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Abstract. EEG measurements are a valuable resource for analyzing the
neuronal functional connectivity associated with different cognitive tasks.
By applying different correlation metrics on the processed EEG signal,
we aim to define neuronal functional networks (represented as graphs)
which are built upon neuronal events and their inter-dependencies. Ap-
plying various graph metrics we aim to identify functional patterns that
characterize the related cognitive task. Our methods use EEG signals
collected in an experiment involving a controlled visual recognition task.
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1 Introduction

The task of finding out how the areas of the human brain communicate as a func-
tion of cognitive tasks is still an open research participant. Cognitive processes
are known to engage large populations of neurons in the brain and it becomes
critical to understand how these populations are coordinated across large spatial
scales.

In order to tackle this problem we focus on the functional connectivity of
the brain during a conscious visual perception task. Our main objective is to
identify functional networks of the brain and analyze their static and dynamic
properties. We apply correlation functions not previously used to the best of
our knowledge on EEG signals, in order to generate new types of functional
networks. The EEG signals were recorded during a controlled task of visual
perception [5]. The traditional procedure to extract functional networks is to
use the pairwise Pearson correlation coefficient to determine if pairs of nodes
in the network are functionally connected. Here, we explore a novel approach,
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whereby functional interaction is estimated using Scaled Correlation function
[11] and the resulting links represent the delays between corresponding pairs of
EEG signals. The challenge is to determine which type of extracted network
correlates better to the cognitive tasks that participants have to solve.

We focused on two different types of networks: Pearson Coefficient Weighted
Networks (PCWN) and Peaks Scaled Correlation Weighted Networks (PSCWN),
and for each we evaluated network theory metrics.

2 Related Work

There are three types of neuronal connectivity considered in literature [1]: struc-
tural, functional, and effective. Structural connectivity deals with discovering
the physical structure of the brain. It is measured using techniques such as
functional Magnetic Resonance Imaging (fMRI) and Diffusion Tensor Imaging
(DTI). Functional connectivity relies on the set of inter-dependencies between
neural events. As opposed to the underlying structural connectivity, it is dy-
namic and dependent on the cognitive activity [2]. Functional connectivity is
usually estimated by pairwise associations between recordings of neuro-imaging.
Effective connectivity shows the influences brain areas have on each other. We
concentrate on the functional connectivity because it reflects the interactions
between different brain areas related to various cognitive tasks.

The basic theoretical framework for graph/network analysis of functional
connectivity is given in [3], with more advanced metrics being defined in [4]. The
cited authors define the steps necessary to analyze EEG/MRI data using graph
theory in order to study brain network organization during both resting-state
and cognitive tasks.

It is believed [6] that the gamma EEG band (30-80 Hz) is relevant to conscious
visual perception. To study the interactions in this band we used the Scaled
Correlation algorithm [11], which can be used to compute correlations expressed
on fast timescales.

The community and hub structure dynamic was studied in [12], that con-
cludes that increasing cognitive task difficulty leads to lower modularity, fewer
provincial hubs, and more connector hubs.

The relevance of network size was studied in [13], showing that different
metrics depend on it (i.e. clustering coefficient, modularity, efficiency, economic
efficiency and assortativity). The conclusion was that efficiency, assortativity
were higher and modularity was lower on large networks compared to smaller
networks, even though their density was the same.

Also, a related approach was presented in [14] by computing partial correla-
tions between the pairs of two signals. Partial correlation consists of calculating
PCC but augmenting this coefficient in order to eliminate the influence of poten-
tial third-party signals. One of the most important conclusions that were made is
that using first grade partial correlations the distribution of values are centered
around zero whereas non-partial correlations (simple PCC) were spread along
the [0,1] interval.
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Our work uses the EEG activity data recorded using the task described in [5].
The participants had to recognize images on a screen, without time restrictions.
The images were transformed in order to be harder to recognize. Our objective
was to use these signals to study the structure and some properties of functional
brain networks related to the visual recognition activity.

3 Relevant Concepts

A participant is defined as one of the individuals that took part in the experi-
ment, and for which there is specific data.

A trial is a part of an experiment, time-wise. An experiment is divided into
several trials (in our case, 210 trials), and each trial contains some events. In
this experiment the trials have different lengths, as the participants were free to
explore. An event consists of a specific time instant relative to the beginning of
the trial and a unique code which has significance for the experiment.

EEG data was recorded using a Biosemi ActiveTwo machine with 128 unipo-
lar channels, yielding 128 EEG signals.

A correlogram is the result of scaled-correlation function [11] applied on
two signals. As the correlogram is an array of values, the peak of a correlogram
is the maximum absolute value along all values. The lag is the position where
the peak was found in the correlogram.

The stimulus refers to the moment when the picture is displayed on screen.
We call baseline the moment right before the stimulus appears.

4 Identification of functional networks

For each participant and for each trial, we do the following steps: first, using the
recorded signals, we construct a graph that estimates the functional connectivity,
and then we apply metrics from complex network theory on these graphs (Figure
1). These steps are further explained in the following paragraphs.

Parse EEG binaries
  Compute 

correlations
Identify LAGS + PEAKS

for Scaled-Correlogram

        Obtain

Pearson Coefficient

Generate

networks

Apply robust

   metrics

Fig. 1. Lags, Peaks and Pearson weighted networks approach used

The first phase consists of parsing the EEG signals recorded from the par-
ticipants. Based on these signals we compute various correlation functions. We
use two types of functions: Scaled-Correlation (SC) [11] and Pearson Correlation
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Coefficient (PCC). Based on the resulted scaled-correlogram (in case of SC) we
identify lags and peaks. In case of PCC we simply use it without further pro-
cessing. The decision of using PCC is based on its frequent use in literature.
However this coefficient fails to represent the timing relation between signals, its
value representing only the instantaneous correlation at lag zero. In contrast, SC
slides the signals in time in order to find the highest correlation moment which
could identify delays that indicate potential causality between signals.

In the next phase, we create three kinds of graphs, referred by us as the
PSCWN (Peaks Scaled Correlation weighted Network), LSCWN (Lags Scaled
Correlation weighted Network) and the PCWN (Pearson Coefficient weighted
Network). All these graphs have 128 nodes, corresponding to the EEG channels.

The PCWN is an undirected weighted graph which has the absolute values
of the Pearson correlation coefficient (samples version) as weights between any
two nodes. The Pearson correlation coefficient shows how linearly correlated two
signals are: if it is 1, the signals are perfectly linearly correlated, and if it is -1,
they are perfectly anti-correlated. A correlation value 0 indicates no correlation
at all between given signals.

The PSCWN is a directed graph which has on edges the absolute values of the
peaks from the scaled-correlogram [11] whereas the LSCWN is a directed graph
as well but contains on edges the absolute values of the lags. The absolute peak
value is the strongest correlation value at time t. As we mentioned a negative
correlation indicates the anti-correlation which is perfectly fine because it means
that most probably the two signals come from opposite electrodes sites. The lag
indicates the delay of information transfer hence the bigger the distance from
0, the higher delay it is obtained no matter if it is negative or positive. In the
case of the PSCWN the direction of the edge is defined by the lag. Considering
the correlation of channel A and B, a positive lag shows B leading A while a
negative lag shows A leading B. When the lag is 0, we consider that the channels
are instantaneously correlated and we assign two bidirectional edges (from A to
B and from B to A). For channels with the same index (diagonal) the value in
the matrix is zero.

For the window of the cross-correlogram we have chosen a window of +/-100
ms, which has the effect of focusing on small delays. For the Scaled Correlation
we applied a scale window segment of 25 ms to keep only correlations between
components that have a frequency greater than 40 Hz. We have chosen to use
both Pearson-based and Scaled-Correlation-based networks to compare results
obtained with the traditional method with those where only the fast correlations
of the signals are retained which is considered to be important for conscious
visual perception [6].

For each network we decided to reduce their densities (about 50% of the
lowest weights). The motivation behind this action is the extremely high density
of PCWN which is a complete graph, hence all metrics would lead to improper
results (e.g. global clustering coefficient will be 1, average path length will be 1
as well, etc.). We chose to take the absolute value because negative edge weights
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are not supported by many graph algorithms, but negative correlations are also
relevant in the function of the brain.

The following measures have been applied and analyzed: average path length
(APL) [9][7], global clustering coefficient (GCC) [8], betweenness centrality (BC)
and closeness centrality (CC) [9]. For each measure we study the modifications
of global network statistics by comparing SC and PCC.

5 Experimental results

5.1 Data description

The data we used consists of the results of [5]. We analyzed 10 participants, each
with 210 trials, each trial being structured into events with specific codes. The
important event codes in the context of this paper are: 150, which represents the
white screen appearing in front of the participants, 129, which is the moment the
stimulus is first presented, and 1,2,3 which are the response types: 1 = seen, 2
= uncertain, 3 = nothing. The time between event 150 and event 129 is referred
to by us as baseline, and the time between 129 and 1,2 or 3 is referred by us as
stimulus. The trials are split in 7 groups, where each group has a higher value
of g (parameter that controls how recognizable the image is) than the previous
one. There are 128 EEG channels corresponding to 128 electrodes. The sampling
rate is 1kHz.

The process of computing the correlations starts with the raw data repre-
sented as a matrix of floating-point values. Each row is considered to be a channel
(a total of 128 rows). Each participant alone will have a different number of trials
for each stimulus, depending on the given responses. For example, for the first
participant we have 63 trials where he recognized the stimulus, 53 trials where he
was uncertain and 94 trials where he recognized nothing; for the second partici-
pant the numbers are different. Once all trials are parsed and gathered from the
raw data, SC and PCC can be applied. The networks obtained are represented
as adjacency matrices. Each matrix is a squared one (128 rows and columns). On
primary diagonal all values are zero (even though we know that a signal corre-
lated with itself - named auto-correlated, will result in a fully correlated signal),
in order to eliminate the potential influence on results. PSCWN contains for
each pair of [row, column] a value (between [0, 1]) representing the peak of the
correlation result. In the case of LSCWN, the value is the lag where the peak is
positioned in the scaled-correlogram. Finally, for PCWN the values are between
[0, 1] at lag = 0 (signals were not slid in time at all).

For PSCWN, LSCWN and PCWN the density is reduced by eliminating
50% of the weakest edges. In case of LSCWN, the density reduction is done by
considering the actual correlations (PSCWN) instead of the lags. We deal with
two different types of metrics: distance based (APL, BC, CC) and connection
based (GCC). Because we end up with a binary network for the PCWN (if the
value is different from zero, then it is a one), binary network is considered as
well for the PSCWN in order to allow results comparison. In the next section
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we describe the comparisons between Scaled Correlation based networks and
Pearson Correlation based networks.

5.2 Results

After generating candidate functional brain networks, we applied the metrics
mentioned in the previous chapter in order to identify the neuronal activity in
time and related to different cognitive outcomes.

Average Path Length
In Fig. 2 we display the APL for the baseline and the stimulus of the three cases

(i.e., seen, uncertain, unseen) for each individual participant. The APL value
in the baseline case is roughly the same over the participants having a small
variance in case of PCWN. However for LSCWN the variation seems to be in
the same interval across participants even though this is higher. This is showing
that the idle state is behaving similarly across participants. Also for the stimulus
it is notable that when the communication correlates with visual perception, the
communication between nodes is more efficient compared to other cases. As
a comparison between PCWN and PSCWN, it can be seen that using Scaled
Correlation, the results indicate an obvious behavior meaning that the time
component and spotted fast components (faster than 40Hz) are significantly
trimming down the common behavior.

Global Clustering coefficient
The next result obtained is shown in Fig. 3 where the GCC metric is analyzed

as the mean of all the trials corresponding to the related stimulus type. First
of all it is important to notice that no matter of the stimulus type the GCC is
lower in the baseline. We would expect for the Seen case, this value to be slightly
higher than the rest of the cases because the brain should be more connected
when recognizing the observed object. It seems to be an average of ≈ 0.7 along
all conditions which highlights an uniform behavior of the brain regarding how
functionally connected its areas are (areas denoted by electrodes). Also it is no-
ticeable that the variation intervals for PSCWN are hardly overlapping whereas
for PCWN for both stimulus and baseline, all the variations seem to be in the
same interval hence not indicating something relevant.

Betweenness Centrality and Closeness Centrality
The BC and CC are illustrated in Fig. 4 and 5. For both metrics it can be

seen that in the baseline the variation of the values fluctuates in a large interval
(≈ [100− 400]) meaning that some parts of the neuronal areas are highly active
whereas others are not involved that much in communication. Results show that
the appearance / presence of the stimulus on the screen is associated with equal
involvement from all region corresponding to the electrode sites. This highlights
the fact that most of the nodes are contributing to efficiently diffuse the infor-
mation (having similar closeness) by presenting a relative low variation. Again
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Fig. 2. Average Path Length (APL) applied on LSCWN and PCWN. For LSCWN we
used segment size s = 25ms (fast events - 40Hz). For both networks the density was
reduced with 50%. The value obtained is the mean value across all trials. Also standard
deviation was computed.
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Fig. 3. Global Clustering Coefficient (GCC) applied on PSCWN and PCWN. For
PSCWN we used segment size s = 25ms (fast events - 40Hz). For both networks the
density was reduced with 50%. The value obtained is the mean value across all trials.
Also standard deviation was computed.
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Fig. 4. Betweenness Centrality (BC) applied on LSCWN and PCWN. For LSCWN we
used segment size s = 25ms (fast events - 40Hz). For both networks the density was
reduced with 50%. The value obtained is the mean value across all trials. Also standard
deviation was computed.
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Fig. 5. Closeness Centrality (CC) applied on LSCWN and PCWN. For LSCWN we
used segment size s = 25ms (fast events - 40Hz). For both networks the density was
reduced with 50%. The value obtained is the mean value across all trials. Also standard
deviation was computed.
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the PCWN does not offer any informative results by showing extremely similar
variations across participants and across baseline and stimulus.

6 Conclusion

The human functional brain network is one of the most complex ones, espe-
cially when taking into account its dynamics. Analyzing these networks helps
us identify different behaviors and characteristics of the brain by using various
types of cross-correlation functions. As wen have seen, the Pearson Correlation
Coefficient and the Scaled Correlation method offer different results. For almost
all cases the PCWN shows no relevant results and this can happen because it
does not consider the temporal structure of the correlations. However fast com-
ponent filtering (40Hz for Scaled Correlation) seems to offer interesting results
that correlate to the visual task. In conclusion our proposed approach is meant
to offer another analysis perspective: the causality between neuronal areas and
how much of the similar information is exchanged. This method of constructing
new functional networks can be extremely useful to study the cognitive behavior
of the brain under different various cognitive tasks. Further work can be done by
considering the cross-correlation function and identification of the brain areas
(occipital, frontal, parietal, temporal) and to analyze how these cooperate to
fulfill a specific cognitive task. If analyzing specific nodes is a target then it is
worth to continue with the Betweenness Centrality and the Closeness Centrality
metrics. If the target is the network itself then the Average Path Length and
Global Clustering Coefficient may represent excellent metrics to go with.
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