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(Extended Abstract)

Abstract. High-throughput sequencing technology led significant ad-
vances in functional genomics, giving the opportunity to pay particular
attention to the role of long non-coding RNAs (lncRNAs) in the devel-
opment of human diseases. In this paper, we propose a computational
approach, based on heterogeneous clustering, which is able to predict
possibly unknown lncRNA-disease relationships by analyzing complex
heterogeneous networks consisting of several interacting biological en-
tities of different types. Results obtained by preliminary experiments,
performed on an integrated dataset about microRNAs, lncRNAs, dis-
eases and genes, show that the proposed method is able to obtained
better results with respect to an existing method.

1 Introduction

High-throughput sequencing technology, alongside new computational methods,
has been crucial for rapid advances in functional genomics. Among the most
important results achieved by exploiting these new technologies, there is the
discovery of thousands of non-coding RNAs (ncRNAs) whose function is pivotal
for the fine-tuning of the expression of many genes [3]. Therefore, in the last
decade, the number of papers reporting evidences about ncRNAs involvement
in human complex diseases, such as cancer, has grown at an exponential rate.
Among the different classes of ncRNAs, the most investigated one is that of
microRNAs (miRNAs), which are small molecules that regulate the expression of
genes through the modulation of the translation of their transcripts [7]. Much less
is known about the functional involvement of long non-coding RNAs (lncRNAs),
that have been recently discovered to have a plethora of regulatory functions
[11]. However, the number of lncRNAs for which the functions are known is still
quite poor. Thus, assessing the role and, especially, the molecular mechanisms
underlying the involvement of lncRNAs in human diseases, is not a trivial task.

In the last few years, there were some attempts to computationally predict
the relationships among biological entities, such as genes, miRNAs, lncRNAs,
diseases, tissues, etc. An example can be found in [14], where the authors pro-
pose an approach to learn to combine the outputs of several algorithms for the



prediction of miRNA-gene interactions. A more sophisticated approach has been
proposed in [4], where the authors adopt the multi-view learning framework for
the reconstruction of gene-gene interaction networks.

Focusing on the identification of relationships involving diseases, in [15] the
authors propose a method to identify possible relationships between lncRNAs
and diseases, by exploiting a bipartite network and a propagation algorithm.
Analogously, in [1] the authors propose the method ncPred which exploits a
tripartite graph representing known ncRNA-gene and gene-disease associations.
Such a graph is analyzed by adopting a multi-level resource transfer technique
that, at each step, takes into account the resource transferred in the previous
one. For each detected interaction, the algorithm associates a score indicating its
degree of certainty. Both these methods, however, cannot exploit additional in-
formation associated with the involved biological entities as well as other entities
that are related to the considered ones (e.g., genes, miRNAs, tissues, etc.).

In this paper, we present a novel method for the identification of previously
unknown relationships between diseases and lncRNAs, which is based on a het-
erogeneous clustering approach. In particular, the proposed method is able to
analyze heterogeneous networks, where nodes are biological entities (each asso-
ciated with their own features) and edges represent known relationships among
them (see Figure 1). Then, the identified clusters are exploited to predict the pos-
sible existence of unknown relationships between lncRNAs and diseases falling
in the same clusters. This approach is motivated by the fact that lncRNAs and
diseases will fall in the same clusters if they appear similar according to their
features and their relationships with the other analyzed entities. Therefore, the
main advantage of the approach proposed in this paper comes from its abil-
ity to globally take into account the complex network of interactions involving
different biological entities. Moreover, the proposed algorithm is designed to
identify possibly overlapping and hierarchically organized clusters, since i) the
same lncRNA/disease can be involved in multiple networks of relationships and
ii) as shown in [12], clusters at different levels of the hierarchy can describe more
specific or more general relationships and cooperation activities. In the following
section, we briefly describe the proposed heterogeneous clustering method and
its exploitation to identify unknown lncRNA-disease relationships, while in Sec-
tion 3 we report the results of some preliminary experiments. Finally, in Section
4, we draw some conclusions and outline the ongoing work.

Fig. 1. An example of a heterogeneous network, where different shapes represent dif-
ferent node types. Circles represent possible heterogeneous clusters.



2 Method

In the following, we introduce the notation and some useful definitions.

Def. 1 (Heterogeneous network). A heterogeneous network is a network
G = (V,E), where V is the set of nodes and E is the set of edges among nodes,
where both nodes and edges can be of different types. Moreover:

– each node v′ ∈ V is associated to a single node type tv(v′) ∈ T , where T is
the finite set {Tp} of all the possible types of nodes in the network;

– each node type Tp implicitly defines a subset of nodes Vp ⊆ V ;
– a node type Tp defines a set of attributes Xp = {Xp,1, Xp,2, . . . , Xp,mp

};
– an edge e between two nodes v′ and v′′ is associated to an edge type Rj ∈ R,

where R is the finite set {Rj} of all the possible edge types in the network.
Formally, e = 〈Rj , 〈v′, v′′〉〉 ∈ E, where Rj = te(e) ∈ R is its edge type;

– an edge type Rj defines a subset of edges Ej ⊆ (Vp × Vq) ⊆ E;
– node types T are partitioned into Tt (target), i.e. considered as target of

the clustering/prediction task, and Ttr (task-relevant). Only nodes of tar-
get types are actually clustered and considered in the identification of new
relationships, on the basis of all the nodes.

Def. 2 (Heterogeneous cluster). We define a heterogeneous cluster, or multi-
type cluster, as G′ = (V ′, E′), where: V ′ ⊆ V ; ∀v′ ∈ V ′, tv(v′) ∈ Tt (nodes in
the clusters are only of target types); E′ ⊆ (E ∪ Ê) is a set of edges (among the
nodes in V ′) belonging either to E or to a set of edges Ê containing extracted
edges, which relate nodes that are not directly connected in the original network.

Def. 3 (Hierarchical organization of clusters). A hierarchy of heteroge-
neous clusters is defined as a list of hierarchy levels {L1, L2, . . . , Lk}, each of
which consisting of a set of heterogeneous and possibly overlapping clusters.

In this specific application domain, target nodes are those representing lncRNAs
and diseases. Therefore, we distinguish two distinct sets of nodes Tl and Td,
representing the set of lncRNAs and the set of diseases, respectively. Our task
then consists in the identification of a hierarchy of clusters {L1, L2, . . . , Lk} and
of a function ψ(w) : Tl × Td → [0, 1] for each hierarchy level Lw, which, for
each lncRNA-disease pair, returns a score indicating its degree of certainty. In
the following, we describe our solution consisting of three steps: identification
of the strength of relationships among nodes in Tl and Td, identification of a
hierarchy of heterogeneous clusters, and identification of the functions ψ(w) for
the prediction of previously unknown relationships.

2.1 Identification of the strength of the relationship among nodes

We first estimate the strength of the relationship of all the possible lncRNA-
disease pairs: for each pair (li, dj), we compute the score s(li, dj) by analyzing the
indirect relationships in which the considered lncRNA and disease are involved.

The score of a lncRNA-disease pair (li, dj) is computed by identifying and an-
alyzing c shortest paths that connect them in the heterogeneous network. In par-
ticular, for each path P between li and dj , we compute a score pathscore(P, li, dj)



representing the strength between li and dj following the path P . It is noteworthy
that several paths can be identified between two objects in the network, possibly
with unlimited length (in presence of cycles). Therefore, the score associated to
the pair is computed as the maximum score obtained over the c shortest paths.
This choice guarantees us to catch the strongest interaction between the objects.

Each path P is represented as a finite set of sequences of nodes. If a sequence
in P connects li and dj , then pathscore(P, li, dj) = 1. Otherwise, it is computed
as the maximum similarity between the sequences which start with li and the
sequences which end with dj . The similarity between two sequences seq′ and
seq′′ is computed according to the attributes of all the nodes involved in the
two sequences. Following [6], the similarity between two values of a numerical

attribute x is computed as 1 − |valx(seq
′)−valx(seq′′)|

maxx−minx
(minx and maxx are the

minimum and maximum values, respectively, observed for the attribute x). If x
is not numeric, then sx(seq′, seq′′) = 1 if valx(seq′) = valx(seq′′), 0 otherwise.

Nodes belonging to node types that are not involved in any path are aggre-
gated according to the arithmetic mean for numeric attributes and the mode for
attributes of any other type, and are associated to the nodes connected to them.

2.2 Building a hierarchy of heterogeneous clusters

Once all the possible pairs are identified, each associated with its strength score,
we first build a set of (possibly overlapping) clusters in the form of cliques to be
used in the subsequent step. A cluster is in the form of a clique if all the lncRNA-
disease pairs in the cluster have a score above a given threshold β ∈ [0, 1]. The
algorithm consists of the following steps:

i) A filtering phase which keeps only the pairs with a score greater than (or
equal to) β. The result is the subset of pairs {(li, dj)|s(li, dj) ≥ β}.

ii) Building of a set of cliques, each consisting of a pair in {(li, dj)|s(li, dj) ≥ β}.
iii) A process that iteratively merges two clusters G′ and G′′ into a new cluster

G′′′. The initial set of clusters is regarded as a list and is sorted according to
an ordering relation <c that reflects the quality of the clusters. Each cluster
G′ is merged with the first cluster G′′ in the list leading to a merged cluster
G′′′ which still is a clique. This step is repeated until no more merging can
be performed. The obtained result is the first hierarchy level L1.

The ordering relation<c is based on the cohesiveness, which is defined as: h(G) =
1

|pairs(G)| ·
∑

(li,dj)∈pairs(G) s(li, dj). Formally, G′ <c G
′′ ⇐⇒ h(G′) > h(G′′).

Once the first level L1 of the hierarchy has been identified, the other levels
are built by evaluating whether some pairs of clusters (cliques, in L1) can be
reasonably merged. The approach is similar to that used to obtain the first level
of the hierarchy. The main difference is that, instead of working on cliques, we
work on generic clusters, where the strength score associated to each pair is
not necessarily greater than β. Due to this difference, and inspired by [12], two
clusters G′ and G′′ are merged into a cluster G′′′ if h(G′′′) > α, where α is a user



defined threshold. Note that low values of α lead to a higher number of mergings
and, accordingly, to less clusters containing a higher number of objects.

We repeat the process until no merging is possible and return the obtained
hierarchy of heterogeneous clusters {L1, L2, . . . , Lk}, according to Def. 3.

2.3 Prediction of unknown relationships

After building the hierarchy of clusters, we identify possibly unknown relation-
ships for each level of the hierarchy. In particular, the prediction is performed
by assigning each possible lncRNA-disease pair with the score computed as the
cohesiveness of the cluster in which it falls, which intuitively represents the
certainty of the relationship. When a lncRNA-disease pair appears in multiple
clusters, we combine the cohesiveness of the set of clusters to obtain the final
score. Baseline combination strategies can be the maximum, the minimum and
the average. In this work, we propose to adopt a different combination function,
which rewards those cases in which the pair appears in several highly cohesive
clusters (indicating a higher degree of certainty). In details, inspired by evidence

combination (EC) strategy proposed in [10], given C
(w)
ij = [C1, C2, . . . , Cm], the

list of the clusters in which the lncRNA li and the disease dj fall in the w-th
hierarhical level, ψ(w)(li, dj) is recursively computed as ec(Cm), where:

ec(C1) = h(C1)
ec(Cm) = ec(Cm−1) + [1− ec(Cm−1)] · h(Cm)

3 Experiments

The proposed method has been implemented in the system LP-HCLUS (Link
Prediction through Heterogenous CLUStering). We performed some preliminary
experiments to evaluate the effectiveness of the proposed approach on a com-
plex biological dataset containing data about lncRNAs, miRNAs, genes and
diseases, as well as their known interactions and relationships. Such a dataset,
whose schema is depicted in Figure 2, has been built by integrating several
existing biological datasets: lncRNA-disease relationships and lncRNA-gene in-
teractions are taken from [5]; miRNA-lncRNA interactions are taken from [8];
disease-gene relationships are taken from DisGeNET [2]; miRNA-gene interac-
tions and miRNA-disease relationships are taken from miR2Disease [9]. The
obtained dataset consists of 7050 diseases, 507 lncRNAs, 508 miRNAs, 94527
genes, 953 interactions between diseases and lncRNAs, 2877 interactions be-
tween diseases and miRNAs, 26522 interactions between diseases and genes, 70
interactions between lncRNAs and miRNAs, 252 interactions between lncRNAs
and genes, and 803 interactions between miRNAs and genes.

As a competitor system, we considered a biclustering algorithm, called HOC-
CLUS2 [12], which is tailored to work with two types of nodes and that also
builds a hierarchy of clusters. We fed HOCCLUS2 with the set of lncRNA-disease
scores computed by LP-HCLUS, since, in its original form, it is not able to an-
alyze a complex heterogeneous network. Following the results in [12], for both
LP-HCLUS and HOCCLUS2, we set β = 0.2 and α = 0.0. Note that α = 0.0 let



Fig. 2. UML representation of the heterogeneous network used in the evaluation.

Fig. 3. TPR obtained considering the top-k relationships by varying the threshold.

the algorithm proceed until it reaches a single cluster containing all the objects.
However, we consider only the first 3 levels of the identified hierarchies which,
according to [12], lead to the best results.

We adopted the 10-fold cross validation on the set of known lncRNA-disease
relationships. Due to the absence of negative examples, we averaged the results
obtained in terms of True Positive Rate, defined as TPR = TP

TP+FN , where TP is
the number of validated lncRNA-disease relationships that were predicted with
a score greater than the threshold, and FN is the number of validated lncRNA-
disease relationships that were predicted with a score lower than the threshold.

Inspired by [13], in which the authors performed a similar evaluation in the
absence of negative examples, we vary the value of such a threshold and plot



Threshold
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

l1 HOCCLUS2 0.490 0.486 0.452 0.427 0.396 0.345 0.208 0.063 0.020 0.014

l1 LP-HCLUS AVG 0.452 0.452 0.450 0.447 0.396 0.257 0.002 0.000 0.000 0.000
l1 LP-HCLUS MAX 0.452 0.452 0.450 0.450 0.423 0.391 0.094 0.005 0.000 0.000
l1 LP-HCLUS MIN 0.452 0.452 0.450 0.381 0.208 0.110 0.000 0.000 0.000 0.000
l1 LP-HCLUS EC 0.452 0.452 0.450 0.450 0.448 0.447 0.439 0.427 0.400 0.362

l2 HOCCLUS2 0.490 0.486 0.452 0.427 0.396 0.345 0.208 0.063 0.020 0.014

l2 LP-HCLUS AVG 0.470 0.470 0.470 0.458 0.371 0.080 0.000 0.000 0.000 0.000
l2 LP-HCLUS MAX 0.470 0.470 0.470 0.467 0.436 0.389 0.047 0.000 0.000 0.000
l2 LP-HCLUS MIN 0.470 0.470 0.470 0.329 0.067 0.013 0.000 0.000 0.000 0.000
l2 LP-HCLUS EC 0.470 0.470 0.470 0.467 0.467 0.463 0.456 0.445 0.429 0.398

l3 HOCCLUS2 0.490 0.486 0.452 0.427 0.396 0.345 0.208 0.063 0.020 0.014

l3 LP-HCLUS AVG 0.474 0.474 0.474 0.467 0.336 0.007 0.000 0.000 0.000 0.000
l3 LP-HCLUS MAX 0.474 0.474 0.474 0.472 0.445 0.378 0.014 0.000 0.000 0.000
l3 LP-HCLUS MIN 0.474 0.474 0.472 0.217 0.013 0.004 0.000 0.000 0.000 0.000
l3 LP-HCLUS EC 0.474 0.474 0.474 0.472 0.470 0.467 0.461 0.456 0.450 0.427

Table 1. TPR obtained by HOCCLUS2 and LP-HCLUS at different hierarchical level.

a graph where each point represents the TPR obtained by selecting the top-k
identified relationships (known as recall@k in the information retrieval context).

From the results reported in Table 1 and from the graphs depicted in Figure
3, LP-HCLUS is able to outperform HOCCLUS2 in all the hierarchical levels
when we use the EC combination function. In particular, focusing on Figure
3, we can observe that LP-HCLUS with the EC measure needs to identify less
relationships to achieve a given True Positive Rate. Moreover, EC leads to better
performances also when compared with the other combination strategies, whose
performances are often worse than HOCCLUS2. As expected, the min strategy
is the most conservative, the max strategy shows a trend which is similar to
HOCCLUS2, while avg strategy is always in the middle between min and max.

As a final remark, we remind that HOCCLUS2 was able to obtain comparable
results since we provided it with the lncRNA-disease scores computed by LP-
HCLUS. For this reason, we are performing experiments with other competitors
to evaluate the contribution of the heterogeneous data on the final results.

4 Conclusions

In this work, we proposed the method LP-HCLUS, based on heterogeneous clus-
tering, which is able to predict possibly unknown lncRNA-disease relationships,
that can be exploited for better understanding the role of lncRNAs in the devel-
opment of human diseases. Preliminary experiments showed that the proposed
method, especially when adopting the strategy based on evidence combination,
is able to outperform the algorithm HOCCLUS2. We are currently performing
additional experiments in order to understand the effectiveness of the proposed
approach when compared to further competitor systems, as well as to under-



stand the real contribution provided by the analysis of heterogeneous data in
the identification of relationships between biological entities.
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