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Abstract. The tropical rainforests are the largest reserves of terrestrial
carbon sink and therefore, the future of these rainforests is a question
that is of immense importance in the geoscience research community.
With the recent severe Amazonian droughts in 2005 and 2010 and on-
going drought since 2000 in the Congo region there is growing concern
that these forests could succumb to precipitation reduction, causing ex-
tensive carbon release and feedback to the carbon cycle. Contradicting
research has claimed that these forests are resilient to such extreme cli-
matic events. A significant reason behind these diverse conclusions is
the lack of a holistic spatio-temporal analysis of the remote sensing data
available for these regions. Small scale studies that use statistical correla-
tion measure and simple linear regression to model the climate-vegetation
interactions have suffered from the lack of complete data representa-
tion and the use of simple (linear) models that fail to represent physical
processes accurately, thereby leading to inconclusive or incorrect pre-
dictions about the future. In this paper we use a genetic programming
(GP) based approach called symbolic regression for discovering nonlinear
equations that govern the vegetation climate dynamics in the rainforests.
Expecting micro-regions within the rainforests to have unique character-
istics compared to the overall general characteristics, we use a modified
regression-tree based hierarchical partitioning of the space and build a
nonlinear GP model for each partition. The discovery of these equations
reveal very interesting characteristics about the Amazon and the Congo
rainforests. Overall it shows that the rainforests exhibit tremendous re-
siliency in the face of severe droughts. Based on the partitioning of the
observed data points over years, we can conclude that in the absence of
adequate precipitation, the trees adopt to reach a different steady state
and recover as soon as precipitation is back to normal.
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ming, earth science, nonlinear models
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1 Introduction

Physics based modeling and perturbation theory has long been used to study the
eco-climatic interactions by scientists in order to explain observed phenomena.
However, these models, derived under various assumptions of equilibrium, are of-
ten only suitable for ideal conditions, and fail to explain the complex dynamics of
ecosystem responses to varying environmental factors, especially in the context
of a progressively warming global climate. Given the vast amounts of data being
collected by different ground-based and remote sensing instruments over long
periods of time, the Earth Science research community is extremely data rich.
As a result, there has been a slow and steady shift towards the use of machine
learning for answering many of their science questions. Ensemble approaches for
climate modeling, uncertainty analysis for model evaluation, network based anal-
ysis for discovery of new climate phenomena are examples [1]. However, most
of the analysis approaches used for climate-vegetation dynamics have been re-
stricted to simple statistical correlation analysis or linear regression [18], thereby
limiting discoveries to only linear dependencies. In this work, we formulate the
problem of understanding vegetation-climate relationship in rainforests as a non-
linear regression problem where different climate variables and other influencing
factors form the set of independent regressors and data representing vegetation
in the rainforests is the target. In the hope of understanding how climate affects
vegetation, we discover regression equations that best fit the observed data. We
alleviate the limitation of linear models through the use of a GP based regres-
sion method, called symbolic regression. The strength of the approach lies in the
fact that it learns both the structure and weights of the regression equation and
is, therefore, able to identify previously unknown nonlinear interactions in the
data representing physical processes of interest. We combine symbolic regression
with hierarchical modeling using decision trees in order to partition the large
space of spatio-temporal interactions for discovering micro regions within the
vast rainforest expanses.

The tropical rainforests are the largest reserves of terrestrial carbon sink,
predominantly due to the presence of homogeneous, dense, moist forests over
extensive regions. The Amazonian forests, for e.g., are a critical component
of the global carbon cycle, storing about 100 billion tons of carbon in woody
biomass [7], and accounting for about 15% of global net primary production
(NPP) and 66% of its interannual variability [20]. Together with the Congo
basin rainforests in Africa and the Indo-Malay rainforests in Southeast Asia,
tropical forests store 40-50% of carbon in terrestrial vegetation and annually
process approximately six times as much carbon via photosynthesis and respira-
tion as humans emit from fossil fuel use [6]. With the recent severe Amazonian
droughts in 2005 and 2010 [14,18] and on-going drought since 2000 in the Congo
region [21], there is growing concern that these forests could succumb to precip-
itation reduction, causing extensive carbon release and feedback to the carbon
cycle [3]. Contradicting research claims that these forests are resilient to such
extreme climatic events [12]. The point of interest is that these two largest rain-
forests display different characteristic drought patterns with Amazonia encoun-
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tering episodic and abrupt droughts during the dry season (July-September)
and Congo experiencing a gradual and persistent water shortage since 1985.
Even within each rainforest, very different reactions to these droughts are being
observed starting from greening [14], to mortality [13], leading to controversies
arising from contradicting claims about the future of the rainforests.

In this paper we tie the various observations pertaining to these rainforests
into a single modeling framework through the use of a hierarchical regression
tree-based approach called GP model-tree where the models at each leaf node of
the tree are built using GP based symbolic regression [5]. This framework dis-
covers physical processes that are local to different partitions within the forests
and can explain why certain areas of the rainforests have responded very dif-
ferently to the extreme climate events of the recent times. These processes are
represented by complex nonlinear terms identified by the GP search and have
been validated by domain scientists conversant with the problem. The problem
that we focus on is the dependency of the health of the rainforests on different
climatic factors, namely, precipitation and temperature. Since the greenness of
trees is an indicator of whether a tree is thriving, we use a satellite based vege-
tation index as a surrogate for representing vegetation health. We also add other
relevant factors such as elevation and slope which directly affect how rainfall (or
lack thereof) can influence vegetation in an area. In addition to describing the
GP model-tree framework and the discoveries made, this paper also provides
insights into the data preprocessing challenges that are unique to this domain
and provides a principled approach for preprocessing these multimodal remote
sensing data sets.

1.1 Competing methods

Standard methods used in this domain for understanding climate-vegetation
dependencies include pairwise correlation analysis of vegetation with each cli-
mate variable [17]. Trend analysis by calculating standard anomalies of different
time series is the most common practice to understand temporal and spatial
variations. Nemani et al. [10] use this analysis for understanding limiting en-
vironmental factors in different zones of the earth. While these studies help in
understanding global trends and the strength of the linear relationship with each
climate variable, regression models predict the relationship of vegetation with
more than one variable. Ordinary least squares have been used to model the
relationship between vegetation and climate variables [8]. Geographic Weighted
Regression (GWR) has also been traditionally used to allow for local spatial ef-
fect while explaining climate-vegetation interactions [19]. However, this method
suffers from serious scaling issues. Cubist regression is another method that au-
tomatically partitions the data into regions while learning linear models in each
partition [11]. However, none of these methods allow discovery of complex non-
linear relationships and are therefore not useful in discovery of physical processes
in the ecosystem. In the next section we describe our GP model-tree framework.
It should be noted here that deep learning based approaches, although very pow-
erful in unveiling nonlinear relationships cannot be used in this context because
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an important aspect of this equation discovery process is the ability of the do-
main scientist to understand and explain the physical meaning of the equation,
that a blackbox model will not be able to produce.

2 Technical Approach

GP based symbolic regression [5] allows for discovery of unknown physical pro-
cesses by allowing to learn the equation structure along with regression coef-
ficients. However, a single global model is often not enough in the presence of
spatio-temporal variations in the data. Therefore, we use hierarchical partition-
ing of the data along the lines of classification and regression trees (CART) [2].
Each terminal node in the tree represents a unique nonlinear relationship specific
to points in that partition.

2.1 Symbolic regression

Symbolic regression’s (SR’s) main defining features are that it is data driven,
white box, and nonlinear. It is data driven in the sense that the investigator
needs to provide only training and validation data; SR will distill equations
with arbitrary form and complexity to explain the data. An example equation
explaining vegetation climate interactions for a specific spatio-temporal extent
can look like

Y = −0.01log(eX8(0.03e4X6+X8+2X9((X5 + X6)2 −X2 −X3)2 + 0.2eX10))

where Xi represents the independent environmental variables. Symbolic regres-
sion is typically instantiated using a population-based stochastic optimization
method called GP as the underlying search algorithm is biologically-inspired. In
short, terms are randomly added, removed or modified to individual models, and
less accurate and less parsimonious models are replaced by randomly-modified
copies of more accurate and more parsimonious models. Such an approach has
the major drawback of requiring considerable computational effort since learn-
ing a good equation is a stochastic search process that requires generating and
testing many thousands (and sometimes even millions or more) of candidate so-
lutions. Some variant of a squared error measure is used to judge the goodness
of fit of the various candidate solutions.

2.2 GP model-tree

Our approach, GP model-tree consists of two steps. We first induce a tree to
divide the space into partitions and then we learn the governing equations for
each partition using symbolic regression. The overall approach for the GP model-
tree framework is described in Algorithm 1. The details of the framework are
described next.

In the first step we induce a model tree – a special case of a regression
tree in which each terminal node contains a model that is used to produce the
final prediction value. The original model tree approach proposed by Quinlan
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[11] relies on building a traditional regression tree with standard deviation used
as an impurity measure that allows to determine the best split variable and
split threshold [2]. Only after such a tree is built, the constant values in leaves
are replaced with linear regression models fitted to the data in each leaf. In
our algorithm, we adopt the mean squared error of a second order polynomial
regression model as the impurity measure because the data well explained by
this model may have high standard deviation.

Algorithm 1 GP model-tree

Input: X ∈ Rn×D,y ∈ Rn,max depth, gp params
Output: Tree: T, Models: Mi, i ∈ k (no. of partitions)
Step 1: Build tree: Partition data into k groups

T = PolynomialRegressionTree(X, y, max depth)
[X1, ....., Xk] = Partitiondata(X, T)

Step 2: Train GP models
for each data partition (Xi,yi) (i ∈ k) do

Mi = learnGP(Xi, yi, gp params)
end for

The model tree is constructed in a traditional greedy, top-down, divide-and-
conquer manner. Note that, we have used polynomial factors of order 2 for this
purpose in our analysis. In each recursive call of the algorithm (see Algorithm
2), we attempt to find the best binary splitting criterion that divides the dataset
X into two subsets that can be accurately explained by second order polynomial
models. To this end, for each feature f we consider a fixed number of scalar
threshold values (evenly distributed in the feature domain). For each such pair
(feature, threshold) we evaluate a quality of the resulting split by running polyno-
mial regression on the two data subsets S1 = {X|Xf < t} and S2 = {X|Xf ≥ t}.
The best pair is the one the minimizes the sum of mean squared errors in these
subsets. Finally, we invoke the algorithm recursively for the resulting partitions
until we reach the maximum depth of the tree. The output of the algorithm is a
regression tree with 2depth−1 internal nodes and 2depth leaves which correspond
to partitions of the original dataset.

Algorithm 2 Polynomial Regression Tree

1: Input: X ∈ Rn×D,y ∈ Rn, depth
2: Output: Tree: T
3: if depth == 0 then
4: return TerminalNode(LASSO(X,y))
5: else
6: feature, threshold ← arg minf,t(LRerror(X|Xf < t,y) + LRerror(X|Xf ≥ t,y))

7: leftSubtree ← PolynomialRegressionTree(X|Xf < t,y, depth− 1)
8: rightSubtree ← PolynomialRegressionTree(X|Xf ≥ t,y, depth− 1)
9: return InternalNode(feature, threshold, leftSubtree, rightSubtree)

10: end if
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Although the model tree described above could be used as a predictive model
by itself, we attempt to further improve its prediction performance by replac-
ing the second order polynomial models in the leaves of the tree with models
produced by GP based symbolic regression. For each of the partitions identified
by the model tree, we perform independent randomized GP runs (see Algorithm
3). For this purpose we use a variant of the Age-Fitness Pareto Optimization
(AFPO, [15]) algorithm – a multiobjective method that relies on the concept
of genotypic age of an individual (model), defined as the number of generations
its genetic material has been in the population. The age attribute is intended
to protect young individuals before being dominated by older already optimized
solutions.

Algorithm 3 Genetic Programming

1: Input: X ∈ Rn×D,y ∈ Rn, gp params
2: Output: GP model: M
3: Initialize population of n random models
4: for number of generations do
5: Select random parents
6: Recombine and mutate parents to produce n offspring
7: Add offspring to the population
8: Calculate (error, age, size, complexity) for each model in the population
9: while population size > n do

10: Select k random models from the population
11: Determine local Pareto front among k selected models
12: Remove Pareto-dominated models from the population
13: end while
14: end for

The algorithm starts with a population of n randomly initialized individuals
each of which has age of one which is then incremented by one every generation.
In each generation, the algorithm proceeds by selecting random parents from
the population and applying crossover and mutation operators (with certain
probability) to produce n offsprings. The offspring is added to the population
extending its size to 2n. Then, Pareto tournament selection is iteratively ap-
plied by randomly selecting a subset of individuals and removing the dominated
ones until the size of the population is reduced back to n. To determine which
individuals are dominated, the algorithm identifies the Pareto front using four
objectives (all minimized): prediction error, age, size and expressional complex-
ity. We measure the size of an individual (candidate solution) as the number
of nodes in its tree representation. It should be noted here that the regression
equation is derived as a tree structure and this tree is different than the hier-
archical decision tree that is being constructed for the data. For assessing the
expressional complexity, we estimate the order of nonlinearity of the model [16].

3 Data sets and processing

We use satellite-based measurements for vegetation, precipitation, temperature
during years 2000-2010 and digital elevation model (DEM) measurements for
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elevation to learn steady state equations for the broadleaf evergreen forests in
relation to environmental variables. Data products from the twin MODerate-
resolution Imaging Spectroradiometer (MODIS) sensors aboard NASA’s Earth
observation System (EOS)-era Aqua satellite are used for vegetation, tempera-
ture, and land cover masks. Normalized Difference Vegetation Index (NDVI) [9],
a surrogate for vegetation is obtained from the MODIS product MYD13Q1 that
provides 250-meter sinusoidal projected surface reflectance data adjusted using a
bidirectional reflectance distribution function (BRDF) and collected at intervals
of every 16 days. Similarly, land surface temperature (LST) is obtained from
the MYD11A1 product at 1KM spatial resolution collected daily during the day.
Broadleaf evergreen forests are identified using masking information available
in the MCD12Q1 data product for land cover. The Tropical Rainfall Measuring
Mission (TRMM) launched jointly by NASA and Japan Aerospace Exploration
Agency provides monthly precipitation measurements derived from the combi-
nation of 3B42 products (every 3-hours data product) and Global Precipitation
Climatology Centre (GPCC) rain gauge analysis at 25KM spatial resolution.
GTOPO301 is a global digital elevation model (DEM) with a spatial resolution
of 30 arc seconds (approximately 1KM) that provides elevation height and de-
rived slope [4] used in the regression study. All data sets (temporal and spatial
resolutions) are selected on the basis of data quality and availability.

MODIS

Land Surface 

Temperature (LST)
daily product

Vegetation Index 

(NDVI)
16-day product

QA filtering

according to the quality flags for clouds 

and aerosol

Monthly aggregation

taking the maximum (NDVI) or mean 

(LST) value observed in a each month

 Reprojection to the same 

geographic projection

using nearest neighbor resampling to 

0.01 degree resolution

Spatial smoothing

mean filtering with 25x25 kernel

Seasonal aggregation

averaging the data over the seasons:

  Season 1: wet-to-dry

  Season 2: dry

  Season 3: dry-to-wet

  Season 4: wet

TRMM 3B43

precipitation rate

 monthly product

GTOPO 30

Digital Elevation 

Model

Regression dataset

GTOPO + TRMM[0..-4] + LST[0..-4] + NDVI_history ~ NDVI

for each year between 2003 and 2010:

— explained variable: NDVI from a dry season

— explanatory variables: 

    — TRMM and LST from a dry season and 4 previous seasons

    — GTOPO elevation slope

    — decayed value of NDVI from 2 previous dry seasons

Land cover type filtering

removing non-broadleaf forest pixels

MODIS

Land Cover Type (LCT)

Elevation filtering

removing pixels with elevation below 50 ft or above 700 ft

Drought pixels filtering

removing pixels with NDVI below or above 1 

standard deviation from the long-term mean

Fig. 1: Data preprocessing pipeline for regression analysis.

For setting up a regression problem, we first need to preprocess these data
sets to reproject them in the same viewing angle, and align them with respect to
spatial and temporal resolutions. All data sets are reprojected to 1KM (0.01x0.01
degree) resolution while aggregating to monthly-level by averaging measurements
in a calendar month. These monthly values are cumulatively averaged to four
seasons per year, namely., dry season (D) during July to September, dry-to-wet
transition (DW) during October, wet season (W) during November to February,
and the wet-to-dry transition (WD) during March to June. First level of noise re-
moval is achieved using QA flag based filtering during retrieval from the MODIS

1 https://lpdaac.usgs.gov/
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data products. In order to reduce noise further, we perform spatial smoothing
by averaging measurements in an adjoining square grid around every pixel. Land
cover filtering is done to remove pixels not representing the broadleaf category,
while elevation and wetlands filtering removes highly elevated and flooded areas,
respectively. Lastly, drought pixels are anomalies with lower vegetation values
over years and are removed from the training data. Figure 1 describes the process
in details.

Problem setup Once the data is prepared, we set up the regression problem
as follows: NDV Ik = f(LSTi, TRMMi, Elev, Slope), where k = currentD and
i ∈ (Dcurrent, Dlast,WD,W,DW ) are season indices up to one year back in
time. The assumption that vegetation in the current dry season is only affected
by rainfall and precipitation within the last one year is based on Subject Matter
Expert (SME) feedback and exploratory analysis with different settings. From
our data set we pick years 2003 to 2007 for building our GP model-tree model
with 100K examples randomly chosen every 10 generations to evaluate the train-
ing error. Once the partitions are obtained using the polynomial regression tree,
we spawn the GP optimization routines on each partition with 5000 generations
and population size of 500. We use crossover probability of 0.9 and mutation
probability of 0.1 [5]. Our list of mathematical operations include addition, sub-
traction, multiplication, logarithm, exponential, square, and cubic. We initialize
30 different optimizations that generate 30 Pareto fronts of GP models. We pick
the best model by comparing a subset of models from each front based on size,
model complexity, and mean squared error on validation set. The models that
are obtained almost always contain nonlinear terms which is an indication that
linear regression models are not enough to capture the complex physical pro-
cesses in climate-vegetation interactions. The average normalized mean squared
error for the GP model-tree is 0.31 and the maximum improvement seen for any
year of test data over linear regression based decision tree is more than 16%.

The data preprocessing pipeline, as well as the modeling and analysis frame-
work have been run on NASA’s Pleiades Supercomputer with the following hard-
ware and software configuration. Each of the worker nodes are based on the Intel
Sandy Bridge architecture with dual 8 core 2.6 GHz processors and with 32 GB
of memory. All nodes’ operating systems are running SGI ProPack for Linux
kernel version 3.0. Pleiades utilizes a PBS scheduler for job submission.

4 Discoveries

The goal of this analysis is discovery of equations that best explain the vegetation
observations in the global rainforests, given recorded climate data and other
environmental factors such as land elevation, and slope. The GP model-tree
analysis yields 4 different partitions that broadly divides the global rainforests
into temperature limited, and precipitation limited zones. In addition we find
two more zones that have a mix of temperature, precipitation, and elevation
affecting vegetation. These are mostly transitional forest regions that border
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(a) (b)
Fig. 2: (a) Polynomial regression tree, (b) Equations at each leaf node

the main forested areas in the two biggest rainforests in the Amazon and the
Congo region. Further partitioning the space yields micro regions within these
big partitions that have unique characteristics that explain the behavior of these
forests in the face of droughts and recent events of extreme water shortage. In
this section we describe in details the main climatic influencers of these different
regions.

Figure 2a shows the decision tree partitions obtained by running our al-
gorithm on the global rainforest data set and Figure 2b shows the nonlinear
equations for each of these partitions. Partitions are identified using blue (leaf
0), cyan (leaf 1), yellow (leaf 2), and red (leaf 3) colors, as shown in Figure 3a
and are conditioned upon precipitation during last year’s dry season at level one
and temperature at level two of the regression tree. Note that in all equations
the target is NDVI of the current year’s dry season, and being a measure of
greenness captured, it is acting as a surrogate for vegetation in the area.

(a) (b)
Fig. 3: (a) Global partitions, (b) Subdivision of leaf 0 (blue) and leaf 2 (yellow) pixels
of (a) into 4 partitions. Image best viewed in color.

Looking at the partitions in Figure 3a, it is evident that the Amazonian rain-
forests and the African rainforests have characteristically different response to
climate, whereas the Indo-Malay rainforests have no defining nature, and com-
prises of an equal mix of the different partitions. The two main partitions en-
compassing the bulk of the Amazon river basin are yellow described by Equation
3 and blue described by Equation 1 in Figure 2b. They are dependent on both
temperature and rainfall across different seasons with temperature being the
most dominant feature. The yellow region in northern Amazon requires colder
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(a) (b)
Fig. 4: Repartitioning using derived tree for (a) 2005 pixels and (b) 2010 pixels. Image
best viewed in color.

temperatures along with longer rainfall spells overflowing from the wet season
to the transition season for increased greening of the trees. The blue region oc-
cupying the central Amazon river basin also prefers colder temperatures during
the wet seasons. However, they also are dependent on cross-seasonal rainfall pat-
terns. A low rainfall wet season is easily compensated for by a wetter transition
and vice versa. However, too much rainfall is not good for the trees to flourish
in this region. This is due to interruption of the adiabatic cooling process of the
region which forces temperatures to rise and negatively affect vegetation. On
further partitioning the points in the blue and yellow region in our data sets,
we see that these big regions in the Amazon are partitioned broadly into three
regions: the purple region in Figure 3b which mostly overlaps with the blue cen-
tral river basin and the orange and lime regions which encompass most of the
yellow partition. These partition equations (not shown here due to lack of space)
correspond to the geographic features of the region and include elevation, and
dry season rainfall as additional environmental influencers. On the other hand, it
is apparent that bulk of the African forests is governed by Equation 4 described
by the color red in Figure 3a. The dominant climate variables in this equation
are temperature from all seasons and extended wet season precipitation. The
biggest reason for such behavior is the lack of copious rainfall in these regions
during any time of the year. This leads to the trees trying to sustain themselves
through the low to moderate rainfall received during other seasons, and also
through lower prevalent temperatures. The cyan region, described by Equation
2, is very heavily controlled by wet season rainfall and flanks the southern border
of both the Amazonian and the African rainforests. Geographically, these regions
represent a transitional zone in the rainforests, where there is a mix of broadleaf
evergreens and the bordering savannas (grasslands). Clearly, this region has a
unique nature due to the influence of the savannas, that transcends continental
boundaries.

These equations enable scientists to explain several observations made in
the last decade about these rainforests. Given the dependence of the African
Congos on good rainfall and low temperatures, the permanent state of drought
in the African Congos in the last 15 years have led the trees in that region to
gradually succumb to the drought, as is seen through a decreasing NDVI trend
[21] over the years. Even slight improvement in rainfall in certain years results
in those trees trying to adapt to a different steady state behavior, evident from
the appearance of yellow patches in the African red partition in Figure 4a. The
Amazon droughts of 2005 and 2010 also sees similar behavior in that the trees
in the drought-stricken regions of the Amazon, in an attempt to survive under
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these extreme climatic conditions, adapt to a different steady state behavior.
As seen in Figure 4a, a large part of the blue river basin region affected by the
2005 drought turns yellow to account for the sudden water deficiency through
increased photosynthetic activity [14]. Similarly, a small part of the yellow region
near the mouth of the Amazon river becomes blue after the 2010 drought hits
that area, thereby resisting tree dieback due to the unfavorably low rainfall and
high temperatures caused by El Niño in that year. The general increase of cyan
pixels in 2010 can be attributed to increased deforestation activities that has
been plaguing the southern Amazon for the past decade. This analysis explains
to a great extent the contradicting observations and conclusions drawn by various
studies that either look at the rainforests at a macroscopic level or analyze small
regions that fail to capture the global picture.

5 Conclusion

For ages, scientists have been trying to understand the effect on climate and
other environmental variables on vegetation. Given that the rainforests are the
largest carbon sinks, it is particularly important to understand how these forests
react under changing climatic conditions, and whether their future is at risk. Ex-
isting studies using simple correlation analysis or linear regression models built
at a global level, have failed to capture the nuances of the micro regions that
exist within these rainforests and respond to the climatic changes very differ-
ently. In this study we use a GP based approach called symbolic regression
for discovering equations that govern the vegetation climate dynamics in the
rainforests. Expecting micro-regions within the rainforests to have unique char-
acteristics compared to the overall general characteristics, we use a polynomial
regression-tree based hierarchical partitioning of the space and build a nonlin-
ear GP model for each partition. Our framework discovers that these rainforests
exhibit very different characteristics in different regions. We also see that in the
face of extreme climate events the trees adopt to reach a different steady state
and therefore, exhibit resiliency.
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