensemble learning method
for discovering alternative mobile app marketplaces. Our approach has been im-



plemented in a prototype platform for the proactive searching of marketplaces
both on Regular and Dark Web, called UASD.

UASD provides a list of URLs (extracted from a set of queries defined by
the Human operator) sorted according the probability to be an actual app store,
then, the operator can evaluate the provided URL list. The platform has been
integrated as a service of MASM, an advanced security system for the analysis
of mobile apps that is developed and currently employed by Poste Italiane. Ex-
perimental findings on a real use case confirm that our approach is effective in
identifying these marketplaces.

As future work, we plan to investigate the possibility to use Deep Learning
approaches [11] to automatically discover higher-level features from raw data.
This could allow to extract further discriminative features that are difficult to be
manually defined. Moreover, we want to investigate the possibility to equip our
approach with some collective mining techniques, e.g. [12], in order to exploit
other informations related to the structure of the web page links.
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