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Abstract. Semantic subgroup discovery leverages the background knowl-
edge in form of ontologies to augment the subgroup discovery process.
The input for such methodology normally consists of manually created
classes of instances, provided by domain experts. We present an algo-
rithm we termed CBSSD (community-based semantic subgroup discov-
ery), which identifies possible classes of instances based on structural
properties of complex networks related to the studied phenomenon. Fur-
thermore, obtained classes are used in the process of semantic subgroup
discovery. The application of the developed procedure is demonstrated
on two motivating examples from the field of molecular biology.
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1 Introduction

Modern machine learning approaches are capable of using ever-increasing amounts
of information to explain complex phenomena from the fields of biology, sociol-
ogy, mechanics and electrical engineering. As there can be many distinct types
of data associated with a single phenomenon, novel approaches strive towards
integration of different, heterogeneous data sources into unified models. Aim of
this work is to propose a methodology, where iteratively constructed complex
networks are used to identify relevant subgroups, which are used as input for
the process of semantic subgroup discovery. We demonstrate that new knowledge
can be obtained using existing, freely accessible heterogeneous data in form of
complex networks and ontologies.

In further sections we introduce the notions of background knowledge in ma-
chine learning, ontologies, complex networks, and semantic subgroup discovery.
We continue with an in-depth explanation of the proposed approach. Finally,
we demonstrate the use of proposed methodology on two datasets from the life
science domain, where complementarity with existing enrichment analysis tools
is demonstrated.

2 Using background knowledge in machine learning

Modern machine learning (ML) methodology is becoming more complex, as the
size and the speed of incoming data increases exponentially. In such settings,
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prior knowledge can play a big role in the development and deployment of learn-
ing algorithms in a real world setting. Background knowledge can come in many
forms, which introduces additional complexity to the modeling process, yet can
have a large impact on the model’s performance. For example, Bayesian method-
ology is can be leveraged to incorporate knowledge about prior states of a system
- prior distributions of random variables being modeled. In the Bayesian setting,
the prior knowledge is incorporated via conditional probabilities and the Bayes’
rule. The posterior probability of event A, given event B can be described as

P (A|B) = P (B|A)P (A)
P (B) , where the P(B) is a normalizing constant, normally left

out, so the equation becomes P (A|B) ≈ P (B|A)P (A). Methodology from differ-
ent fields already uses similar approaches for solving ML problems. For instance,
Madahian et al. [22] report a method, where the general linear model was devel-
oped to aid gene expression profiling. They achieved better predictive accuracy
by using prior knowledge based on the index rank of the term ”cancer” in un-
derlying background knowledge. Bayesian methodology is also in widespread use
in the field of phylogenetics, where Bayesian inference is used for reconstruction
of evolutionary trees [10, 15, 32]. Another machine learning discipline, which re-
lies heavily on the use of background knowledge is inductive logic programming
(ILP) [20]. In ILP, background knowledge is used along with examples to derive
logical programs, which cover all positive examples.

2.1 Ontologies

Background knowledge can also be introduced to the model using curated do-
main knowledge in the form of ontologies. An ontology can be represented as
a data structure consisting of semantic triplets T (S, P,O), which represent the
subject, its predicate and the targeted object. Resource description format hy-
pergraph (RDF) is a data model commonly used to operate at the intersec-
tion of data and the ontologies. There are many existing approaches, which use
background knowledge in the form of an ontology to obtain either more accu-
rate or more general results [9]. First, knowledge in the form of ontologies can
represent constraints, specific to a domain. It has been empirically and theo-
retically demonstrated, that using background knowledge as a constraint can
improve general classification performance [3]. The RDF framework provides
the necessary formalism to leverage the graph-theoretic methods for ontology
exploration. Random walk approach and large scale sampling are some of the
techniques used to discover indirectly associated biological terms [21]. Semantic
clustering is an emerging field, where semantic similarity measures are used to
determine the clusters using the background knowledge [14], in a manner similar
to, for example, k-means family of clustering algorithms. Semantic clustering is
frequently used in the area of document clustering [14]. Performance gains in
precision, consistency of results and recall were reported for many text mining
algorithms [16]. Large databases in the form of RDF triplets exist for many
domains. For example, the Bio2RDF project [4] aims at integrating all major
biological databases and joining them under a unified framework, which can be
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queried using SPARQL - a specialized query language. In this sense, Bio2RDF
serves as an integrated database of biological information, yet there remain op-
portunities to exploit the aggregated knowledge.

2.2 Complex networks

Many natural phenomena can be described using graphs. Complex networks are
graphs with distinct, real world topological properties [7]. They can be used to
model physical, biological, chemical and mechanical systems [25]. Real world
networks can be characterized with distinct statistical properties regarding their
node degree distribution, component distribution or connectivity [29]. Complex
biological and social networks are also known to include many communities –
smaller, distinct units of a network [11].

2.3 Semantic subgroup discovery (SSD)

Subgroup discovery is a machine learning discipline which can be described as
a combination of supervised and unsupervised learning. Subgroup discovery in
general can be considered as a part of rule learning paradigm. Algorithms expect
a labeled training set, where class labels are used to denote the groups for which
descriptive rules are to be learned. Subgroup discovery was extended to semantic
subgroup discovery (SSD) [31, 30, 19], where the semantic learner, apart from
experimental data, also leverages background knowledge in the form of ontologies
in order to guide the rule learning process. The Hedwig algorithm [1, 31] for
example, accepts the input in form of ontologies and instances, grouped into
target classes. Individual instances are mapped into the ontology domain, where
Hedwig is capable of using arbitrary ontology to identify latent relations between
individual instances.

3 Methodology

In this following section we describe a three step approach for semantic subgroup
discovery from complex networks we termed CBSSD (community-based seman-
tic subgroup discovery). Proposed approach operates on a list of terms connected
with the studied phenomenon. The steps include: network construction, commu-
nity detection and semantic subgroup discovery. The proposed methodology is
depicted in Figure 1.

Constructing the network of associations A list of relevant biological
terms is used to construct a term network. The network is constructed using
the BioMine methodology [12]. Individual terms are used as seeds for crawling
the BioMine knowledge graph, which already includes term associations across
main biological databases, such as UniProt [8], Kegg [18], and GenBank [5]. Fi-
nal knowledge graph is constructed incrementally, by querying one term at a
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Fig. 1. Schematic representation of the proposed CBSSD procedure. A complex graph’s
communities are used to identify possible subgroups in the input term list. The sub-
groups are further explained using semantic subgroup discovery with background
knowledge.

time. The final result is a set of graphs {G1, . . . , Gn}, where n is the number
of total query terms and, for each i, Gi = (Vi, Ei). In order to obtain the final
graph Gf , node and edge information from {G1, .., Gn} is joined into a single
graph. Throughout the network construction process, nodes and edges can not
be duplicated - once the node is present in the final graph, only new edges can
be added. Final set of nodes Vf thus equals

⋃n
i=1 Vi and final set of edges Ef

similarly equals to
⋃n

i=1Ei.

Subgroup identification using community detection Once the network is
constructed, network community detection is used to identify interesting subsets
of the network, which are directly mapped to groups within the input query list.
We use the Louvain algorithm [6], which is based on the network modularity
measure [24], defined for split into two modules (mi and mj) as:

ξ =
1

2m

n∑
i=1

n∑
j=1

[
Ai,j −

didj
2m

]
mimj + 1

2
(1)

where the ξ represents the modularity, m the number of all edges, A the adja-
cency matrix (i.e., Aij is equal to 1 if the i-th and j-th node are connected and 0 if
they are not), and di is the degree of node ui. The term mi represents a member-
ship function which returns 1 if a specific node is present in the observed module
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and −1 otherwise. The final community partition includes all nodes. The Lou-
vain algorithm is one of the most scalable community detection methods due to
its O(nlog(n)) time complexity. For this step, the constructed knowledge graph
was interpreted as an undirected graph, which is a feasible assumption as long
we are interested only in biological associations. The community detection pro-
cedure returns sets of nodes C1...n, representing individual communities. Each
node in the network belongs to exactly one community (i.e., the communities
are non-overlapping). We are interested in finding subgroup descriptions of these
communities. In order to do this, each community Ci becomes a class label Ti.
The terms from the input list are partitioned to individual classes according to
the community they belong in. This way, input terms are grouped into distinct
classes, yet no additional terms are added as they could introduce unnecessary
noise in the semantic subgroup discovery step.

Preparation of the background knowledge Semantic rule requires the data
to be encoded in the form of semantic triplets T (S, P,O), where S is the sub-
ject, P the predicate and O the object. The experimental data from the previous
step was converted to triplets in accordance with Hedwig, the algorithm used
in the rule discovery process [31]. Hedwig is capable of leveraging the back-
ground knowledge in form of ontologies to guide the rule construction process.
As the CBSSD methodology is primarily developed for the field of bioinformat-
ics, our main source of background knowledge in this study is the Gene ontology
[2] database, one of the largest semantic resources for biology. It includes tens
of thousands of terms, which together form a directed acyclic graph, directly
usable by SDM tools. For Hedwig to generalize, two conditions must be met.
First, individual term names from the community detection step need to have
the corresponding GO term associations, and second, the whole gene ontology
must be provided as a source of background knowledge. This step requires dis-
covered communities to be encoded in form of semantic triplets. Such encoding
is achieved by treating the observed community as an individual target class,
where all of its terms are considered as instances of that class. The key aspect
of the rule generation procedure is the definition of the predicate, which will be
used for finding suitable rule conjunctions. By convention, we use the subClassOf
predicate when constructing the knowledgebase for Hedwig algorithm. Individual
rules’ p-values are determined by Fisher’s exact test, a non-parametric, contin-
gency table-based procedure, where a difference in coverage between two rules
is leveraged to select the better one.

4 Applications of the developed procedure

In this section, we demonstrate the use of the proposed methodology on two real
datasets from the life science domain. First, we consider properties of amino-
acid variants within protein binding sites, followed by proteins identified in the
context of epigenetics.
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Fig. 2. Final size of the BioMine network, associated with polymorphisms located
within protein interaction sites. Image A) contains the multiplex view of the final
network and B) the network modules in using standard, force-directed layout.

4.1 Properties of proteins with single amino-acid variants present
in the binding sites

Sequence variants are nucleotide or amino acid substitutions, that can lead to
unstable protein interaction complexes and thus influence the organism’s phe-
notype (e.g., induce a disease state). There are two main types of variants, poly-
morphisms or germ-line variants, which are heritable, and somatic mutations,
which appear in somatic tissues without previous genetic encoding. Although
it was demonstrated that variants within biological interactions can be asso-
ciated with disease occurrence [27, 28, 26, 17], currently there are no studies
which would study this phenomenon to discover new subgroups of proteins as-
sociated with variants within interaction sites at a more general level. We use
results from a previous enrichment analysis study [27] for comparison with the
proposed methodology. Results are compared based on terms appearing in both
approaches, i.e. terms found as a result of enrichment analysis as well as as
a result of semantic subgroup discovery. As the two approaches compared are
fundamentally different, intersection of both results is expected to be relatively
small (only very significant terms).

Preparing the input for semantic subgroup discovery More than 300
UniProt terms, for which variants were found within protein binding sites were
used as the input query list (found in supplementary material of [27]). A BioMine
network with more than 1,650 nodes and 2,300 edges was constructed. The
resulting network is depicted in Figure 2 using two possible visualizations.
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Table 1. Gene ontology terms, found both in enrichment and semantic rule learning
process. Terms marked with ”*” are statistically significant (p < 0.1) and therefore the
most relevant for semantic subgroup discovery.

Gene ontology term Meaning

GO:0000077 DNA damage checkpoint*
GO:0000086 Mitotic cell cycle*
GO:0003677 DNA binding*
GO:0004871 Signal transducer activity*
GO:0005730 Nucleolus*
GO:0005814 Centriole
GO:0016020 membrane
GO:0016605 PML body
GO:0030018 Z-disc
GO:0035264 Multicellular organism growth
GO:0045892 Negative regulation of transcription (DNA)
GO:0000122 Negative regulation of transcription (RNA)
GO:0000785 Chromatin

Triplet construction consists of first mapping the nodes from the knowledge
graph to associated ontology terms, and second, the construction of the back-
ground knowledge. For this demonstration, gene ontology [2] was used in both
steps. Semantic subgroup discovery was conducted for more than 20 communi-
ties, and as the main result, more than 100 rules of various lengths were obtained.
The most significant and the longest rules were manually inspected to identify
possible overlap with previous pathway enrichment studies done on the same
input dataset. Different beam sizes were experimented with in the procedure
(from 10 to 50).

Results The obtained rule-sets for identified communities were further investi-
gated. We directly compared the ontology terms present in the rules with terms,
identified as significant in our previous study [27]. For this näıve comparison,
conjuncts were considered as individual entries, as we were only interested in
term presence (not coverage). There were 13 gene ontology terms present in
both approaches (Table 1).

Although only 13 terms were found with both procedures, the identified terms
were among the most significant ones detected in the enrichment analysis set-
ting. This indicates, that both procedures identified a strong signal related to
DNA and cell cycle related processes. As semantic subgroup disovery was con-
ducted for separate communities, the results were expected to be more detailed
and comprehensive. This was indeed the case: there were many rules consisting
of two conjuncts, such rules can be more informative than the ones identified by
ontology enrichment analysis. As iron binding proteins were present in the pro-
tein list (this was known from the previous study [27]), a rule R = GO:0034618
∧ GO:0006874 appeared as one of the most significant rules (p < 0.1). Ontology
terms in this rule represent arginine binding and cellular calcium homeostasis -
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both processes indeed involve terms from the part of the input term list; a part
not directly detected with enrichment analysis. The key UniProt term found
for this rule was P41180 (CASR), which represents the extracellular calcium-
sensing receptor [13]. As CASR is indeed critical for calcium homeostasis dis-
covery (GO:0006874), it serves as an indicator of the validity of our CBSSD
approach. The second term (GO:0034618), representing arginine binding is not
so directly associated with the CASR protein. To further investigate the context,
within which GO:0034618 occurs, we queried the gene ontology database directly
for similar proteins, already associated with this term. The majority of proteins,
annotated with this term, correspond to acetylglutamate kinase, an enzyme that
participates in the metabolism of amino acids (e.g., urea cycle). A possible in-
terpretation of this association is that as the CASR protein induces hormonal
response, which could effectively lead to increased amino-acid metabolism, pro-
viding the molecular components necessary for establishment of homeostasis.
This association serves as a possible candidate for further experimental testing
and demonstrates the hypothesis generation capabilities of proposed approach.
Schematic representation of discussed results is presented in Figure 3.

Fig. 3. Comparison of ontology terms discovered by CBSD approach and conventional
enrichment analysis (whole term list). Only significant rules were used in visualization
(p < 0.1), hence only 5 common terms are depicted in the term matrix (down-right
part of the image).
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Another interesting rule emerged from the first community identified. The
rule GO:0030903 ∧ GO:0000006 was found for UniProt entries Q96SN8 (CDK5
regulatory subunit-associated protein 2), O94986 (Centrosomal protein), Q9HC77
(Centromere protein J) and O43303 (Centriolar coiled-coil protein). As it can
be observed, all the identified proteins are connected with nucleus-related pro-
cesses. Term GO:0030903 corresponds to notochord development, which is a
stage in cell division - a term directly associated with identified proteins. The
second term, GO:0000006, corresponds to high-affinity zinc uptake transmem-
brane transporter activity, a process related to enzyme system responsible for
cell division and proliferation. Although this rule does not imply any new hy-
pothesis, it demonstrates the generalization capability of the proposed approach.
To further emphasize the difference between conventional enrichment analysis
and our approach, we visualize the term matrix for both approaches (Figure 3)
along with schematic workflows. From the visualization it can be observed that
only a minority of terms are covered by both approaches, whereas many terms
remain specific for either semantic rule discovery based on community detection
or enrichment analysis. This discrepancy appears due to the fact that community
detection splits the input term list into smaller lists, which can be described by
completely different terms than the list as a whole. As the proposed methodology
splits the input list, it is not sensible to compare it with conventional approaches,
which operate on whole lists. The GO term comparison in Figure 3 serves only
as a proof of fundamental difference between the two approaches. Nevertheless,
we deem our approach to be an useful complementary methodology to well es-
tablished enrichment analysis.

4.2 Grouping of epigenetic factors

Epigenetics is a subfield of genomics, where processess such as methylation are
studied in the context of the influence of environment on the phenotype. Epi-
genetic factors are actively researched, and are constantly updated in databases
such as emDB [23], where many information such as gene expression, tissue infor-
mation and variant information are publicly accessible. We tested the developed
approach on the list of all currently known epigenetic factors [23]. The epigenet-
ics dataset was chosen for two main reasons: 1.) to demonstrate the CBSSD’s
performance on a dataset, to our knowledge not yet used in semantic subgroup
discovery and 2.) this dataset serves to further test the developed mehodology
in the context of different biological process. The 153 distinct UniProt terms
were used as input for the BioMine knowledge graph construction. Final graph
consisted of 4,500 nodes and 5,500 edges, respectively. The obtained knowl-
edge graph is significantly larger than the one used in the previous case study
(properties of SNVs in binding sites) and thus demonstrates the capabilities of
the developed approach on larger graphs. More than 50 communities were iden-
tified and further inspected. For the community, which includes UniProt term
Q8WTS6 (Histone-lysine N-methyltransferase), many interesting rules emerged.
For example, the most significant rule (p = 0.09): GO:1990785 ∧ GO:0000975
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∧ GO:0000082 indicates, that the protein is indeed highly associated with epi-
genetic processes. Term GO:1990785 describes water-immersion restraint stress,
term GO:0000975 regulatory region DNA binding and term GO:0000082 tran-
sition of mitotic cell cycle. All three terms exactly describe the Q8WTS6 entry,
as it effects the DNA’s topological properties (coil formation) and is responsi-
ble for transcriptional activation of genes, which code for collagenases, enzymes
crucial to mitotic cell cycle (wall formation). This example demonstrates that at
least the most significant rules found directly describe the underlying biological
process, yet other rules diverge from the enrichment analysis - similarly to the
sequence variant example.

5 Conclusions and further work

Semantic data mining is an emerging field, where background knowledge in the
form of ontologies can be used to generalize the rules emerging from the learn-
ing process. In this study, we demonstrate how such an approach can be used
to induce rules describing the communities, detected on an automatically con-
structed knowledge graph. Our implementation was tested on two datasets from
the life science domain, where validity of the most significant rules was manu-
ally inspected in terms of biological context. This approach works for up to 2,000
terms in reasonable time (e.g. a day), but for more than e.g., 10,000 terms, whole
graphs should be used from the beginning if possible. As the number of rules
produced can be large, adequate visualization techniques for elegant result in-
spection are still to be developed.
Our approach differs significantly from conventional enrichment analysis, as in-
teresting groups of terms are identified based on the underlying network struc-
ture, rather than manual, expert-guided selection. The proposed CBSSD ap-
proach is still to be extensively tested. We currently see it as a complementary
methodology to enrichment analysis, as it is capable of describing latent patterns
beyond the ones expected by a domain expert.
Although we demonstrated, that CBSSD approach can provide useful insights in
the field of molecular biology, our further work will be aimed at generalization
this methodology to arbitrary problems from other fields, such as natural lan-
guage processing. As ontologies are not necessarily well developed, we will further
explore the options of automated ontology generation from complex networks, a
data type available in majority of scientific fields.
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Semantic data mining of financial news articles. In International Conference
on Discovery Science, pages 294–307. Springer.

[32] Zou, M. and Conzen, S. D. (2005). A new dynamic bayesian network (dbn)
approach for identifying gene regulatory networks from time course microarray
data. Bioinformatics, 21(1):71–79.


