Advanced Techniques for Mining Structured Data:

Graph Mining

Node prediction

Dr C. Loglisci
PhD Course in Computer Science and Mathematics XXXII cycle
Motivations

- Not all the nodes have labels (nodes may be uncompleted due to different reasons, e.g., generated with misses)
- Labels provided by the users can be misleading
- Labels are sparse (some categories might be missing or incomplete)

- Suggesting new connections or contacts
- Automatically understand roles in a network (hubs, activators, influencing nodes, ...)
- Study of diseases and cures
- Identify unusual behaviors or behavioral changes
A Prediction problem

- Graph $G: V, E, W$ with vertices V, edges E, weight matrix W
- Labeled nodes $V_l \subset V$, unlabeled nodes $V_u = V \setminus V_l$
A Prediction problem

- Graph $G: V, E, W$ with vertices V, edges E, weight matrix W
- Labeled nodes $V_l \subset V$, unlabeled nodes $V_u = V \setminus V_l$
- Node described by an attribute set $X: X_1, \ldots, X_m, Y$ (X_i independent, Y dependent)
- The goal is to estimate the attribute Y for each unlabeled node.
Importance of the network structure

• The graph structure encodes important information for node prediction
• Two important concepts from social sciences:
 • **Homophily**: similar individuals are connected with similar people
 (friends of friends can be easily friends)
 • **Co-citation regularity**: if two people share a link most probably are
 similar in other connections (e.g., music tastes)
• So, it is reasonable to think that labels propagate in the network
 following the links, or the labels of nodes can influence the labels of
 linked nodes.
State-of-Art Approaches

• Similarity-based
 • find nodes that share the same characteristics with other nodes
• Iterative Convergence
 • learn a set of labels and propagate the information to similar nodes
• Label propagation
 • labeled nodes propagate the information to the neighbors with some probability
Issues

• Network auto-correlation:
 • The value of some attribute dependent by the value on the linked nodes.
 • positive and negative auto-correlation
Basic idea

Network auto-correlation \(\rightarrow\) Defining (new) node attributes which make a node aware about the distribution of the attributes \(X,Y\) on the linked nodes.
Iterative Convergence

- Basic idea

1. Learn model from labelled node and apply to unlabelled.
2. Recompute new attributes.
3. Repeat until convergence.
Issues

- Scarcely-labelled network
 - labeled nodes are possibly linked to unlabeled nodes and vice-versa.
 - both labeled and unlabeled nodes can be used to build a prediction of the unknown labels as more accurately as possible
Iterative Convergence+
Collective Inference + Semi-supervised learning

• Basic idea
• Joint predictions rather than single predictions.
• Collective predictions on linked nodes can be used...
Iterative Convergence + Collective Inference + Semi-supervised learning

• Basic idea
 • Joint predictions rather than single predictions.
 • …in order to mutually reinforce one label to each other.
Iterative Convergence + Collective Inference + Semi-supervised learning

• Uses both labeled & unlabeled data to build classifier, whose goal is to classify only unlabeled data as accurately as possible.
• unlabeled node not necessarily in the learning process, but used in other decisions of the iterative convergence
• no general rule valid for all possible instances is generated: semi-supervised is transductive learning.
Iterative Convergence+
Collective Inference + Semi-supervised learning

• Procedure
 1. Re-build network structure
 2. Compute correlation-aware independent attributes XN.
 3. Initialize unknown labels with a base model learned on training data (X × Y).
 4. Determine correlation-aware dependent attributes YN.
 5. Learn a new model on training data (X × Y × XN × YN).
 6. Predict unknown labels and choose reliable labels.
 8. Iterate steps 4-7 until either the maximum number of iterations is performed or no new reliable label is estimated.
Correlation-aware attributes

- discrete valued variables for classification
 - counts of labels, majority, mode, ...
- numeric & discrete valued variables
 - weighted mean, standard deviation, histogram on the discretization-based ranges, ratio of weighted mean
- not necessary using all the linked nodes, but neighbour nodes
 - neighborhood defined with the adjacent nodes or with a maximum distance, computed with weighted edges, the neighbour should be within
Label reliability

- Reliability of new predicted labels is estimated, in order to assign new labels to the nodes, and feed back the new labels into the learning process.
- Homophily principle: similar labels tend to be linked, so reliability can be quantified by a measure of the local auto-correlation of the label with respect to the training nodes.
- Two measures of local auto-correlation are used: local Moran Index, Getis-Ord index
Label reliability

• For each node, let us consider the label predicted in the current iteration (yi+1) and the label previously assigned to the node (yi).
• Measure the local auto-correlation of the labels compared in the training network.
• Assign the label having the highest local auto-correlation to each node.
Re-build network structure

- in real-world networks, the auto-correlation is not the same for all the linked nodes:
 - pre-existing links may be unweighted, while we assume weight matrix
 - the auto-correlation is not uniform and depends on the edge weights

→
 - build link structure based on attribute (dis)similarity
 - the higher the similarity among the attributes, the stronger the auto-correlation, the higher the weight
Node prediction in evolving networks

X_1, \ldots, X_n, Y

t_{i-2}

X_1, \ldots, X_n, Y

t_{i-1}

X_1, \ldots, X_n, Y

t_i
Node prediction in evolving networks

- Networks may change both in the structure and in the values of the attributes

- Network is partially labelled network at the time we observe, while it is fully labelled at previous times
Correlation in evolving networks

- Values of some attribute are correlated over a certain time lag

- Two sources of temporal correlation, **temporal recurrence** and **temporal locality**
Correlation in evolving networks

• Values of some attribute are correlated over a certain time lag
• Temporal locality: values observed in the present are more highly correlated with the values of the recent past than those of the distant past
Correlation in evolving networks

- **Temporal recurrence**: Values are more influenced by a subsequence of values of the past than by a single value.
Node prediction in evolving networks

- Basic idea
- Two network learning scenario, fully labelled (t_i-k,...,t_i-1), partially labelled t_i

- Learn prediction models specific for the network scenario
- Supervised for fully labelled, semi-supervised for partially lab.
- Ensemble of models, which accounts for the temporal correlation
Node prediction in evolving networks

• Basic idea
• Temporal recurrence can be accommodated by learning models from subsequences of past networks, that is, time-windows of network data
• A window of the networks is synthesized in a summary network
Node prediction in evolving networks

• Basic idea
• Temporal locality can be accommodated with weighting schemes based on the proximity temporal w.r.t. the current network
• Uses weighting schemes to build the ensemble and summary networks
Node prediction in evolving networks

- Procedure
Node prediction in evolving networks

• Procedure
 • Compute correlation-aware attributes X_N and Y_N, in order to account for auto-correlation within networks
 • Generate summary networks from historical network data
 • Learn regression models on summary networks (supervised)
 • Learn regression model on current network (semi-supervised)
 • Build an ensemble E by using the prediction models:
 • higher weights to the models closer to the current network, and lower weights to those more distant.

$$E(x) = \sum_j \left(\frac{1}{t_m - t_j + 1} \right) f_j(x)$$
References

