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1. Introduction

In the middle of the sixties, the world of software production saw its first great crisis. Software
developmenso far had mainlyo do with the implementation of mathematical algorithms which
weremore or less simple to write down but very time—consuming to compute. As the size and
complexityof software systems grew dramaticaffyogrammers were faced with a whole new
dimensionof problems:

* No decomposition schemes foomplex tasks existed. There was no experience how to
structurethe problem into manageable units and how to describe this structure in a formal
notation.

e In large software systems, many peoplere working on a project without $afent
knowledgeabout how to @yanize the course e project, i.e. how to plan, run, and super
visethe single activities comprising the project.

* In the early days gbrogrammingpeople often had a notion ofiefency which proved
to be inadequate for the development oféasystems. Noyit is not so important to save
afew bytes here and some processor cycles there, but adaptabitigbility, maintain
ability and the like became the crucial features of software.

e The programming languages existing at that time (and unfortunately heavily used until
today)were not suited for the new class of problems to be solved.

e Complexproducts were developed without a systematic knowledge about how to ensure
certainquality requirements.

Some of these problems are still unsolved and important research topics.

In 1968/69 (cf. [NR68], [BR69]), a neapproach to the software development process was
advised Strong similarities between the production of software and classical engineering tasks
leadto the conclusion that the techniques devised in engineering sciences should be applied to
softwareproduction also, and the teguoftwae engineeringvas coined. This was a clear rejec

tion of the notion of programming considered as an "art” (cf. [Knuth68]).

Oneof the early results of software engineering was the development of so-iteleycle
modelswhich were aimedtb describe the activities occurring during the software development
processtheir results, and their dependencies. Many of them have been publistagdnostly
differing only intheir granularity (cf. e.g. [Boehm82]). The rise of new programming paradigms
thoughhas introduced a new kind of life—cycle models in the past years (cf. e.g. [Agresti86]).
They can be calledontinuousmodels in contrast to thdiscretemodels, because they do not
considerthe activities during software development as separated units of work with a clearly
definedresult. Instead, they view program development as an evolutionary process where the
product— starting with a rapighrototype more or less automatically derived from an abstract
specification- is transformed into a "better” system in a sequence of refinement steps. Although
someof the ideas behind this scheme are quite attractive, this paradigm lya$ passed the

test of being appropriate for & systems in classical application areas.

In this paperwe follow another idea: Activities are not assigneg@hases as in most discrete
life—cyclemodels. This leads to the impression that they are executed in a chronaodgcal
whichis unrealistic in most cases. Instead, we group the activities according to the logical level
onwhich they operate. Fig. 1 shows our so—caledking aea modelcf. [Nagl90]).
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Fig. 1: The working area model

The box shows the three basic working areas of software development:

Theworking aredRequiements Engineering (REQnsists of all activities which serve the
specificationof the outside behavior of the system to implement. Often, this specification
Is made incollaboration with the (potential) purchaser of the system. Activities in this
working area include:

Analyzing and modelling the given situation,

modelling the desired future situation,

checking the requirements specification of the system for feasilaihity

modifying the requirements specification in accordance to new user demands.
The central document of the RE working area isReguiements Specification

The Programming in the Laye (PiL) area covers all activities dealing with the software
systemas a whole. Some example activities are:

— Analyzing the requirements specification,

— identification of basic design units,

— specification of the interactions between the design units,

— checking the architecture for feasibility

— integration of implementation units,

— checking the system against the requirements specification, and
— modifying the architecture in accordance to new requirements.

The central document of theiL area is th®esign Specificatioor System Athitecture
in the following mostly called architecture or design.

In the Programming in the Small (Pi%Yea, the actuainplementation of the system is
performed.The PiS area contains:

— Analyzing and understanding the part of the architecture to be implemented,
— implementation of the design units in a programming language,
— testing of the implementation units,
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— checking of the implementation units against the design specification, and
— modifying the implementation e.g. in the case of errors or new design specifications.
The central document in this area is slo@iice codeof the system.

Besidethese basic working areas, every activity during the project has tgdr@zed planned,
anddocumented. Furthermore, it has become common practicedergasjectdo perform an
additionalchecking of all results by a central authority for quality assurance.

In the past years, the main interest slowly changed from PiS to the other working areas. Although
muchgood work is done in all areas, the research area of program design has experienced the
mostdrastic boost. Many people (including the author) consider the architecture as the most
importantpart of software development. The reason for trsgmple: the main expenditure dur

ing the development process concerning manpotvae, and money is still the PiS. good
desigmmakes PiS easy in that the programmer can concentrate on a problem with a comprehensi
ble complexity Errors made in the implementation can be found and eliminated more easily
becauseealization details are encapsulated in modules. For the same reason, Syfbieans
aremore adaptable and portable than before. On the other hand, errors riedédsign may

leadto an enormous waste of implementaticiogs. One may gue that the same dependency
holds for requirements specification and architecture, dgiood and adaptable architecture
alwaysrepresents a set of simil@quirements, so changes in the requirements are readily inte
gratedinto a good design.

Especiallythe meteoric rise of the object—oriented paradigm has led to a host of design methods
(cf. e.g. [WWWOO0], [Booch91][]CY91], [RBPEL91], [CABDGHJ94]). Unfortunatelythe
enthusiasnabout the "invention” of the object—orientation shows the features of an ideology
Theobject—oriented paradigm introduces a new terminology and "reinvents” things which were
alreadyknown for a long time. Sometimes it seeasgthough experiences in software design are
neglecteddeliberately because they do not fit into the scheme, or they might even be lost com
pletelybecause not so few people think that there was no software design before object—orienta
tion showed us the wayhe authois far from condemning the ideas of object—orientation, on
thecontrary it is their great merit that the researckthe@design topic has made great advantages
recently.

Comparedo the publications cited above, the approach presented in this paper does not claim
to be a method, i.e. it does not claim to know how the design of an arlsibfamare system can

be devised. In our opinion, this is not possible at all. If we remember the similarities between
softwaredesign and classical engineertagks, this would mean that a uniform method could
solveproblems in constructing a car as welixdsen building a house. In order to solve specific
problemswe have to studgertain application and system classes in detail; e.g. the problem class
of compiler construction shows how the careful investigation of an application class leads to very
strongresults which are transferable to other problem classes afterwards.

Neverthelessghe comparison between software design and classical engineering techniques is
not completely suitable. Just as a programming langisgeuniversal tool to solve arbitrary
implementatiortasks, we can think of a design language which can describe arbitrary software
systemsThis paper proposes such alanguage. Although it is not attached to a method which also
tries to commit the designer on how to model a problem, it helps verywitdlithe design
becausd is not settled on therogramming language level. As we will see, it restricts the usage

of a programming language in some points, on the other hand it is able to express details which
cannotbe mapped (directly) onto one of the programming languages available $Sadaur
approachs more a methodology which can be extended to a methodidiesnf knowledge
aboutthe application area exists.
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Thearchitecture language presented here has a long tradition and has been revised several times
(cf. e.g. [Altmann79], [Gall82], [Nagl82], [LN85], [Lewerentz88], [Nagl90], [Borstler93]). In
somerespects, it has the same history as Modweh&n compared to its predecessors (cf. e.g.
[Wirth82], [Lampson83], [RM/85], [Rovner86], [CDGJKN88], [CDGJKN89]Nelson91],
[Harbison92]):starting with a basic notion of modulariityhas seen quite some extensions and
smoothingof "rough edges”. The most striking similarity is the careful integration of inheritance

into the given conceptual framework etherefore consider Modula—3 an ideal PiS "partner”

for our architecture language. Of course, a design in our language may be mapped onto (almost)
anyother programming language with more or le$sréeftoo.

In the next chaptethe basic concepts of our architecture language wpkbsented. Then, we
discusssome general design problems and the correct usageastthtecture language. These
parts are essentially adapted from [Nagl90]. Fingflg integration of Modula—3 amdherpro-
gramminglanguages with the architecture language will be dealt with.

2. A module concept

As mentioned in the introductioone of the crucial results of the PiL working area isieom-
positionof the system undelevelopment intsmanageable unitsn this papemwe will call such
unitsmodulesalthough this term is generally used/arious diferent ways. Even in the context

of Modula—3, the word module denotes somethinfgidifit than what is meant here. There is
no precise definition ofvhat a module is, but we will try to give the reader a notion of the term
in that we enumerate some characterizations.

e A module is dogical unitof the system with a clearly defined purpose in a given context.
Typical for such a unit is that its purpose can be described in one sentence.

e A module representsdesign decisionThe sum of all design decisions is apparent from
thearchitecture.

e A module is arnunity consisting oflata and operations
e A module is a unit with a certasomplexity

e A module ofers some resources to the rest of slgetem. & call all of the resources
offeredby one module thmterfaceof that module.

e Theinternals of a modulare encapsulated, i.e. the module can only be used through its
interface. We call these internals thedyor implementatiorof the module.

* A module can be viewed as ahstraction the interface provides access to "abstract”
resourcesthe module abstracts from the realization of these resources.

* A module igeplaceabléby another module with the same interface without changing the
semanticof the system.

e Thecorrectnes®f a module can be showrdependent of the rest of the system by check
ing the realization against the interface.

e A modulecan bedeveloped independenfipm other modules. This includes the imple
mentationtesting, and documentation of the module. A module is therefore thaibdsic
of work during the implementation of the system.

e A module is the basignit of reusein a system. Many modules can be uiseal diferent
contextor system than in the one in which they were developed.

In the following we will see that a module in the above sense is not an arbitrary collection of
objectsfeatured bythe programming language, but there is a small setoalule typesvhich
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describea certain kind of abstraction. Before we discuss these types, we introduce the notation
we want to use in this paper

Our notation is a mixed graphical/textual language. The systenerall architecture is
describedy a graphical overview which shows the modules constituting the system. For every
module,a separate textual specification of the moduitgerface existd he graphical represen
tation of a module namesitack lookslike this:

dt

Stack

Thenotation expresses our idea that a module is a unit consisting of an interface andrebody
latter not accessible from the outside. Theentry identifiesStack to be adata type module;
thiswill be explained lateAdditionally, the module will be accompanied by an interface specifi
cation.This specification describes the resources the modiglesad its clients. For a stack, typ
ical resources would be push, pop, or read.

2.1. Module Types

One of the characteristics for modules given above is that a module provides an abstraction of
how the interface resources are implementedpnogramming language. Basicaltwo types
of abstraction can be distinguished:

* Functionalabstractions at hand if the module has some kinttafisformatiorcharacter
Thismeans that an interface resource transf@onse kind of input data into correspend
ing output data. Functional abstraction facilitates the hiding of algorithmic details of this
transformation.

e Dataabstractions present if the module encapsuladtesaccess to some kindoémory
Themodule hides the realization of the data representation. The nmoohiésface only
shows how the data can be used, not how it is mapped onto the comgiatege.

Becausdunctional abstraction is quitdose to the human way of thinking, we start our discus
sionof module types witfunctional module€Exactly because functional abstraction is compar
ablyeasy to understand, it was and is heavily used by people without design experience: itis quite
naturalto decompose complex task into several smaller tasks. A typical example is that for
everyfunction at the user interface, one module exists to implement this function. If the function
Is too complex for one module, it delegates some subfunctions to other modulesth&hen
moduledependencies are drawn as a graph, the result looks more or less like a tree.

Onebig problem with this kind dunctional decomposition is that similarities between modules
areeasily overlooked and the safnactionality is implemented several times. And, whatis even
worse, details about the representation of data structures are not encapsulated, since several func
tional units (spread over several modules) nedahtiw this representation. This resulted in the
badlymaintainable systems often found todByerefore, many object—oriented methods do not
supportfunctional abstraction at all or only with little attention. But this leads to equally ncom
prehensiblarchitectures, since functional modules do have a juspfesk in the design. Actu

ally, they can be found often in transformation problems: e.g. the pblesesmpiler like scan
ner,parseranalyzerand code generator would be functional modules in our sense. Note that the
modulenames already suggest some sort of "active” character of functional modules, whereas
dataabstraction modules mostly have "passive” behavior

Let us now look at an example for a functional moduieferface description.
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FUNCTIONAL MODULE INTERFACE Scanner;
(* Provides functions to convert a text stream into a token stream. *)

IMPORT TextStream, TokenStream:;
EXCEPTION ScanError; (* no valid token could be scanned *)

PROCEDURE IsTokenAvailable(text: TextStream.T): BOOLEAN
RAISES {TextStream.ReadError};
(* Returns TRUE if another token is available on the text stream. *)

PROCEDURE GetNextToken(text: TextStream.T; tokens: TokenStream.T)
RAISES {TextStream.ReadError, TokenStream.WriteError, ScanError};
(* Reads one token from the text stream and writes it to the token stream. *)

END Scanner.

This exampleallows some further remarks on functional modules. An important property of
functionalmodules is that theyay not contain memonnless some code inside the modile’
bodyis executed. In other words, as soon as the execution of an interface resource of the module
is finished, the module has no knowledge about previous calls. The reason for this regriction
thata functional module with a state commonly contains two implementation decisions in one
module:one for the actual functionality of the module and one for the state of the mabidle,
shouldbe modelled as a separate data abstraction modtdad. Note that any module with an
internalmemory can be made stateless if the state is stored elsewhere and either read by the func
tional module or passed to every function by the client. Note also that the restriction does not
meanthat the body of a functionalodule may not have any global variables: e.qg. itis absolutely
legalif a module computingrigonometric functions uses an internal table of key values, or if

our scanner module uses a taufof cached characters. This is no violation of the principle that

the mapping of input to output values is independent of the run—time "history” of the module
(thoughit may depend on the history of data abstraction modules usled functional module).

Anotherpoint worth mentioning is that our language does not suppeaihs to define (or even
describe}he semantics of interface resources.a&/sume that a description of a resogrteic
tionality is given as a plain text comment. If a more formal description of the interface is required,
we propose that an appropriate specification language like Larch (cf. [GHM90], [Jones91]) is
used.

Before we take a closer look at data abstraction modules, let us summarize some frequent
applicationareas for functional modules:

e Modules performing control and coordination tasks (e.g. the prognaan module),
» transformation problems like the scanner example,
e evaluation tasks (which is actually a special class of transformation problems), and
e supporting services on data structures. This will be explained later
In general, functional modules solve some subtask of a more complex task.

Unlike functional decomposition, thtata abstraction principléas been neglected for a long
time. The central idea is that thepresentatiorof a data structure cannot be accessed directly
instead the client has to read or modify the structure only through a giveresetee$ opera
tions The data structure and its implementation are blended into a unity
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In our language, data abstraction is supported by two module types, matasipjectnddata
typemodulesWe first present data object modules through an example.

DATA OBJECT MODULE INTERFACE SymbolTable;
(* Provides storage for symbols during context sensitive analysis. *)

IMPORT Symbol;

EXCEPTION
SymbolDeclaredTwice; (* the symbol is already in the table *)
SymbolNotDeclared; (* the symbol is not in the table *)

PROCEDURE Init();
(* Wipes out the table. *)

PROCEDURE Store(symbol: Symbol.T) RAISES {SymbolDeclaredTwice};
(* Stores a symbol. *)

PROCEDURE Remove(symbol: Symbol.T) RAISES {SymbolNotDeclared};
(* Removes a symbol from the table. *)

PROCEDURE Get(ident: TEXT): Symbol.T RAISES {SymbolNotDeclared};
(* Returns the symbol with the given name. *)

PROCEDURE IsDeclared(ident: TEXT): BOOLEAN;
(* Returns TRUE if the symbol with the given name is in the table. *)

END SymbolTable.

As is obvious from the interface, the module encapsulates some kind of meaamg module
"remembers’data between interfaggocedure calls. In our design language, data object mod
ulesare theonly ones which have static statei.e. a state which is visible on the design level.
We will come back to this lateNote also that data object modules may not export types.

Thelast module type in our language is tiaga type moduleAgain, we start with an example.

DATA TYPE MODULE INTERFACE TokenStream;
(* Abstract data type for a stream of tokens. *)

IMPORT Token, StreamMode;

EXCEPTION
IOError; (* general input/output error *)
WriteError; (* could not write to the stream *)
ReadError; (* could not read from the stream *)
ModeError; (* operation not allowed in this mode *)
TYPE
T <: Public;

Public = OBJECT METHODS
open(name: TEXT, mode: StreamMode.T): T RAISES {IOError};
(* Opens and returns a stream with the given name.
The stream will be in read, write, or append mode depending
on the mode parameter. *)
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close() RAISES {IOError};
(* Closes the stream. *)

read(): Token.T RAISES {ReadError, ModeError};
(* Reads one token from the stream. *)

write(token: Token.T) RAISES {WriteError, ModeError};
(* Writes the token to the stream. *)

rewind() RAISES {IOError};
(* Resets the stream so that the next read/write returns/writes
the first token in the stream. *)

isTokenAvailable(): BOOLEAN RAISES {IOError, ModeError};
(* Returns TRUE if another token is available from the stream. *)

END;
END TokenStream.
A data type module exporexactly one typelo be more precise, it exports one type identifier
(see below) and the access operations for instarid¢hgs type. In this waydata type modules
providethe client with means to create an arbitrary number of objects of that type. Alithatagh
typemodules are templates for the creation of megtbgy may notontain a global state, i.e.
the execution of an interface resource on an identical instance of the type always modifies this
instancan the same way)f course, as with functional modules, this does not mean that the body
of the module may not contain global information, but operations on one instance of the type may
not have visible side—&dcts on othemstances. In this sense, all state information visible for
clientsof the module is contained in tivestances of the type and therefore dynamic: no actual
memoryexists until some clients instantiates the type.

The exported type has always the nam&o, if DataType is a data type modul®ataType.T
alwaysdenoteshe type identifier exported [yataType. ThePublic identifier is used to denote
thepublicly accessible part of thygpe and should not be used by the client. Note that the textual
interfacedescription is redundant here, becaus®®EA TYPE MODULE clause already deter
minesthat a data type is exported by the module. But since we want to derive a PiS interface from
this description lateiwe distinguish between the PiL and the PiS parts of the description, even
if some PiS code could be derived from the PiL pagtwill encounter a similar situation in the
contextof specialization.

In the distinction between data object and data type modules, our apprdachfohin most
otherdesign methods. Commonihese methods distinguish between class diagrams (which
would only use data type modules) and object diagrams. Class diagrams are considered static,
whereasobject diagrams are used to describe the dynamic behavior of the system. In our lan
guagewe decided to facilitatenly a static descriptionf the system. Wthink that our architec
turelanguage should only describe facts which do not thueRrogramming in the Smailtea.
(Thesame agument will occur again in the section on module dependencies.) And, in general,

it is notpossible to decide which objects exist in some dynamic state of the system witheut look
ing at the implementation. Of course, the designer will have some kind of dynamic behavior of
his system in mind. But since we want a strict distinction between design and implementation,
thedesigner cannot be sure whether the actual objects existing in the system will exist and behave
thatway. On the other hand, if the designer wants to annotate some sort of memory in the system,
dataobject modules provide means to do that in a way the implementation cannot ignore.

A common misunderstanding is that data object moduiesan annotation for the fact that
exactlyone instance of a certain type exists. Therefore, there should also be annotations for arbi
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trary cardinalities, e.g. to determine that exactly four instances of some type exist. But in our
languagedata object modules are not instances of some type, they are just an encapsulation of
globalsystem state. Of course, data object modules can be easily converted into datatype mod
ulesand vice versa, but this changes the semantics of the system. And the definition of arbitrary
cardinalitiesvould again interfere with our separation of PiL and PiS. Let us consider the exam
plefrom above: the designer wambsexpress that some data object or somegypstances cen
tainfour instances of another type, like a car which contains four wheels. In that case, the inter
facemight contain resources liketLeftForewheel etc. Note that this is all the designer can lay
downwithout looking at the implementation: if the design alldlaes car module to instantiate
wheels,he cannot assure that it does this exactly four times. But, for the design, thiotloes
matterat all as long as the object behaves as &aaore dificult case would be that the designer
wantsto lay down thaéxactlyfour instances of a type exist. Although this case is rare, it might
occurwhen a situation has to be modeled very close to re@litysider e.g. we want to model
acomputer system with four disk controller cards all managed by the operating system. In the
realworld, the operating system simply cannot create a new disk controller at run—time because
it contains hardware elements. The operating systanonly work with the controllers which
arephysically present. If the designer does not want to abstract from this situation, he will have
tointroduce four data object modules with identical interfaces. Actwadlylo not care whether

the chips and resistors on all these cards are the same, or whether some of them might contain
completelydifferent hardware elements. Analogouglis of no concern if the implementations

of the four data object modules ardeliént or not, as long déisey implement the same interface.

On PiS level though we might want not only to ensure that the implementations are identical,
but also to avoid four (identical) copies of the source text. Although this is not really a design
topic, we will come back to this problem in the context of generics.

2.2. Modulerelationships

After presenting the diérent kinds of basidesign units, we now introduce the means we pro
vide to describe interactions between these uRitst of all, some modules want to make use
of resources d¢red by othemodules. W distinguish three dérent logical levels on which
suchdependencies can be discussed:

1. Thefirst prerequisite for the interaction between a client and a server module is that
thedesign allows the client to access the resourdesedfby the serveY\e call this
theusability level

2. If the architecture allows some module to access another module (on the usability
level), the client may make use of this by actually using some ofeneets
resourcege.q. if the cliens implementation containscall of a procedure &dred
by the server). This use is static, i.e. it can be determined by looking at the imple
mentationof the client. Therefore, it is on tisgatic uses level

3. Ifastatic use of some clienetsource is executed during the run—time of the program,
we say that this is on thdynamic uses level

The previous section already mentioned that our architecture language does not consider PiS
aspectsTherefore, the design cannot determine whether the implementation makes use of a
resourceor not.It can onlyallow some module to use another modaile’'sources. So, if we talk
aboutsome module using or importing another module, this is always on usability level.

Besidegheusability relationshipsrom above, we also hawtructural relationshipsbetween
modulesThese are used to express structural design concepts and allow or forbid certain usabil
ity relationships.
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We start our discussion with a relationship caltezhl containmentThis is a structural relatien
shipdescribing that some module is contained in another module. From this containment, some
rulesderived from the block—structuring idea present in many programming languages follow
This relationship forms #ocal containment #ein the module dependency graph. Placing a
modulein such a tree means that the module can only be accessed from certain parts inside this
tree.Consider fig. 2 for an example.

_B_ X_C_

- —

—— 5 local containment
------ = usability

Fig. 2: A simple local containment tree

ModuleE may not us€ because it isontained irA; analogoushA cannot us® because it is
containedn C. The purpose of local containment isitde internalsof the tree from the outside.

In this sense, it introduc@sformation hidingon the architecture level. Let us summarize what
usability relationships are possible in a local containment tree: A module can use itself, its suc
cessorsits predecessors, addect successors of all predecessors (especially its brothers). This
is completely analogous to the rules of locality and visibility in block—structured programming
languages$ike Algol, Pascal, and Modula—3.8/8ay thapotential local usabilityexistsbetween
themodule and its above mentioned relatives in the containment tree.

Oneproblem with the relationship of potential local usability is that many relationships are made
possiblebetween modules which are not necesdaoy a quite simple containment tree, fig. 3
shows the bulk of resulting potential local usability relationships.

Of course, the design should give a more detailed description about which of these relationships
arereally useful. V& therefore do not use the potential local usabllistead, we introduce the

local usability relationship. Local usability is a relationship which is explicitly drawn into the
architecturealthough such a relationship may only be defined between modules for which a
potentiallocal usability exists. In other words, the local usability relationshipssaresebf the
potentiallocal usabilitieglefinedby the designeMost local usability edges are parallel to local
containmenedges. But especially in recursive problems, this is not altheysase. Fig. 4 shows

two examples for typical situations. On the left side we have a containment tree withdakal
uleslocally used by their parents. Such structures can be found e.g. when a complex functional
moduledelegates parts of the functionality to otherctional modules. The right side shows a

part ofa recursive descendent parser: the module for compiling statements uses the module for
compilingexpressions because statements may contain expressions. But e.g. the module compill
ing factors makes recursive calls to ther module because expressions may occur in factors.
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Fig. 3: Potential local usability
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Fig. 4: Examples for local usability

Notethat for every local containment edge, there has tqoeadlel local usability edge. Other
wise, the local containment edge would be senseless. Nevertheless, we keegddessa the
diagranfor clarity. In our textual interface description, we incladgpecial clause for expressing
the local containment relationship. The local usability relationship is denoted INYP@ORT
statementFor the example from fig. 4, we would write

FUNCTIONAL MODULE INTERFACE Expr CONTAINED IN Stmt;
IMPORT Term;

END Expr.

Thelocal usability relationship introduced so far is not suited for all situations where one module
wantsto use resources from another module. This is particularly the case if some module should
beusable by arbitrary clients, possibly fromfdrent containment structures. Consider the situa
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tion where two modules andB want to use resources from a general library modulé we
wouldrestrict ourselves to the local usability relationship, we could irsegitherunderA nor
underB, because the local containment structure would forbid the other one totactiee®nly
solutionin which both modules can accessvould beto insert it under some common parent
of A andB in the containment tree, as is shown in the left side of fig. 5. This does not only violate
our rule that a parallel local usability edge for the containment edge exists, it also distorts the
semanticof the architecturet is a low—level service and should therefore be beélandB.
Additionally, if the need foH’s resources should occur in another containment tregethgner

would have to duplicatéel or he has to introduce a new common root for the modules Hsing

In the latter case, the independence of the two containment trees would be lost.

7 7~
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' ~ 7 ~ <
\ ~/, N \
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\ ~
. S o . \
\ ~
~
\ ~
- - ~

A/ B
\H /

—— 5 local containment
------ » local usability
=———=p (Qeneral usability

Fig. 5: Local vs. general usability

Theobvious solution for this situation is given on the right sidegob. This diagram introduces
anew kind of usability relationship: trgeneral usabilityWith this relationship, the designer

has means to express that a module exports general resources which can be accessed from all
othermodules for which a corresponding general usability relationship existiNdtihere is

no structural relationship directly connected to general usability: general usability edges from
anypart of the system can end in one module. On the other ih&dot unusual that only one
client uses some serverodule through general usabilityhether or not a module is generally

or locally usable is a question of the kind of server module. If a modieles gfeneral services

to clients, it should be inserted using the general usaliiliiyoffers servicesvhich are only
usefulin a certain context, it should be inserted using the local containment and local usability
relationshipsOf course, a module can only be generally usable if it is not contaiaediner
module.

In the textual interface specification, we usethffORT clause again to denote a genargdort.

We do not have to distinguish between local and general imports here because the existence or
absenceof a CONTAINED IN clause in the server module already determines which kind of
usabilityis possible. W use diferent line styles in the diagram notation only for clarity

Theother structural relationship in olanguage besides local containment issghecialization
relationship Although the concept of specialization is influenced by ideas from object—oriented
programmindanguages, we want to ma&elear distinction between PiS and PiL aspects here.
Whenwe talk about specialization, we mearcertain relationship between modutesthe
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designlevel Whether the actual implementation languaggde system supports specialization
in some way should not influence our architecture.

Thespecialization relationship can only exist between data type modalssnie extend, spe
cializationis quite similato general usability: both express that one module uses another module
to implement its interface. But the semantics of specialization describes a very restricted case
of generalusability If some data type is a specialization of another data type, this implies that
everyinstance of the special type ladeast all the popertiesof an instance of the general type.

We call the special typesabtypeof the general typavhich is vice versa referred to as super-

typeof the special type. This terminology extendsrbitrary ancestors and predecessors of a
datatype module in the specialization hierarchiyerefore, the specialization relationship is also
calledsubtype elationship We want to avoid this term because it might be confusedthath
subtypingfeature of some programming language.

An important characteristiof the specialization relationship is that the set of operatidesedf
by the subtype is a superset of the set of operations on the supergytieeréfore do not have
torepeat these operations in the subtypgerface. For an example of specializatrespnsider
the TokenStream interface from the previous sectioneWow want to specify gpecialization

of this data type which is able to perform additional navigation operativastream. Again,
the specification is redundant in so far as $pecialization relationship is denoted on PiL level
with the IS A clause as well as on PiS leweith the T <: Public; Public = TokenStream.T
construction(which declare3 as a subtype dfokenStream.T in Modula—3).

DATA TYPE MODULE INTERFACE SearchableTokenStream IS A TokenStream;
(* Provides token streams with navigation operations. *)

IMPORT TokenStream, Token;
EXCEPTION NotFound; (* No such token in the stream. *)

TYPE
T <: Public;
Public = TokenStream.T OBJECT METHODS
searchNextOccurence(token: Token.T)
RAISES {NotFound, TokenStream.IOError};
(* Skips all tokens up to and including the given token. *)

searchPreviousOccurence(token: Token.T)
RAISES {NotFound, TokenStream.IOError};
(* Rewinds to the last previous occurence of the given token. *)
END;
END SearchableTokenStream.

Note that all operations defined for the typekenStream.T are availablefor instances of
SearchableTokenStream.T, too. e say that the supertygadperations aneheritedby the sub
type.This does not necessarily mean that the implementation of an inherited operation in the sub
typeis really the same as the supertgpaiplementation, this is a question of PiS.

The notion that an instance of a subtype has all the properties of its supertype allows us to
introducethe substitution principlevhich sayghat a subtype’instance may appear wherever
asupertypes instance is required. In our example fralbove, this means that a procedure which
takesaTokenStream.T instance as input or produce3okenStream.T instance as output may
actuallytake or return 8earchableTokenStream.T instance instead. Note that the specialization
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relationshipas defined above guarantees that it is safe to do so: if some operation requires a
TokenStream.T instance as input, it does not have to care whether the actual parameter might
be a SearchableTokenStream.T, because all operations it might perform on the object are
availableonSearchableTokenStream.T instances as well. Farclient expecting some function

to return arokenStream.T instance, the situation is teameit can safely ignore that the return
valuemight have more properties than it expects, because the properties of the object returned
aredefinitely a superset of what is ensured by the interface description of the supertype.

A common case in the context of specialization is that several subtypes of one data type exist.
Notethe semantical dérencebetween a data type module accessed by other data type modules
via generalusability and two subtypes of a common supertype (cf. fig. 6): whereas on the left
sideA provides somarbitrary resourcesvhich are used by independent modemndcC, the

right side shows a data type modalevhich represents trmommon popertiesof B andC.

NSNS

————p» general usability
—p Sspecialization

Fig. 6: General usability vs. specialization

In the situation given by the right side of fig. 6, we can distinguish several sorts of operations
definedfor the data type &dred byA: sometimes, we want to express that all subtyp&ggrport
acertain operation, but cannot implement this operation since it depends on other properties
of the subtype. For an example, consider the dateSypbol. T from the previous sectiohlow
wewant to define subtypes 8fmbol.T for the diferent types of symbols,g. variable symbols,
constanisymbols, procedure symbols etc. Some properties are common for all specializations
of Symbol.T, e.g.every symbol has an identifiéfhis should therefore be a propertySyim-

bol.T. Other properties may be unique for one subtype, e.g. a type symbol (in Modula—3) might
containa pointer to the structure clasbé@longs to. Other properties might be shared by several
subtypeslike a flag whether the symbol denotes a writable designator or not. In thisnase,
appropriatespecialization o8ymbol.T should be created for the encapsulation of tsbseed
properties Finally, there are properties whigre common to all specializations ®fmbol.T,
butthey are implemented di#frently for every subtype. The standascample would be to ask
somesymbol about its kind. Although it should be possible to perform this operation on arbitrary
symbols,it cannot be computed without knowledge about the specific subtype of the symbol in
guestionln this case, we talk abowttual operationsand ofvirtual data typesf some type con
tainsat least one virtual operation. An important consequence is that virtual data types must not
beinstantiated, i.e. a client may not create an object of a virtual data tipg are just helpful

for structuring the specialization hierarchg our textual interface description, we denote a
virtual property by using AIL assignment. Note that we do not defivieether or not a subtype
redefinessome supertyps’operation, this is a PiS question. But using virtual operations as
shownabove, we can lay down that evenbtypenhas to(re)define this operation if the subtype
shouldhave instances. If it does not define the operation, the subtype is again virtual.
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DATA TYPE MODULE INTERFACE Symbol;

TYPE
T <: Public;
Public = OBJECT METHODS

getKind(symbol: T): SymbolKind.T := NIL;

END;
END Symbol.

As with local containmerdnd local usabilitythe structural specialization relationship is aceom
paniedby a usability relationship, namely thpecialization usabilityA subtype moduleeeds

to import at least the supertypdypeidentifier. In general, the subtygeimplementation will
alsowant to call operations of the supertype nfake such aaccess possible, we introduce-spe
cializationusability edges in our graphical architecture notation. Again, we do not distinguish
betweerspecialization usability and other kinds of usability in the textual notation bettasise
canbe determined from the graphical notation or from the context of the module. Note that the
structuralrelationship of generalization implies no usability relationshégpsubtype module

may not use some supertypeperation just because it is a subtygleysability relationships
haveto be introduced explicitly by the design®n the other handhe structural relationship
againdetermines the set of possible usability relationships. Every subtype module must have a
specializatiorusability edge to its immediate supertype module and may have additionatspecial
izationusability edgeto arbitrary predecessors in the specialization hieraiidig/introduction

of the specialization usability may sound unusually restrictive for readers with experiences in
object—orienteghrogramming, but the reasons for thdetiéntiation of a structural and a usabil

ity aspect of the specializatioglationship are the same as those discussed for the local eontain
mentand local usability relationships: the structural relationship itself allows far too many poten
tial usabilities, and only a few of them actually describe a dependency between modules. So, we
consistentlydistinguish between relationships which show the structiuttee system and rela
tionshipswhich denote usabilities and therefore dependencies between modules.

2.3. Subsystems

To conclude the presentation of our architecture language, we introduce the coscéystysf

tems Obviously the module level introduced so far is too fine—grained for the description of
largesoftware systems. $\therefore need design units which allolwexarchicalspecification

of the architecture. Subsystems allow the designer to express such units which are "greater” than
modulesthey may contain an arbitrary number of modules and other subsystems. Most of the
characterizationgiven for modules at the beginning of this chapter can be applied to subsystems
aswell: first of all, subsystems atmits of abstractionThey have an interface which describes
theresourcesvhich can be accessed from the outside. The interface of a subsystem is a-composi
tion of explicitly selected modules and/or subsystems inside the subsystem. Furthermore, sub
systems arenits of workunits of testingandunits of eusability For this reason, subsystems
should- just like modules — obey the rulgdow couplingandhigh cohesionthe modules and
subsystemshould not interact more than necessary with other units on the same design level.
Onthe other hand, a module or subsystem should only contain logically related resoerces. W
shall use the terrmcomponentn the following if we mean a module or a subsystem.

As stated above, the designer decides explicitly which interfaces in the subsystem contribute to
thesubsystenginterface. An immediate consequence is that we cannot assign each subsystem
a unique type as we could with modul¥ge therefore do not distinguish f#ifent subsystem
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types.Nevertheless, we sometimes talk abfounictional, data object, or data type subsystems
if the subsystera’interface consists of one or more modules of the corresponding type.

Of course, being part of a subsystem is a structural relationship betveesrresponding com
ponentsAccordingly we already introduced two natural candiddtesubsystems in the pre
vioussection, namely local containment trees and specialization hierarcleiesll\Weat these
structuress subsystems without further notice. Of course, the designer can insert additional sub
system®n intermediate hierarchy levels consisting of subtrees or subhierarchies. Note that the
interfaceof a local containment subsystem is implicitly given by the root of the tree.

Thetextual description for subsystems in our language can be taken from the following example:

SUBSYSTEM INTERFACE SymbolManagement;
EXPORT Symbol, SymbolTable;

END SymbolManagement.

Sincethe "implementation” of subsystemsailso on design level, there is an additional notation
for the body of the subsystem.

SUBSYSTEM BODY SymbolManagement;
CONTAINS Symbol, SymbolTable;

END SymbolManagement.

In our graphical notation, we distinguisbtween dlack—boxand avhite—boxnotation for sub
systemgcf. fig. 7). The bottom—up arrows indicate that a module contributes to the subsystem’
interface.

B — —do___—
SymbolTable
SymbolManagement \
dt -]
Symbol

SymbolManagement

black—box white—box

Fig. 7: Black—box and white—box notation for subsystems

As was already mentioned above, we treat containment trees and specialization hierarchies as
subsystemsg,e. for every containment tree we implicitly add

SUBSYSTEM INTERFACE RootModuleNameSystem;
EXPORT RootModuleName;
END RootModuleNameSystem;



18

Designing Software with Modula—3

SUBSYSTEM BODY RootModuleNameSystem;
CONTAINS <All modules in the containment tree>;
END RootModuleNameSystem;

andanalogous subsystems for specialization hierarchies.

2.4. Architecture description constraints

Thissection summarizes the syntactical and semamtilesd an architecture specification should

obey.

Onthegraphical achitectue description levelwe have the following constraints:

All component names in the architecture are unique.
Every component has at least one incoming usability edge.

Dataabstraction modules may not use their own interface, i.e. edges leaving a data abstrac
tion module may not enter the same module.

A component is contained in at most one otm@nponent, i.e. at most one local cortain
mentedge can end in a component.

Everylocal usability edge has to be consistent with the local containment structure, i.e.
therehas to be a potential local usability relationship between the components (cf. fig. 3).

For every local containment edge, there has to be a parallel local usability edge.
No general usability edge can end in a locally contained component.
Specialization edges can connect only data type modules.

Everyspecialization usability edge has to be consistent with the specialization higrarchy
I.e. specialization usability edges may connect only modules which are direatigi-or
rectly related by specialization edges.

For every specialization edge, there has to be a parallel specialization usability edge.
No specialization edge can end in a locally contained module.

A component contained in a subsystem can be accessed from the outside only if it contrib
utesto the interface of the subsystem.

On thetextual achitectue description levelkhere are the following constraints:

Theresources exported by some module must match its type. A functional or data object
moduleinterface may contain procedures, constantse&oeptions. A data object module
shouldcontain some operationit to (re-)initializethe internal state. A data type module
interfaceexports exactly one typnd may contain constants and exceptions. The type is
namedr and is described as an opaque object type as shown in the section on module types.
It should have at least oimét operation to initialize an instance of that type.

Theresources in someterface should be as orthogonal and coherent as possible, i.e. some
operationshould not be replacealddy a combination of other operations. Furthermore,
all operations should be semantically closely related.

The names of all the resourcefeoéd by some interface must be unique.
The resources imported from some other module must be exported by this module.
Every imported resource should be used.

Theparameter types usetthe interface of some module have to be importable by all pos
sibleclients of that module.
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Finally, there are dependencies between the textual and the graphical level:

e Forevery component in the graphical description, there has to be a textual desarigtion
vice versa.

e All imports in the textual description must be consistent with correspoadges in the
graphicaldescription.

Notethat most of these rules can be statically checked by an appropriate tool for the specification
of architectures according to the proposed language.&aohis currently under development;
somedetails follow in section 4.1.

3. Some methodological remarks

We already stated in the introduction that denot consider our approach as a method which
showshow to modeérbitrary softwaresystems, it only facilitates ttagchitectue specification

of software systems. On the other hand, we do think that usiraychitecture language helps
toavoid common design errors in that it is strictly restricted to thésRel. We neither lay down

how the architecture for a given problem can be obtained, nor do we explicitly support or even
enforcethe use of certain programming language features. But this does not mean that we have
noidea abouhow the architecture language might be used, or how a design can be mapped onto
someexisting programming language. This chapter discusses some points aboartréice
usageof our language, while the next chapter takes a closer look at the integriaéi@iven
designwith programming languages in general and Modula—3 in particular

3.1. On moduletypes, relationships, and architecture levels

Themodule typeand relationships presented for our architecture language all have certain con
ceptualrelatives in the world of programming languages. Wheesgisthe local usability rela
tionshiphasits roots in the ideas of structured programming languages and their nested scopes,
the general usability relationship stems from the import featurdanfuages like Ada,
Modula—2,and Modula—3. Data type modules and specialization are supported to a high degree
by object—oriented languages, and functiamaldules are the classical decomposition units in
most of the other imperative and functional languages. In contrast to many exissign
approachesye do not value some module types or relationships higher than others, each has its
rightful place in almost any software system. In the following, we try to give a rough notion of
wherethis place might be.

First of all, let us consider what mistakes are frequently made when common decomposition
strategiesare applied.

e Thetop—down strategyends to prefer the concept of localisystems developed top—
down often have a more or less tree—like architecture. These trees reflect the functional
decompositiomf complex tasks into smaller subtag@functional modules are predemi
nant. This approach is prone to code duplication and to spreading data realization details
overthe system, because common functionaligasily overlooked and data abstraction
is disregarded.

e Thebottom—up strategyn the other hand tries to develop generally (re)usable units. This
often clutters the architecture with unneeded functionaligta abstraction is not really
supportedy this approach, but more easy to realize than with a top—down decomposition.

e Many modern design methods facilitate some sorblgect—centexd strategy Data
abstractiorand classification are massively supported, but coordinatiomnéegtation
aspectsare neglected.

Wecan learn here thatitis generally not a good idea to model the vertical architecture levels sepa
rately. Instead, the design should always consadelevels of a (sub)architectueg the same
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time If this results in too many components in one diagram, the design should resolve the prob
lem by introducing nevhierarchy levelsand treat the resultingubsystems as black boxes. Of
course these black boxes have to be specified then in the same mahiseshould lead to a
decompositiorin which every subsystem and the complete system itself can be designed and
understoods a comprehensible (sub)architecture with a clearly defined interface. Note how this
schemestresses our notion of subsystems as units of work and abstraction on the PiL level.

Although this is not generally true, many systems show a typical pattern in the way certain
moduletypes and relationships occur on certain architecture levels. Whereas the higher levels
consistmainly of functional components embedded in containment structures, lower levels are
dominatedoy generally usable data abstraction modules. This is plausible in so far as that func
tionality concerning controlling, integrating, and dialog handling is encapsufathd higher
levelsof the system. Basic layers tite other hand often serve collection or bookkeeping tasks
which need data structures to store their information. Fig. 8 shows a rough skttetglobal
layoutof such a system.

AVER VAR

rdo 1 rdt rdt ]

Fig. 8: Module types and relationships orfetént architecture levels

3.2. On data abstraction and functional abstraction

Oneof the most serious mistakes made by unexperienced desgtieFsvrong application of
dataand functional abstraction. Until npwe only introduced the module types responsible for
therepresentation of the appropriate abstractions. If these module types are used properly (i.e.
respectinghe restrictions we imposed), some common mistakes can be avoided. First of all,
everymodule should bereatedwith agiventype. Otherwise, it is often hard to assign a type

toa module afterwards. This is almost always a sign of a badly constructed module whieh encap
sulategnore than one implementation decision. In this section, we try to give some Hiois on

to choose the correct module type. Basicdhy following two rules should be obeyed:

* Thedesigner should always consider thierfaceof a modulenot the implementation
Forexample, in some data object modolea stack, the interface suggests that all exported
resource$ike push or pop form a unit operating on a data structure. In the implementation,
onemight think that these operations are functional, because they "comratesimrma
tion on the global datatructure by manipulating pointers, computing indices or the like.

e Thedesigner should always considertinedule itselfnot the surounding systerim which
it is embedded. Evergingle module represents a design decision, and the type of the
moduledepends on this decision. For example, a module controlling dialagtatabase
applicationis functional, although the system as a wiseleres the preservation of states.
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Let us now take a closer look at the symbol table example from the previous cBapisrse
wewant to store the symbols in a balanced binary tree. Since some tree operations like-rebalanc
ing are quite complex, onmight have the idea to extract this functionality into a functional
module(cf. fig. 9a). This would result in components like

FUNCTIONAL MODULE INTERFACE TreeTraversal CONTAINED IN SymbolTable;
EROCEDURE SearchNode ...;

END TreeTraversal.

FUNCTIONAL MODULE INTERFACE TreeBalancing CONTAINED IN SymbolTable;
EROCEDURE Balance ...;

END TreeBalancing.

Theproblem with this design is that delegating complex tree operations to an intermediate func
tional level demands that tt&ymbolTable module reveals the treeinternal data structute
thefunctional modules, so the data abstraction principle is violated: many modules would have
to be adapted if the internal representation for the tree is changed.

Another idea would be to insert a module for search trees below the symbol table (cf. fig. 9c¢):

DATA OBJECT MODULE INTERFACE SearchTree;

PROCEDURE InsertEntry ...;
PROCEDURE FindEntry ...;

END SearchTree.

TheSearchTree solution has the disadvantage that it reducesgpkeations insid8ymbolTable

to trivial tasks: most operations have not more functionality than to paspdnameters to the
correspondingSearchTree operation. On the other hand, the implementation task for
SearchTree is now almost as complex as for thgmbolTable module before.

Asthe most advantageous solution, we could implement the table on top of a module for balanced
binarytrees (cf. fig. 9b):

DATA OBJECT MODULE INTERFACE BalancedTree;

.F;IROCEDURE InsertLeftChild ...;
PROCEDURE GetRightChild ...;
PROCEDURE DeleteNode ...;

END BalancedTree.

In general, stacking data abstraction layers like above is preferable to introducing intermediate
functionallevels. On the other hand, every data abstraction level should represent a noticeable,
but not toogreat change in the view on the data structure as it appears in the interface. If such
adata structure cannot be found, it migatappropriate to insert functional components between
dataabstraction modules.
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Fig. 9: Designing below data abstraction modules

A more common case of an interaction between functional and data abstraction modules can be
foundin transformation situations. Here, some sort of computation maps complex data onto
othercomplex data. For an example, let us consider the scanner example from the previous chap
teragain. In the graphical notation, this module would be embedded as shown in fig. 10.

— f —_

Compiler

— —

FrontEnd o o o

Scanner Parser Generator
[ do ] x / Xdo / [_do [ do ]
TextStream TokenStream SyntaxTree SymbolTable PseudoCode

Fig. 10: A compiler as an example for transformation systems

Althoughitis quite obvious how to model such situations within our architecture notation frame
work (and especially considering the compiler example), two serious design errors are frequently
madein comparable systems:

* In older systems, we often find that data abstraction decisions are ignored realitae
tion of the containers between the functionamponents is not properly encapsulated.
This results in complex data streams flowing betweenfihetional components. Any
changeof the internal representation of the data results in appropriate changes in the func
tional part of the system.

e Object—orientedlesign methods generally follow the motto that an object shaaa/
(and encapsulate) all operations some client wants to perform on the object. Such ideas
tendto blur the distinction between functional and data abstraction, because decisions
abouthow tostoreinformation are not separated from decisions about hdandlethis
information.This often tempts the desigrterattach all functionality of the system to-cer
tain (often arbitrary) data abstraction components.
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In other words, while the first approach tends to naata representation information into func
tionalcomponents, the second makes the same mistake the other way around. Apart from the fact
that the design looses comprehensibility becamsgor implementation units simply vanish

from the architecture, in the end both violatestraction principles in the same way and with the
sameconsequences.

3.3. On entries and collections

Thissection introduces another natural candidate for subsystems besides the already mentioned
localcontainment trees and specializaterarchies. @ begin with, let us consider some design
unitswhich are commonly modelled as data abstraction modules:

e First,we have complex structureglcords On the abstract (interface) level, such objects
look like compounds containing a set of (named) fields which may be accessed individu
ally by read/write operations. On the implementation level, a renasdbe realized as a
correspondingecord object in the given implementation language, set of tables cen
nectingthe composedbiject to its fields, as a compressed bit amaya linked list of fields,
etc.

» Secondthere areollectionsof other data abstraction units. On the interface level, these
areaggregations which can be manipulated through operations like store, remove, find,
and change a certain element. The interface determines the algebraic properties of the
aggregatiorfset, bag, map, stack, queue, relation, sequence, grapbyetapplying one
or more access paths to the contained elenferdexed, by keyfirst—in—first—out, last—
in—first—out,etc.) and ensuring certain constraints (e.g. that an element may be stored only
oncein the collection). On the realization level, there is a wide variety of implementation
optionsfor collections, like heap implementations (Beds, hash tables, linked listc.),
persistenimplementations (in database, file, etc.), remote implementations (on some
nodein a network, as a separate process, etc.), and many more.

Often,records do not exist outside of some context, i.e. they are usually stored in some sort of
collection.(If they are implemented as heap objects, theglameysstored in at least one collec

tion, namelythe runtime heap of the program systeme)aWeady encountered such a situation

in the previous chapter where symbols were stored in a symbol table. Because it is a common
patternin any architecture to store objects in a collection, we take a closer look atilgse
collectionsituations

First,we note that it is important to model the two data abstraction decisions for the entries and
collectionsas separate modules. It is a common mistake to mix up both data types into one
module,this leads to a bad adaptability and reusability of both data type implementatiens. Fur
thermoreas was already mentioned in the previous chaipteigenerally appropriate to model
anentry—collection situation as a subsystem. Accordjngdycall thesentry—collection subsys

tems We now want to discuss some common patterns for entry—collection subsysidraginm

with, a quite simple pattern was shown in fig. 7. It is sketched again irLfig. 1

o
collection

N,

record

Fig. 11: A simple entry—collection subsystem
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In this case, the collection is a datgect module. Furthermore, the entries for the collection are
recordsln other situationst might be necessary to have more than one collection in the system.
Then, we have to design the collection as datartygaule. Furthermore, we might want to store
thesecollections in another collection: this situation is sketched in fig. 12.

)

— dt/o ]
collectionl

N _
]

collection2

N

record

Fig. 12: Collections as entries

Themain collection here could be a data object module or a data type module (whiclatiethe
casecan be stored in some collection again).

A more thorough investigation of the symbol table example shows two extensionpait¢e
shownin fig. 11. First, the collectionSymbolTable.T) is implemented using a binary tree as
shownin fig. 9. This binary tree is a collection of symbols as well, so we actually have a situation
asin fig. 13.

A A
collection1
collection2
record

Fig. 13: Multiple layers of collections

Theother extension which can be found in the symbol table example is that there is not only one
fixed entry type, but actually all instances of subtypes of the symboktmée stored in the
collection.This, againis a typical situation. The collection is calleeterogeneou@n contrast
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to homogeneoysn this context, becausestances of diérent types can be stored in it (cf. fig.
14).The types of possible entries are not arbitrary though, they are all subtypes of some base type.
Thecollection itself deals only with this base type, and the substitution principle aitowsise
subtypeinstances instead.

? A

1
collection
\ A A
R o -
subtypel| e e e |[subtypen
.
basetype
—e Specialization
----- # specialization usability

Fig. 14: Heterogeneous collections

Althoughthe entry types in a heterogeneous container as discussed above candrg, difey
arerelated on architecture level by specialization relationships. In other situations, we find heter
ogeneougollections where the entry types are only grouped on a semantical level. When we
considere.g. a data typ®r graphs, we find that a graph is a collection of nodes and edges. The
resultingarchitecture situation is shown in fig. 15.
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— dt/o —
collection
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Fig. 15: Collections with diérent entries

To conclude this chaptewe want to summarize some essential propertienty—collection
subsystems.

e Entriesare usually records but can be arbitrary data type modules or data type subsystems
in general. Common applicatiofts subsystems are specialization hierarchies and entry—
collectionsubsystems. There can be more than one entry type, in this case the possible
entrytypes are usually the subtypes of some given base type.
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» Collectionscan be data type modules, data object modules, and data abstraction subsys
tems.A common case is that the collection is implemented on top of another collection.

3.4. On reusability

In the introduction we already mentioned some reasons why we consider the PiL working area
to be important. One of these reasons is that a good design leads to software components which
arereusablein some waySince reusability is generally accepted to be an essential part-of soft
waredesign considerations, we want to discuss some aspects of reusability in the following.

We can distinguish several strategies to support the development of reusable and maintainable
softwaresystems. The first strategy isittentify general system componentke problem of

finding general components can be discussed best on the graphical architecture level. From our
personakexperience, thinking too closely in termsiterface definitions or in terms of real—
world objects leads to a design where similarities are interpreted wrongly or overlooked. Also,
notethat there are quite dgrent degrees of generali#x module or subsystem can be general

in the sense thdttis used by more than one other component in an architectardeiéted this

in our graphical architecture specification by means of general usability edges. Another kind of
reusabilitywould be if some component is implemented as a process which can be aogessed
differentother application processes at run—time. The most important kind of reusability though
is the property of components to be usable in more than one software architecture, i.e. it could
beusedn other (possibly quite dérent) systems than the one for which it was created originally
Partof the sensation caused by the rise of the object—oriented paradigen tis the fact that
object—orientations said to support this reusability to a considerable degree. The idea behind
thisconcept is that, in the course of time, a vast librageoferal components will be developed
andmade available by programmers and software companies all over the world. These compo
nentscan be integrated into a system under development by deéipprgpriate subtypes, i.e.
anincreasing amount of code does not have to be programmed anew but can be "inherited” into
the new system. But, of course, identifying general components actually has got nothing to do
with abstracidata types or specialization. Nevertheless, libraries with reusable data types are
indeedquickly evolving. Currentlythe greater problem seems to bé&nd a module in these
librarieswhich provides some sort of service. See [Borstler93] for a discussion of reusability and
classificationof software components.

Thesecond strategy to be presented Iete design software according to the conceptofit
constructionsystemThe unitsof our construction kit are modules and subsystems. Following
thisidea, not only one fixed system, but a set of related variants of a soflysteen can be
designedy assembling some or all of the given construatiats. Our compiler example would
be a typical candidate for suchsgstem: e.g. global and local optimization phases would be
constructiorunits which may or may not be configured into a concrete system. A front—end for
somesource language and a back—end for some machine architecture would be units which can
be”plugged together” with other units for intermediate code generation etc. The niaiarte
betweerthis strategy and the previous one is #lhsystem components are considered to be
constructiorunits. Onthe other hand, most of the components are reusable only infdre mlif
variantsof the system.

As a third strategy we consider ttnansformationof code into dataf some functionality of the
systenshould be easily changeable, itis generally better not to hard—wire it into functioral com
ponentsput to extract the variable parts into data abstraction components. The functional part
is thereby reduced to thevaluation of the data part. For example, in compiler construction, it

Is a widespread technique not to write specific scanners and parsers for everyasuauage,

butto reuse existing functional driver components with exchangeable scanner and parser tables.
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Anotherexample would be to put error messages or other user interface related paratoeters
tablesrather than directly into the program code.

Anotherstrategy is tgeneratea softwaresystem or parts of it instead of developing it by hand.
Thereare several aspects of this strategy: one possibility is to derive an implementation or
implementatiorframework from a specification in a more or lessthodological mannefhe
derivationitself is performednanually but suficiently supported by the methodology to reduce
thedevelopment task considerab\n example for this strategy is the derivation of a recursive
descendergarser from a given grammar (cf. {M86]). A similar approach can be found in the
JSP/JSDmethod (cf. [Jackson83]). Another possibility is to generate parts of the system
matically from a description using appropriate tools. These parts might be executable code or
tableswhich can be evaluated by drivers. Common examples for this approach are compiler com
pilerswhich generate scanners and parsers (or scanner and parser tables to be used with standard
drivers)from alanguage description (cf. [ASU86]) or graphical user interface builders. A quite
unspecificexample for this strategy is to instantiate generic templates, which will be discussed
againlater Finally, itis sometimes possible to directly executalastract problem specification,

i.e. some tool can interpret tlspecification and simulate the operational behavior of the-speci
fied system. An example for the latter can be found in [Zlindorf94]: complex data structures are
modelledas typed graphs, and operations on them are described using gregyiamatment
rules.An integrated tool supports direct interpretation of such specifications as well as-generat
ing code for a rapid prototype. A commproperty of all generation methods is that it is not the
generatedode which is reusable, but the method or the tool which generates it. In the case of
directspecification execution, reusability even raises to the specification level in the sense that
partsof one specification might be reusable in others. In other wprdgram generation dérs

from the other strategies mentioned before in that it supports reusabiliy @vel of the devel
opmentprocess, not on the level of the resulting system. The gengpat¢df the) system may

or may not be "designed” according to the previously mentioned strategies.

Eventually,we want to discuss the strategyfiotling similarities Although this sounds banal,

all other strategies are special cases of this "meta—strategyit,camdbe very dffcult to apply

it. There can beimilarities between system components, architecture patterns, architecture
frameworksdesigning techniques, application classes, and many more. The direct representa
tion of this strategy in the PiL area is to define a reasonable specialization structure in arrarchitec
ture,i.e. to analyze similarities between data abstraction components and to put comman proper
tiesinto appropriate supertypes. A more abstract and also more important aim is to develop a
standardarchitecturefor agiven application class. Such an architecture contains general-compo
nentscommon to all systems designed according to the standard architecture. Other components
haveto be adapted for a peculiar system: in the best case, specific commamemesgenerated

by tools, or by supplying appropriate tables. In the worst case, they have to be hand-coded as
usual Althoughitis desirable to have standard architectures for allimportant application classes,
only very few classes actually have a generally accepted coarse strociat@oticeably com

pilers.

At the end of this section, we want to summarize the presented strategies in a diagram.
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Fig. 16: Strategies for reusability and adaptability

4. Implementing the architecture

This chapter contains a short discussiorhow an architecture in the sense of our specification
languagecan be mapped onto an existprggramming language. After some general points, we
will concentrate on generic situations and their implementation.

4.1. Mapping the design onto M odula—3

As is obvious from the previous chapters, our textual interface description follows closely the
syntaxand conventions of the Modula—3 programming language — actti&lgyntactically a
supersebf a Modula—3 interface. Sintiee design itself is completely on the PiL level, it should

be noproblem though to apply the ideas of this paper to other implementation languages as well,
[Nagl90] discusses some of the transformation issues in detail for Fortran, C, Paséalaand

Sincea module description in our architecture language contains a Modula—3 interface, we can
createsuch an interface directly by simply commenting out the keywords which are not part of
theModula—3 language. It important though to leave them in the source text in order to remind
theprogrammer of the syntactical and semantical constraints the ntgdeseand relationships
imposeon the implementation. Sonoéthese are not supported by the programming language,
sothey have to beealized by dint of the discipline of the programmer (possibly with the help

of an appropriate tool).

e Modula—3supports modules, but no module types. The general interface layout for the dif
ferentmodule types (e.g. that a data object module may not export types) can be laid down
statically, but the semantical constraints as discussed in the section on module types
demandlisciplined programming. Nothat we use th@BJECT notation for all abstract
datatypes. This is for two reasons: First, this notation is easier to read; the unity of data
andoperations is shown more clearecond, it is not the responsibility of a data type
moduleto decide whether some client uses this type through specialization or by another
kind of import. In this sense, exporting an object type instead of a simple opaque type with
proceduresnakes the interface more general.
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e Theonly module relationship supported by Modula—3 is the general usabilityther
usability relationships can beimulated with general usabilityout the additional
constrainthave to be ensured by discipline. Specialization is supported on type level by
inclusionpolymorphism, but not on module level.

e Subsystems are not supported by Modula-3.

We now want to summarize the rules which should be obeyed on the PiS level (in addition to
the already mentioned rules for the architecture specification itself). Some of them have to be
enforcedby disciplined programming, others are ensured by the compiler

e TheModula—-3 interfacéor some module matches the textual interface description with
the additional keywords included as comments.

e The resources imported from some other module must be exported by this module.
» Every imported resource should be used.

e All imports in the module body must be consistent with corresponding edges in the graphi
cal description.

* The resources exported by the module must be implemented by its body

e Thestatical use of other moduteresources is consistent with the usabili; they are
importedby the module body

e Theimplementation of some module must be consistent with the module type. Note espe
cially that functional and data type modules may not contain any (visible) state.

e Implementationsnay not use their own interface resources unless explicitly stated in the
architectureThis might be useful for recursive problems like St example in fig. 4,
butit is forbidden for data abstraction modules by the constraints from section 2.4.

As was already mentionedie are currently working on a tool which supports our architecture
languageand the development of software systems using this language. At the moment, only
Modula—3is supported as PiS language, but the todesgned to handle other programming
languagesnd even mixed—language systems as well. The tablésto parse arbitrary source
textdirectory trees and to generate the graphical architecture description for theaivees

with automatic layout. The textual interface description is supported as Modula—3 t&xtirce
with the additional keywordglaced in special comments. The user can then create, delete, edit,
and compile components from thgraphical user interface. During the development process,
severalrules concerning the correct usagehd architecture language as mentioned here and

in section 2.4. are checked. Beside the basic functionality directly connected to the architecture
languagethe tool is alsdevised as a platform for the integration of arbitrary additional develop
mentaids like revision control systems, problem tracking systems, cross reference tools, debug
gers,etc. If you are interested, feel free to contact the author for details.

4.2. Transformation problems

Unfortunatelyimplementing a good architecture may need more thought than creating an inter
faceand implementation for every module as described abowepioblems occur frequently
duringthe transition from PiL to PiS:

e In many cases, the system under development has to fulfil certain requirements which
makethe direct realization of the designfdifilt or even impossible. Importaakamples
for such requirements are:

— Theclean separation of abstraction units with orthogartetfaces could result in an
intolerableloss of time or space performance.
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— Building a distributed systerdemands a separation of the architecture in client and
servermortions, probably introducing new modules for handling the distribution itself.

— Usingcertain external software components like a user interface libraryatabase
systemmight force thedeveloper to integrate components which do not fit smoothly
into the original design. The same problem can occur with components generated by
codegenerating tools like compiler compilers.

e Therestrictions imposed on the usage of the underlying programming language might
seemto strict in special situations. For example, if a record data tyjpe¢raduced in the
previouschapter is implemented usiagecord constructor of the programming language
with simple read/write operations for every field, and it is obvious that this will not change
duringthe lifetime of the system, it might sea@nsible to export this data type directly
instead of encapsulating it using an opaque object type.

Thelatter point is generally a matter of arrangement. In theteedmplementation of an inter
facedescription is aesult of applications of transformation rules. These will be definitefigreif

entif different taget languages are to be supported, but even for aget fanguage the rules

may or may not grant a certain freedom in how to implement an interface. Especially for
Modula—3,it is strongly advised to map the textual module interface description frcandinie
tectureas closely apossible onto the implementation source text. Nevertheless, the develop
mentteam might decide to drop the restriction that the Modula—3 interface is always identical
tothe interface description except for the additional keywords. But such a decision should always
bethoroughly devised and documentearder to avoid confusion and violation of abstraction
principles.

The first problem mentioned above is more serious. Quite often, a good design is discarded
becauseertain requirementsould not be met. Qwhat is even worse, finding a good design
wasnot even attempted because of the prejuttiaea clean architecture and obeying certain
(especially performance) restrictions are conflicting goals. Indeed, it is not unusual that prob
lemslike those listed above demand modifications to an architecture. But this does not necessar
ily mean that the original design was futile. On the conttheymodified architecture might not
beunderstandable at all if there is no documentathout the original design idease'ttierefore
suggesthat the original architecture is still considered to be the central document on the PiL
level, even though it might not be implementable in a straightforward Wwdlkis case, we talk
aboutanideal orvirtual architecture All design considerations should be discussed on the basis
of this virtual architecture. If necessaitye virtual architecture has to be transformed it
creteorreal architecture Again, this transformation should be described and documerftad as
mally as possible. In this wathe virtual architecture with the original design decisions is pre
served Modifications to the system architecture can be distinguished in those who concern the
functionalityand structure of the system itself and those concerning secondary requirements. If
othersecondary requirements have to be met, only the corresponding transformatiohe must
changedwvithout afecting the virtual architecture. Analogousdygiven set of transformations
canbe applied again on a modified virtual architecture to yield an appropragiping onto a

new concrete architecture.

4.3. Generics

This last section deals with a mechanism which is technically not otef?dl, but important
enoughto deserve a special discussion. frteen idea of genericity is to write (genetieinplates

for system components. In the template, an arbitrangber of details is not wired into the code,
insteadthe template code refers to these details using formal parameter names. The programmer
canthen create a concrete component by supplying the missing details in the templead. W
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thesedetails (generigdarametersand the process of creating a component using a genefic tem
plateand generic parameters (geneigtantiation Accordingly the resulting componerg
calleda (genericjnstance

A common example for generic templates are collections as discussed prevVibegigneric
parametefor the template is the entry type for the collection. The reason for this approach is
thatmany collections are more or less independent of the type of othjegtsan store, i.e. the
interfaceand implementation of the collection do not refer to special properties of théygry

A stack module for example looks about the same whether it is a stack of integers opa stack
strings,they only difer in that the identifieNTEGER is consistently replaced by the identifier
TEXT when used as the entry type. Therefarejould be obvious to write a generic template
for stacks which refers to a formal identifiemtry instead of a concrete tyjmentifier. A stack

of integers can then bereated by instantiating the stack template, suppliWT@EGER as
genericparameter

In the following, we want to make some restrictions to the general definition of genericity:

» \We consider the instantiation of a generic template as a static process, executed before the
actualcompilation of the program systeithis conforms to the generics facilityferfed
by some programming languages like Modula—3, C++fgEi&nd Ada. This approach is
alsoquite easy to simulate in any other imperative programming language.

e Forreasons of claritywe use only modules as gengrazameters, i.e. the template expects
its formal parameters to be replaced by module names in the instantiation process.

Thefirst point explains why generics are actually not a PiL subject: the generic templates do not
exist on the desigievel,the architecture only shows generic instances. Using generic instantia
tionto create a component is merely a technique to avoid several source code copiesfehich dif
from each other only in a very restricted walevertheless, our architecture language allows
generidemplates to be inserted in the specification. The reason for this is that theguamerar
whichis used for the introduction of generics on thel@8l holds for our textual interface spec
ification as well: we avoid multiple interfagpecifications which can be actually derived from

a generic specification through instantiation. In this sense, the following description of how to
insertgeneric templates into the design can be regarded as an optional extension of the architec
turelanguage as defined in chapter 2. The grapinigtdtion looks like in fig. 17. Note that the
secondestriction mentioned above makes it easy to understand the dependencies testween
plate,parameters, and the instance from the specification.
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Fig. 17: Generics

The graphical description for the integer stack example is given in fig. 18.
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Fig. 18: A stack of integers
The textual interface description for the template is shown below

GENERIC DATA TYPE MODULE INTERFACE Stack(Entry);
TYPE
T <: Public;
Public = OBJECT METHODS
push(entry: Entry.T);
pop(): Entry. T RAISES {EmptyStack};

END;
END Stack.

Finally, here is the description of the generic instance. This instance provides a type
IntegerStack.T which has the same properties as shown in the templat&ntithreplaced by
Integer.

DATA TYPE MODULE INTERFACE IntegerStack= Stack(Integer)
END IntegerStack.

Again, it is quiteobvious how to map this design onto Modula—3. Problematic though is that we
introduced generiagn the level of components, not only on the level of modules. Conceptually
generic subsystems are just as important as generic modules. Consider the situation where some
collectionis build on top of one or morgher collections, e.g. the stack data type module imple
mented using a data type module for lists. In this case, it would be natural to instantiate a generic
subsystentonsisting of a generic stack and a generic list module. ltegtwal description, we

allow this by specifying

GENERIC SUBSYSTEM INTERFACE StackSystem(Entry);

EXPORT Stack;

END StackSystem.

GENERIC SUBSYSTEM BODY StackSystem(Entry);
CONTAINS Stack, List;

END StackSystem.
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Notethat a generic subsystem may contain non—generic components. Froewgheint of the
instantiation process, they can be thought of as generic compuritbioist generic parameters.
Notealso that the generic parametefsach component contained in a subsystem must be a sub
setof the generic parameters of the subsystem itself.

We want to conclude this section with a short summakyhave presented generics as a concept
whichis technically part of the mapping of a design onto a programlianiggiage. Generics pro

videa powerful way of parameterizing system components, thereby creating adaptable-and reus
abletemplates. The instantiation of a template is relatéde@pecialization of a data type, but
isconsidered to be a static process.al¢o discussed how genericity can be used on desigin

to specify components as instances of generic specifications. Both aspects of generics are quite
independentgeneric facilities of programming languages can be used for the implementation
of arbitrary modules, and components specified as generic instances can be implemented with
orwithout using PiS genericitifor Modula—3, generics can and should be implemented just like
modules,.e. by placing additional keywords in comments. Since Modula—3 does not support
genericsubsystemghe instantiation of a subsystem has to be mapped onto one instantiation for
everycomponent of the subsystem.

5. Summary

In this paper we proposed an adapted and slightly revised version of the design specification
languagdrom [Nagl90]. The basibuilding blocks of the language are modules. Every module
has an interface which describes the servicesdtofo the rest of the system, and a body which
determinediow these services are implemented. These bodies are subject to the Programming—
in—the—Smalivorking area andre not described by the architecture language. Furthermore, we
distinguishdifferent module types in accordance to the kind of abstraction which is encapsulated
by the module, namely functional, data object, and data type modules. The language features
larger specification unitshan modules in the form of subsystems. Subsystems may consist of
an arbitrarynumber of modules and other subsystems. In contrast to the approach of stepwise
refinementsubsystems provide an abstraction conaapevery hierarchy level of the system,

the subsystems represent abstraction units with a body and an interface. The design lays down
which components constitute a subsystem, and which components contribute to the interface of
the subsystem. Finaljythe language suppordsferent relationships to describe dependencies
betweersystem components. They damdivided in relationships which define the structure of
thesystem (local containment and specialization) and those \ahask one component to use

the resources of another component for their realization (local, general, and specialization
usability). The specification itself consists of two interrelated parts: a graphical notation which
describeghe global dependencies betweka system components, and a textual specification
whichgives a detailed description of all component interfaces. An important propérg/lan

guageis that it is strictly restricted to the (static) Programming—in—thegd_avel: it does not
considerdynamic aspects of the running system.

Besidegpresenting the syntax and semantics of the architecture language, we also showed how
it can be used to discuss methodological aspects of software design in alessalostract way
Althoughwe do not claim to know how arbitrary systems can be designed, we think thatour lan
guageprovides a conceptual framework for the consideraif@rchitecture scenarios.a/gave
examplesof how to model certain standard situations and we demonshatedur language

canbe used to discuss architecture patterns.

Finally, we touched some points concernthg transference of a given design onto an imple
mentation,especially when Modula—3 is chosen as implementation language. Some of these



34 Designing Software with Modula—3

pointsare quite trivial, others sigr from the fact that some features of our language can be
mappeddirectly neither on Modula—3 nor on any other programming language existing at the
moment.We also discussed generics as an aid for the mapping of a design onto an implementa
tion as well as an optionalxtension to the design language, and we described the coafrse con
ceptuabutline of atool currently under development which supports analysis, design, and devel
opmentof software using our architecture language.
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