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Abstract. This paper introduces two techniques for solving multiple in-
stance problems (MIP) where the instance localization assumption con-
sidered by classical MIP algorithms is not met. Our first technique applies
a feature space transformation to meet the MIP localization assumption,
while the second one identifies a region enclosing the majority class while
excluding at least one instance from each positive bag (minority class).
These new techniques are evaluated on synthetic datasets, as well as
on a real-world dataset originated from a manufacturing process. The
real-world dataset poses additional challenges: big data with noise, large
imbalance and overlap.
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1 Introduction

The aim of this work is to design a systematic strategy to detect faults in indus-
trially manufactured entities. The real-world dataset originates from the trace-
ability system of a Printed Circuit Board production line, therefore its dimension
in considerably large (≈ 320 gigabytes). Each entity is composed of a variable
number of components. The characteristics of every component are known. After
being manufactured, entities are labeled as functional or faulty by automatic in-
spection machines. An entity may be faulty due to one or more components. The
task is to define a model that is able to identify non-functional entities. The dif-
ficulty arises due to the fact that faulty entities can contain both non-functional
and functional components, without them being explicitly differentiated. This
is known in literature as the Multiple Instance Problem (MIP). In the current
context, one expects the components rendering the entity to which they belong
faulty (positive instances) to have atypical characteristics compared to functional
components (negative instances). However, classical MIP algorithms attempt to
find regularities amongst positive instances. In other words, MIP algorithms ex-
pect positive instances to be located in a small, dense region, while negative
instances are supposed to be scattered around the feature space. In the studied
problem, however, positive instances are situated in a large, less dense region



(possibly scattered), while negative instances are located in a small, dense re-
gion. Although outlier or novelty detection techniques could be used under these
circumstances, the region defining positive instances is not necessarily well de-
termined. As such, our objective is to propose a novel set of methods through
which such atypical MIP problems can be solved.

2 The Multiple Instance Problem

The MIP comes as a generalization to the classical Supervised Learning Prob-
lem [3], in that, training examples consist of groups of instances, where an in-
stance is a feature vector. Each such group is known as a bag, and each such
bag has an associated label. That is to say, labels are not directly associated to
an instance, but rather to a group of instances. The concept which stands at
the foundation of the MIP is known as the standard MIP assumption [12], or
linearity hypothesis [5], which states that a positive bag has at least one positive
instance, whilst a negative bag has no positive instances. The MIP is consider-
ably more difficult than classical Supervised Learning [6,7], mainly due to the
high degree of noise introduced in the learning process by the arbitrarily high
number of positive instances a positive bag can have [7]. As such, specialized
MIP algorithms need to be employed, to tackle the problem at hand.

Following, is a formal description of the standard MIP, based on the no-
tation in [13]. Let B = {B1, B2, . . . , Bm} be a set of m bags, where ∀Bi ∈
B ∃ vi ∈ N∗, such that Bi = {Bi1, Bi2, . . . , Bivi} is a bag containing vi k-
dimensional feature vectors. Let Bij be the jth instance of the ith bag, such
that Bij = {Bij1, Bij2, . . . , Bijk}. Let L = {l1, l2, . . . , lm} be the label set,
and li ∈ Y for i = 1 . . .m. In the particular case of binary classification,
which is the problem approached in this paper, Y = {⊥,>}. Finally, let D =
{〈B1, l1〉, 〈B2, l2〉, . . . , 〈Bm, lm〉} be the labeled data. The aforementioned stan-
dard MIP assumption can be formally represented as li = li1 ∨ li2 ∨ · · · ∨ livi ,
that is, a bag is positive if and only if it has at least one positive instance.

Whilst the standard MIP is arguably the most popular type of MIP, it is
important to mention that the MIP context hosts a set of more complex chal-
lenges [12,1,2]. Weidmann et al. [12] produce a comprehensive taxonomy of the
various types of MIPs, based on the existence of a multitude of underlying con-
cepts, as opposed to a singular underlying concept which stands at the foundation
of the positive class, as is the case in the standard MIP. These challenges are
not to be further detailed here, since they are beyond the scope of this paper.

3 MIP Issues In The Current Context

The MIP de facto standard works under the assumption that positive instances
converge towards a certain region, whilst negative instances are scattered around
the feature space. However, in the given context, positive instances are scattered
around the feature space, while negative instances cluster within a particular



region. The Antisymmetry Problem (AP) is best described graphically by fig-
ure 1. It might be tempting to consider that a simple class label inversion solves
this problem. However, this is not the case, since positive bags will now con-
sist only of positive instances, while negative bags will contain both negative
and positive instances. This goes against the assumptions made by existing MIP
algorithms, and as a consequence, their learning process becomes biased. For in-
stance, the Iterated Discrimination [6] algorithm requires only one instance from
every positive bag to be included in the resulting Axis-Parallel Hyper-Rectangle
(APR). However, after the label inversion, every instance belonging to a now
positive bag is positive. Therefore, this algorithm would yield a high number of
false negatives (or false positives, considering the initial labels). Another issue
is the presence of positive instances in negative bags, as mentioned previously,
which may prove problematic during the feature selection stage. Likewise, the
DD metric [7], which stands at the foundation of the EM-DD algorithm [13], will
require extensive modification in order to accommodate the existence of nega-
tive bag instances in high density areas. Thus, existing methods require either a
preprocessing step or changes in their approach to allow them to tackle the AP.

3.1 A Feature-Value Transformation Based Approach

Our approach first transforms the feature space to meet the MIP instance local-
ization assumption. Such a transformation is supposed to bring positive instances
”closer” together while scattering negative instances around the feature space.
Such a transformation would apply a function f : Rn × Rn → Rn, where n is
the number of features, to all instances x, replacing their feature vectors with
f(x,x), where x is the mean of all instances belonging to negative bags:

x =

∑
x ∈ N

x

|N |
,where N is the set of negative instances (1)

(a) (b)

Fig. 1: × = positive bag instance and ◦ = negative bag instance. (a) Positive
instances converge. (b) Positive instances are scattered.



The function f must be chosen such that positive instances end up ”closer”
to x, while negative instances end up ”further” from x, considering a metric for
which a difference in only one dimension of the feature vectors is enough for the
output to change considerably (e.g. the Euclidean metric). It must be noted that
this specific transformation relies upon the fact that all negative instances are
clustered. The dataset obtained after applying the transformation is then fed
into the Iterated Discrimination algorithm [6].

It is worth mentioning, however, that the feature-value transformation em-
ployed here is general purpose, and as such, can be used on any antisymmetric
dataset, whose initial structure is incompatible with the standard MIP algo-
rithms, to convert it so that MIP learning methods can be applied.

3.2 An Axis-Parallel Hyper-Rectangle Based Approach

The second approach we propose towards solving the standard MIP in the Anti-
symmetric MIP Context is the Reverse Axis-Parallel Hyper-Rectangle Algorithm
(R-APR). R-APR is inspired by the Iterated Discrimination algorithm [6]. It
solves the standard MIP by finding an APR which, unlike the one resulted from
the Iterated Discrimination algorithm, encloses all the negative bag instances
and some of the instances of positive bags, leaving at least one positive bag
instance outside. As such, a bag is classified as positive, if at least one of its
instances falls outside of the APR along at least one dimension, whilst a bag
is classified as negative if all its instances fall within the APR’s bounds for all
dimensions.

The algorithm consists of four major stages: All-Negative APR Generation,
High Density Positive Instance Margin Expansion, Feature Selection, and fi-
nally, Statistical Margin Expansion. The R-APR algorithm attempts to solve
the AP without employing any sort of feature-value transformations, other than
normalization. Moreover, the APR produced by this algorithm yields valuable
information in terms of what the normal value ranges for the relevant features
are. Consequently, in certain contexts, such as that of industrial manufacturing,
it provides potentially useful insight into the production process.

4 Solving The Antisymmetry Problem

This section provides a more in depth description of the two original approaches
we propose towards solving the AP problem in the MIP.

4.1 The Transformation-Based Iterated Discrimination Algorithm

This approach requires the definition of a function as described in section 3.1.
Every instance is then replaced with f(x,x), with the purpose of bringing pos-
itive instances ”closer” to x while moving negative instances ”further” from x.
An example of such a function f is:

f(x,x) = x +
x− x

‖x− x‖
· g(‖x− x‖), (2)



where ‖·‖ is the Euclidean norm and g : R → R is a monotonically decreasing
function. The function g can be defined independently of the number of fea-
tures of the dataset, but then ‖x− x‖ must be scaled accordingly. Therefore

g(‖x− x‖) from equation (2) should be replaced with g
(
‖x−x‖√

n

)
. This is be-

cause the Euclidean metric of an n-dimensional vector, whose components are
all equal to a, is

√
n · a. That is, ‖(a, a, . . . , a)‖ =

√
n · a. The Euclidean norm is

used so that one feature value being ”far” from that feature’s mean suffices for
the instance to be brought ”closer” to x.

Figure 3 contains plots of one family of functions which meet the above
requirements, described by:

G =
{
g : R→ R | g(x) = c · a−b·x

}
, where a, b, c ∈ R>0. (3)

An exponential family of functions was chosen because the absolute value
of their derivative can be made large enough so as to achieve a substantial
separation margin between positive and negative instances, regardless of the
initial value of this margin. Furthermore, the behavior of these functions in the
proximity of 0 can be constrained. The fixed points (x0, y0) of these functions are
marked at the intersection of the vertical line x = x0 with the functions’ plots.
Considering equation (2), these fixed points and the value of ‖x− x‖ determine
whether x ends up closer or further from x.

Figure 2 shows the effect of applying (2) to a normally distributed two-
dimensional dataset. The function g is replaced in (2), in turn, by the functions
displayed in figure 3.

4.2 The R-APR Algorithm

The R-APR algorithm consists of the four steps shown in figure 4, excluding the
data normalization stage, which is optional. The four steps are presented in the
subsections that follow.

All-Negative APR Generation This APR defines a region in feature space
which encloses all negative instances. The upper margins of the APR, along
every relevant feature d, are defined as:

ubd = max
Bi∈B−,Bij∈Bi

(Bijd) (4)

Respectively, the lower bounds are obtained using:

lbd = min
Bi∈B−,Bij∈Bi

(Bijd) (5)

Due to the standard MI assumption, the generated APR is not yet ready to
be used for classification, since positive bags still have negative instances, which
may be outside the All-Negative APR. During this stage, only negative bags are
processed.



(a) initial dataset (b) c = 10, a = 4, b = 2

(c) c = 10, a = 6, b = 3 (d) c = 10, a = 8, b = 6

Fig. 2: Figure 2a represents a normally distributed, two-dimensional dataset.
Instances that are ”closer” to the mean point (green) are colored in blue, while
instances that are ”further” from it are colored in red. Figures 2b, 2c and 2d
illustrate the original dataset transformed using equation (2), where the function
g belongs to the function family described in equation (3).

High Density Positive Instance Margin Expansion To generalize better,
the APR must be expanded in such a way as to include negative instances
belonging to positive bags. However, due to the asymmetry [8,7,3] introduced
by the bag level label, identifying them is not straightforward. We propose two
solutions towards solving this problem, based on the assumption that negative
instances from positive bags are gathered together, since they should have similar
feature values. Both procedures are based on density and distance measurements.

(a) c = 10, a = 4, b = 2 (b) c = 10, a = 6, b = 3 (c) c = 10, a = 8, b = 6

Fig. 3: Plots of functions belonging to the family defined in 3. The vertical lines
mark the fixed points of the functions. In this context, the fixed point discrimi-
nates between instances x which end up ”closer” and ”further” from x.



Fig. 4: The general execution flow of the R-APR algorithm.

The first approach refers to selecting one instance from each positive bag,
thus constructing a set of instances which are used towards building an auxiliary
APR. The new APR is used to expand the All-Negative APR, where necessary.
The instance is chosen based on a Density measurement, which computes the
instance’s degree of proximity to the other instances belonging to the same bag:

HDi = max
Bij∈Bi

(
∑
k,k 6=j

1

ζ + ‖Bij −Bik‖2
) (6)

where ‖·‖ is the Euclidean Metric, ζ ∈ R is an offset, and HDi is the highest den-
sity instance of Bi. Additionally, the instance’s distance from the All-Negative
APR, is computed, using the Manhattan Distance:

distij =
∑
d

f(Bijd, lbd, ubd) (7)

where function f is computed as:

f(x, lb, ub) =


lb− x, if x < lb

x− ub, if x > ub

0, otherwise

(8)

During this stage, the algorithm attempts to find regions towards which it
expands the margins of the All-Negative APR, by essentially speculating which
regions host a large number of negative instances belonging to positive bags. As
such, one must ensure that the APR is not wrongly expanded towards regions
of positive instances, as may be the case when positive bags have few negative
instances. In order to avoid such cases, the algorithm requires two user-defined
thresholds, concerning density and distance, empirically identified and tuned for
every data set. An instance is only selected if its density is above the density
threshold, and if its distance from the APR is below the distance threshold.

The second approach we propose comes as an extension to the previously
described technique. After determining the highest density instance for a bag,
using equation (6), an optimization algorithm is used to find the point which
maximizes the density function. The search is bounded by a rectangular region



defined by the bag’s instances. Once more, the user-defined distance and density
thresholds are used when selecting the instances. The set obtained as a result
of the selection procedure is used to construct a new APR, with the aim of
expanding the All-Negative APR’s bounds where needed.

Feature Selection Similarly to the Iterated Discrimination algorithm [6], the
R-APR algorithm attempts to select the relevant features in an iterative fash-
ion. However, unlike the Iterated Discrimination algorithm, discrimination is
performed on the positive bags and at the bag-level.

There are two criteria for establishing when a feature discriminates a bag,
both dependent on a user-specified global out-of-bounds threshold t ∈ R≥0. Since
discrimination is performed at the bag level, a bag’s out-of-bounds value for a
particular feature d is given by vald = maxBij∈Bi

(out of bounds(Bijd, lbd, ubd)).
The first criterion specifies that a feature d discriminates a bag Bi if vald > t.
The second criterion specifies that a feature d discriminates a bag Bi if vald >
valk ∀k ∈ Fr, d 6= k, where Fr is the relevant feature set. Figure 5 describes
these concepts visually.

Following is a formal description of the Feature Selection stage: let Fold
r =

{f1, f2, . . . , fn} be the old set of relevant features. Let Fnew
r = ∅ be the new set

of relevant features, initially empty, and let B+
FS = B+ be the set of positive

bags used in the current feature selection stage. As previously mentioned, the
Feature Selection stage is iterative. Let f ′i be the most discriminating feature, i.e.
the feature which discriminates the most bags in B+

FS , as identified in iteration
i of this stage. Let B+

f ′i
be the set of positive bags discriminated by f ′i . It follows

that Fold
r = Fold

r \ {f ′i}, and Fnew
r = Fnew

r ∪ {f ′i}. Moreover, B+
FS = B+

FS \B
+
f ′i

.

This stage will continue to loop, until either B+
FS = ∅ or Fold

r = ∅. In the former
case, the algorithm loops back to All-Negative APR Generation, with Fnew

r

as the set of relevant features. In the latter case, the feature set converges, and
the algorithm moves on to the next, and final stage.

Statistical Margin Expansion The final stage of the R-APR algorithm refers
to expanding the margins of the APR obtained so far, to generalize better. It is
identical to that employed in the Iterated Discrimination algorithm [6], however,
the Kernel Density Estimation (KDE) is built from negative bag instances, as
opposed to positive bag instances. This stage is controlled by two user-defined
constants: ε and τ . The τ constant specifies the amount of probability which
should fall within the bounds of the APR, based on the KDE, if the negative bag
instances were centered between its bounds. The value of τ is used to establish the
deviation σd along relevant feature d, such that a normal distribution centered
in µd = lbd+ubd

2 with deviation σd hosts τ probability between the upper and
lower bounds. This can be formally expressed as Pr(lbd < X < ubd) = τ .

A Gaussian KDE is built for each relevant feature d. Next, relative to the
obtained KDEs, the margins of the APR along every relevant feature are ex-
panded so as to ensure that ε

2 probability remains above the upper bound, and
that ε

2 remains below the lower bound.



(a) (b)

Fig. 5: An example of the two Feature Selection criteria. Each chart contains
20 features (vertical bars), the threshold t is set to 40. Bars represent a bag’s
maximal out-of-bounds value along that feature. Red bars represent features that
discriminate the bag. Black bars represent features which do not discriminate
the bag. (a) Example of the first criterion. (b) Example of the second criterion.

This step is, however, optional, and can be removed when the APR should
be tighter. Such cases are largely identified empirically, and are typically due to
a high number of positive instances being located near the bounds, outside of
the unexpanded APR. Through expansion, these instances are included in the
APR, which likely leads to an undesirably high rate of false-negatives.

Classification Classification assumes a series of comparisons against the bounds
of the APR. As such, for an unseen bag, if at least one instance falls outside the
APR, along at least one dimension, then that bag is classified as positive. Oth-
erwise, the bag is classified as negative.

5 Experimental Procedures and Results

The APR algorithm, with and without applying the feature transformation de-
scribed in section 4.1, as well as the R-APR algorithm were tested on both syn-
thetic and real-world datasets. All synthetic datasets have 100 positive bags and
100 negative bags, while individual instances have 3 features. Negative bags con-
tain 10 to 19 negative instances. Positive bags contain 10 to 16 negative instances
and 3 to 5 positive instances. Negative instances belong to a 3-dimensional Gaus-
sian distribution with µ = [10 10 10], with no feature correlation, each having a
standard deviation σ = 5. Positive instances differ only by having µ = [α α 10],
where α is different for each dataset, namely α ∈ {13, 16, 19, 22.5, 27.5}.

The results on artificial data are shown in Table 1. They reveal that the Iter-
ated Discrimination algorithm, with or without Feature Value Transformation,
yields a high recall, regardless of the level of separation. This would suggest that



Iterated Discrimination is effective in discerning the minority class, even in cases
of partial overlap. Precision and accuracy increase proportionally with the level
of separation between positive and negative instances, for the version of the algo-
rithm which uses the transformation. These values are upward of 90% for higher
levels of separation. Iterated Discrimination, without transformation, produces
relatively constant values for both precision and accuracy of around 50%. Its low
precision is due to the fact that the generated APR is likely located in the region
hosting the negative instances of the positive bags. Consequently, negative bags
are expected to have instances located within this APR, thus resulting in a large
number of negative bags being falsely classified as positive.

The R-APR algorithm produces increasingly better values for recall and ac-
curacy, as the level of separation between the positive and negative instances
increases. Its behavior is similar to that of Iterated Discrimination with trans-
formation, requiring, however, a greater degree of distinction between instances
in order to produce good results.

Table 2 presents the results obtained on real-world data, collected from a real-
world industrial PCB manufacturing process, and consisting of 100 positive bags,
and 800 negative bags. Each individual instance has 25 features. The Feature
Value Transformation helps increase the precision, as well as the classification
accuracy. The recall, however, remains relatively unchanged. We believe this to
be a consequence of data overlapping along all dimensions, which continues to
remain overlapped even after applying the transformation, thus maintaining the
false-negative rate. This would suggest that supplementary features are needed.

All evaluations have been performed using a 5-fold cross-validation. The fea-
ture transformation, when employed, used a function g as described in equation
(3), with a = 10, b = 8, c = 6.

Table 1: Artificial Dataset Results
Method Mean (α) TP FN TN FP Precision Recall Accuracy

Iter. Discrim. with Transf. 13.0 91 9 19 81 52.9% 91.0% 55%
Iter. Discrim. without Transf. 13.0 87 13 14 86 50.2% 87.0% 50.5%
R-APR 13.0 0 100 100 0 - 0% 50%

Iter. Discrim. with Transf. 16.0 89 11 37 63 58.5% 89.0% 63%
Iter. Discrim. without Transf. 16.0 95 5 6 94 50.2% 95.0% 50.5%
R-APR 16.0 0 100 100 0 - 0% 50%

Iter. Discrim. with Transf. 19.0 90 10 95 5 94.7% 90% 92.5%
Iter. Discrim. without Transf. 19.0 93 7 8 92 50.2% 93% 50.5%
R-APR 19.0 12 88 100 0 100% 12% 56%

Iter. Discrim. with Transf. 22.5 95 5 98 2 97.9% 95% 96.5%
Iter. Discrim. without Transf. 22.5 91 9 13 87 51.1% 91% 52%
R-APR 22.5 47 53 100 0 100% 47% 73.5%

Iter. Discrim. with Transf. 27.5 94 6 97 3 96.9% 94% 95.5%
Iter. Discrim. without Transf. 27.5 93 7 4 96 49.2% 93% 48.5%
R-APR 27.5 89 11 100 0 100% 89% 94.5%



Table 2: Real-World Dataset Results
Method TP FN TN FP Precision Recall Accuracy

Iter. Discrim. with Transf. 77 23 784 16 82.7% 77% 95.6%
Iter. Discrim. without Transf. 81 19 644 156 34.1% 81% 80.5%

6 Existing Standard MIP Solutions

The Iterated Discrimination algorithm [6] is one of the fundamental means for
tackling the MIP. It attempts to find an APR, such that any bag having an
instance within its bounds, is classified as positive. Otherwise, the bag is con-
sidered negative. The method is based on the idea that positive instances have
similar features, thus, converging towards a particular region in feature space.

The EM-DD algorithm [13] is another method employed towards solving the
MIP. The algorithm is based on the same supposition that positive instances con-
verge towards a particular region. Consequently, it searches for a target point in
feature space around which the positive instances are assumed to gather. A bag
is classified as positive if at least one of its instances neighbors the aforemen-
tioned target. The algorithm is based on the Diverse Density metric [7], which
yields high values for hypothesized points in regions containing a large number
of instances from diverse positive bags, and low values for regions containing
instances from negative bags, or little diversity in terms of positive bags.

Numerous other approaches have been employed towards solving the stan-
dard MIP, including: Neural Networks [8], Support Vector Machines [3,4], den-
sity based approaches [7], Lazy Learning [11], Decision Trees, or Rule Sets [5].
Solutions to the standard MIP have also been explored in the context of real-
valued labels through methods such as Multiple Instance Regression [10]. MIP
algorithms can be applied in many areas, including: image classification, stock
prediction, biochemistry, or text classification. However, empirical studies sug-
gest that no particular Multiple Instance learning algorithm appears to perform
successfully in every possible problem domain [9]. That is, MIP algorithms vary
in performance, depending on the problem they attempt to solve. It is worth
emphasizing that unlike the R-APR algorithm, these existing methods are un-
suitable for directly solving the AP, without prior Feature Value Transformation.

7 Conclusions

The paper presents two strategies for tackling the MIP in an antisymmetric
complex context, where the positive instances are located in a larger, less dense
area, whilst the negative instances converge towards a particular region. The
first technique refers to applying a feature-value transformation in order for the
data to become compatible with standard MIP algorithms. The second technique
refers to a novel algorithm, the Reverse Axis-Parallel Hyper-Rectangle (R-APR)
algorithm, designed to identify a region in feature space which encloses all the
negative bags, whilst excluding at least one instance from every positive bag. The



strategies proved to be effective, with good performance on synthetic data (over
90% recall). The same performance measure (recall) on the real-world data is
rather modest (77%). A parallel study we conducted showed that the real-world
data suffers from large overlap, which makes the classes partly indistinguishable
with the current set of available features. This would suggest that new features
need to be identified, and extracted from the real-world manufacturing process.
We are currently working on improvements of the two strategies.
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