
SOFTWARE SPECIFICATION:

A Comparison of Formal Methods

by
John D. Gannon, James M. Purtilo, Marvin V. Zelkowitz

Department of Computer Science
University of Maryland
College Park, Maryland

February 23, 2001

Copyright c1993

Contents

Preface ix

1 Introduction 1
1. A HISTORICAL PERSPECTIVE : : : : : : : : : : : : : : 5

1.1. Syntax : 5
1.2. Testing : 6
1.3. Attribute Grammars : : : : : : : : : : : : : : : : : 7
1.4. Program Verification : : : : : : : : : : : : : : : : : 7

2. A BRIEF SURVEY OF TECHNIQUES : : : : : : : : : : : 9
2.1. Axiomatic Verification : : : : : : : : : : : : : : : : 9
2.2. Algebraic Specification : : : : : : : : : : : : : : : : 10
2.3. Storage : 11
2.4. Functional Correctness : : : : : : : : : : : : : : : : 13
2.5. Operational Semantics : : : : : : : : : : : : : : : : 13

3. SEMANTICS VERSUS SPECIFICATIONS : : : : : : : : 15
4. LIMITATIONS OF FORMAL SYSTEMS : : : : : : : : : : 16
5. PROPOSITIONAL CALCULUS : : : : : : : : : : : : : : : 17

5.1. Truth Tables : 19
5.2. Inference Rules : 19
5.3. Functions : 21
5.4. Predicate Calculus : : : : : : : : : : : : : : : : : : 22
5.5. Quantifiers : 25
5.6. Example Inference System : : : : : : : : : : : : : : 26

6. EXERCISES : 27
7. SUGGESTED READINGS : : : : : : : : : : : : : : : : : : 28

2 The Axiomatic Approach 31
1. PROGRAMMING LANGUAGE AXIOMS : : : : : : : : : 31

v

vi Software Specifications

1.1. Example: Integer Division : : : : : : : : : : : : : : 34
1.2. Program Termination : : : : : : : : : : : : : : : : : 38
1.3. Example: Multiplication : : : : : : : : : : : : : : : 38
1.4. Another Detailed Example: Fast Exponentiation : 42
1.5. Yet Another Detailed Example: Slow Multiplication 45

2. CHOOSING INVARIANTS : : : : : : : : : : : : : : : : : 47
3. ARRAY ASSIGNMENT : 48

3.1. Example: Shifting Values in an Array : : : : : : : 50
3.2. Detailed Example: Reversing an Array : : : : : : 53

4. PROCEDURE CALL INFERENCE RULES : : : : : : : : 57
4.1. Invocation : 58
4.2. Substitution : 59
4.3. Adaptation : 62
4.4. Detailed Example: Simple Sums : : : : : : : : : : 66
4.5. Recursion in Procedure Calls : : : : : : : : : : : : 72
4.6. Example: Simple Recursion : : : : : : : : : : : : : 73

5. EXERCISES : 75
6. SUGGESTED READINGS : : : : : : : : : : : : : : : : : : 84

3 Functional Correctness 85
1. PROGRAM SEMANTICS : : : : : : : : : : : : : : : : : : 86
2. SYMBOLIC EXECUTION : : : : : : : : : : : : : : : : : : 88
3. DESIGN RULES : 90

3.1. Design of Assignment Statements : : : : : : : : : 90
3.2. Design of Conditional Statements : : : : : : : : : 91
3.3. Verification of Assignment and Conditional State-

ments : 92
4. SEMANTICS OF STATEMENTS : : : : : : : : : : : : : : 93

4.1. Begin Blocks : 93
4.2. Assignment Statement : : : : : : : : : : : : : : : : 93
4.3. If Statement : 94
4.4. While Statement : : : : : : : : : : : : : : : : : : : 94

5. USE OF FUNCTIONAL MODEL : : : : : : : : : : : : : : 98
5.1. Example: Verification : : : : : : : : : : : : : : : : : 98
5.2. Example: Design : : : : : : : : : : : : : : : : : : : 103
5.3. Multiplication – Again : : : : : : : : : : : : : : : : 104

6. DATA ABSTRACTION DESIGN : : : : : : : : : : : : : : 107
6.1. Data Abstractions : : : : : : : : : : : : : : : : : : : 107
6.2. Representation Functions : : : : : : : : : : : : : : 108

7. USING FUNCTIONAL VERIFICATION : : : : : : : : : 111
8. EXERCISES : 112
9. SUGGESTED READINGS : : : : : : : : : : : : : : : : : : 117

vii

4 Predicate Transformers 119
1. GUARDED COMMANDS : : : : : : : : : : : : : : : : : : 119

1.1. Guarded If Statement : : : : : : : : : : : : : : : : 120
1.2. Repetitive statement : : : : : : : : : : : : : : : : : 120

2. WEAKEST PRECONDITIONS : : : : : : : : : : : : : : : 122
2.1. Axioms : 122
2.2. If Statements : 122
2.3. Do Statements : 125

3. USE OF WEAKEST PRECONDITIONS : : : : : : : : : : 128
3.1. Example: Integer Division : : : : : : : : : : : : : : 128
3.2. Still More Multiplication : : : : : : : : : : : : : : : 129

4. EXERCISES : 132
5. SUGGESTED READINGS : : : : : : : : : : : : : : : : : : 134

5 Algebraic Specifications 137
1. MORE ABOUT DATA ABSTRACTIONS : : : : : : : : : : 137
2. OPERATIONAL SPECIFICATIONS : : : : : : : : : : : : 139
3. ALGEBRAIC SPECIFICATION OF ADTS : : : : : : : : 141

3.1. Developing Algebraic Axioms : : : : : : : : : : : : 144
3.2. Hints For writing algebraic axioms : : : : : : : : : 147
3.3. Consistency : 151
3.4. Term Equality : 152

4. DATA TYPE INDUCTION : : : : : : : : : : : : : : : : : : 152
4.1. Example: Data Type Induction Proof : : : : : : : : 155

5. VERIFYING ADT IMPLEMENTATIONS : : : : : : : : : 156
5.1. Verifying Operational Specifications : : : : : : : : 156
5.2. Verifying Algebraic Specifications : : : : : : : : : : 160
5.3. Example: Verifying an Implementation of Stacks 162
5.4. Verifying Applications With ADTs : : : : : : : : : 167
5.5. Example: Reversing an Array Using a Stack : : : 168

6. INDUCTIONLESS INDUCTION : : : : : : : : : : : : : : 171
6.1. Knuth–Bendix Algorithm : : : : : : : : : : : : : : 171
6.2. Application of Knuth Bendix to induction : : : : : 176
6.3. Example Using Knuth–Bendix : : : : : : : : : : : 179

7. EXERCISES : 183
8. SUGGESTED READINGS : : : : : : : : : : : : : : : : : : 191

6 Denotational Semantics 193
1. THE LAMBDA CALCULUS : : : : : : : : : : : : : : : : : 193

1.1. Boolean Values as �Expressions : : : : : : : : : : 195
1.2. Integers : 196

viii Software Specifications

2. Datatypes : 197
2.1. Continuous Functions : : : : : : : : : : : : : : : : 199
2.2. Continuity : 200
2.3. Recursive Functions : : : : : : : : : : : : : : : : : 201
2.4. Evaluation of FACT Function : : : : : : : : : : : : 203

3. PROGRAMMING SEMANTICS : : : : : : : : : : : : : : : 203
3.1. The Simple Model : : : : : : : : : : : : : : : : : : : 204
3.2. Pointers and Aliasing : : : : : : : : : : : : : : : : : 209
3.3. Continuations : 210

4. EXERCISES : 212
5. SUGGESTED READINGS : : : : : : : : : : : : : : : : : : 213

7 Specification Models 215
1. VIENNA DEVELOPMENT METHOD : : : : : : : : : : : 215

1.1. Overview of VDM : : : : : : : : : : : : : : : : : : : 216
1.2. Example: Multiplication One Last Time : : : : : : 220
1.3. Summary of VDM : : : : : : : : : : : : : : : : : : : 222

2. TEMPORAL LOGIC : 223
2.1. Properties of Temporal Logics : : : : : : : : : : : : 223
2.2. Programming Assertion : : : : : : : : : : : : : : : 228

3. RISK ANALYSIS : 231
3.1. Decisions under Certainty : : : : : : : : : : : : : : 231
3.2. Decisions under Uncertainty : : : : : : : : : : : : 232
3.3. Risk Aversion : 234
3.4. Value of Prototyping : : : : : : : : : : : : : : : : : 235

4. SUGGESTED READINGS : : : : : : : : : : : : : : : : : : 237

References 239

Author Index 245

Index 247

Preface ix

Preface

Formal methods help real programmers write good code.

Well, this is what we believe, anyway. Likewise, we believe verification
techniques can scale up for use in large and realistic applications. But
least you think we will next profess a belief in the tooth fairy or ‘no
new taxes’ as well, let us quickly acknowledge that the field has con-
siderable engineering to do before industry will accept the economics
of treating software mathematically. Many different technologies must
be developed and compared with one another, and their utility must be
evaluated in realistic case studies.

But how to get this activity out of the campus labs and into the field?

Here at the Computer Science Department at the University of Mary-
land, recognizing that a corps of formalism-trained researchers and
practitioners is necessary for specification technology to really see the
growth it needs, we have focused our curriculum in software to stress
the importance of being able to reason about programs. This theme
affects our graduate and undergraduate programs alike, but it is the
former program that this book is all about.

What is this book about?

During the prehistoric era of computer technology (say, about 1970),
formal methods centered on understanding programs. At this time,
we created the graduate course CMSC 630: Theory of Programming
Languages. The theme of the course was programming semantics, ex-
plaining what each programming language statement meant. This was
the era of the Vienna Definition Language, Algol-68 and denotational
semantics. Over the next ten years, program verification, weakest pre-
conditions, and axiomatic verification dominated the field as the goal
changed to showing that a program agreed with a formal description of
its specification. During the 1980s, software engineering concerns and
the ability to write a correct program from this formal specification fol-
lowed. Our course kept evolving as the underlying technology changed
and new models were presented. With all three models, however, the
basic problem has remained the same, showing that a program and its
formal description are equivalent. We now believe that this field has
matured enough that a comprehensive book is possible.

x Software Specifications

How did we come to write this book?

Over the years that we have taught formal methods to graduate stu-
dents, we found no one textbook that would compare the various meth-
ods for reasoning about software. Certainly there are excellent books,
but each deals in only a single approach, and the serious student who
seeks a comprehensive view of the field is faced with the task of track-
ing down original journal papers, translating arcane notations, and
making up his or her own sample problems. So the book you are read-
ing now represents our effort to consolidate the available formalisms
for the purpose of detailed comparison and study.

This book started as a loose collection of handwritten notes by one of
us (Gannon), who sought to stabilize our graduate course in its early
years. These notes were cribbed and modified by many of the faculty
at Maryland as they did their tour in front of the 630 classes. One
day the second author (Purtilo) volunteered to teach 630, claiming that
after years of writing good programs he thought it would be nice to
be able to demonstrate that they were correct; and so the notes were
passed to this wonderfully naive colleague. As an aid in learning the
material before he had to teach it to the class, Purtilo was responsible
for the initial cleanup and typesetting of the notes, and he expanded
the document over the course of several semesters. Finally, the notes
were passed to the third author (Zelkowitz). In needing to relearn this
material after not teaching the course for about five years, he expanded
the notes with new material and, with heroic efforts, repaired some of
the second author’s proofs. This collection is what is presented here
today.

Who should read this book?

The punch line is that this is material we have used extensively, hav-
ing been tested on many generations of graduate students, to whom
we are greatly indebted for many excellent suggestions on organiza-
tion, accuracy, and style. Of course, you don’t need to be a graduate
student looking for a research topic to benefit from this book. Even if
you don’t write code from a formal specification, we have found that
an understanding of which program structures are easier to manipu-
late by formal techniques will still help you write programs that are
easier to reason about informally. The basic technology is useful in
all programming environments and an intuitive understanding of the
techniques presented here are valuable for everyone.

Preface xi

Parts of Chapters 1, 3 and 6 are extensions to the paper “The role
of verification in the software specification process” which appeared in
Advances in Computers 36, copyright c1993 by Academic Press, Inc.
The material is used with permission of Academic Press, Inc. Thanks
go to our colleagues over the years who have directly commented on
the shape of either the book or the course: Vic Basili, Rick Furuta,
Dick Hamlet, Bill Pugh, Dave Stotts, and Mark Weiser. And a similar
thanks to all the folks who indirectly contributed to this book, by having
generated all the technology we hope we have adequately cited!

College Park, Maryland John Gannon
January, 1994 Jim Purtilo

Marvin Zelkowitz

Introduction*

Chapter 1

The ability to produce correct computer programs that meet the needs
of the user has been a long standing desire on the part of computer
professionals. Indeed, almost every software engineering paper which
discusses software quality starts off with a phrase like “Software is
always delivered late, over budget and full of errors” and then proceeds
to propose some new method that will change these characteristics.
Unfortunately, few papers achieve their lofty goal. Software systems
continue to be delivered late, over budget and full of errors.

As computers become cheaper, smaller, and more powerful, their spread
throughout our technological society becomes more pervasive. While
comic relief is often achieved by receiving an overdue notice for a bill
of $.00 (which can only be satisfied by sending a check for $.00) or
in getting a paycheck with several commas in the amount to the left
of the decimal point (Alas, such errors are quickly found), the use of
computers in real-time applications has more serious consequences.

Examples of such errors are many:

� Several people have died from radiation exposure due to receiving
several thousand times the recommended dosage caused by a software
error in handling the backspace key of the keyboard. Only mistyping
and correcting the input during certain input sequences caused the

�Parts of this chapter, through Section 4, are a revision of an earlier paper [64]. Copyright
c1993 by Academic Press, Inc. Reprinted by permission of Academic Press.

1

2 Software Specifications

error to appear, and was obviously not detected during program testing.

� Several times recently, entire cities lost telephone service and the
national phone network was out of commission for almost ten hours
due to software errors. While not an immediate threat to life, the lack
of telephone service could be one if emergency help could not be called
in time.

� Computers installed in automobiles since the early 1980s are moving
from a passive to an active role. Previously, if the auto’s computer
failed, the car would still operate, but with decreased performance.
Now we are entering an era where computer failure means car failure.

� The increase in fly-by-wire airplanes, where the pilot controls only
activate computers which actually control the aircraft, are a poten-
tial danger source. No longer will the pilot have direct linkages back
to the wings to control the flight. There is research in drive-by-wire
automobiles using some of this same technology.

� Recently, a New York bank, because of a software error, “overspent” its
resources by several billion dollars. Although the money was recovered
the next day, the requirement to balance its books daily caused it to
borrow this money from the Federal Reserve Bank, at an overnight real
interest cost of $5 million.

If told to program an anti-lock braking system for a car, would you
guarantee financially that it worked? Would you be the first person to
use it?

It is clear that the need for correct software systems is growing. While
the discussion that creating such software is too complex and expensive,
the correct reply is that there is no other choice – we must improve the
process. And, as has been demonstrated many times, it often does not
require increased time or cost to do so.

What is a correct software system?

You probably have an intuitive understanding of the word “correct”
that appeared several times already. The simple answer is that the
program does what it is supposed to do. But what is that? In order
to understand what it is supposed to, we need a description of what
it should do. Right now we will informally call it the specification. A
program is correct if it meets its specification.

Introduction 3

Why are developing such precise specifications difficult? Some of the
problems include:

� scale: The effort required to show even a small program to be par-
tially correct can be great. This will be graphically illustrated in the
problems at the end of each chapter.

� semantics: We do not remove sources of ambiguity simply by moving
from English or a programming language to a mathematical notation.
It is very difficult to “say what we mean.” Consider the example of
sorting an array A of integers: Mathematically we may elect to express
our desired target condition as 8i 0 � i < n;A[i] � A[i + 1]. Writing
a program to yield this target condition is trivial: : : simply assign all
array entries to be zero.

� termination: Many of our techniques will prove that in the case
that a given program should finish, then the desired termination
program state will be true. The catch, of course, is that we must
determine when (if ever) the program terminates. This can often be
more difficult to prove than it is to derive the desired output state.

� pragmatics: Even in the case that we show a program to be partially
correct, and even show that it terminates, we are still faced with the
problem of determining whether our compilers will correctly imple-
ment the basic language constructs used in our program, and likewise
whether our run-time environment will maintain the correct input and
execution conditions relied on by our program, and likewise whether
our implementation will be affected by the finite precision imposed on
the number systems of our computation.

It generally has been assumed that calling a program correct and stat-
ing that a program meets its specification are equivalent statements.
However, meeting a specification is more than that. Correctness has
to do with correct functionality. Given input data, does the program
produce the right output? What about the cost to produce the software?
The time to produce it? Its execution speed? All these are attributes
that affect the development process, yet the term “correctness” gener-
ally only applies to the notion of correct functionality. We will use the
more explicit term verification to refer to correct functionality to avoid
the ambiguity inherent in the term “correctness.”

A simple example demonstrates that system design goes beyond more
than correct functionality. Assume as a software manager you have
two options:

4 Software Specifications

1. Build a system with ten people in one year for $500,000.

2. Build a system with three people in two years for $300,000.

Assuming both systems produce the same functionality, which do you
build?

Correctness (or verification) does not help here. If you are in a rapidly
changing business and a year’s delay means you have lost entry to the
market, then Option 1 may be the only way to go. On the other hand,
if you have an existing system that will be overloaded in two to three
years and eventually need to replace it, then Option 2 may seem more
appropriate.

Rather than “correctness,” we will use the term formal methods to
describe methods which can help in making the above decision. Veri-
fication and the quality of the resulting program are certainly a major
part of our decision making and development process. However, we
also need to consider techniques that address other attributes. Some
of these other attributes include:

� Safety: Can the system fail with resulting loss of life? With the
growth of real-time computer-controlled systems, this is becoming in-
creasingly important. Techniques, such as software fault tolerance, are
available for analyzing such systems.

� Performance: Will the system respond in a reasonable period of
time? Will it process the quantity of data needed?

� Reliability: This refers to the probability that this system will ex-
hibit correct behavior. Will it exhibit reasonable behavior given data
not within its specification? A system that crashes with incorrect data
might be correct (i.e., always produces the correct output for valid in-
put), but highly unreliable.

� Security: Can unauthorized users gain information from a software
system that they are not entitled to? The privacy issues of a software
system also need to be addressed. But beyond privacy, security also
refers to non-interference (that is, can unauthorized users prevent you
from using your information, even if they cannot get access to the
data itself?), and also integrity (that is, can you warrant that your
information is free from alteration by unauthorized users?).

� Resource utilization: How much will a system cost? How long will
it take? What development model is best to use?

Introduction 5

� Trustworthiness: This is related to both safety and reliability. It is
the probability of undetected catastrophic errors in the system. Note
that the reliability of a system + the trustworthiness of a system will
not equal 1 since there may be errors that are not “catastrophic.”

We can summarize some of these attributes by saying, “Note that we
never find systems that are correct and we often accept systems that
are unreliable, but we do not use systems that we dare not trust. ([9],
P. 10).

Most of this book addresses the very important verification issue in-
volved in producing software systems. However, we will also discuss
some of these other issues later. In the next section we will briefly dis-
cuss verification from an historical prospective, and then we will briefly
summarize the techniques that are addressed more fully in later chap-
ters.

1. A HISTORICAL PERSPECTIVE

The modern programming language had its beginnings in the late
1950s with the introduction of FORTRAN, Algol-60, and LISP. During
this same period, the concepts of Backus-Naur Form (BNF), context-
free languages, and machine-automated syntax analysis using these
concepts (e.g., parsing) were all being developed.

Building a correct program and elimination of “bugs”1 was of concern
from the very start of this period. It was initially believed that by giving
a formal definition of the syntax of a language, one would eliminate
most of these problems.

1.1. Syntax

By syntax, we mean what the program looked like. Since this early
period, BNF has become a standard model for describing how the com-
ponents of a program are put together. Syntax does much for describing
the meaning of a program. Some examples:

1A term Grace Hopper is said to have coined in the late 1950s after finding a bug (insect
variety) causing the problem in her card reading equipment.

6 Software Specifications

� Sequential execution. Rules of the form:
< stmtlist >! < stmt >;< stmtlist > j < stmt >

do much to convey the fact that execution proceeds from the first <
stmt > to the remaining statements.

� Precedence of expressions. The meaning of the expression 2+3�4
to be 2 + (3 � 4) = 14 and not (2 + 3) � 4 = 20 is conveyed by rules
like:

< expr >! < expr > + < term > j < term >
< term >! < term > � < factor > j < factor > :

In this case, � has “higher” precedence than +.

However, there is much that syntax cannot do. If a variable was used
in an expression, was it declared previously? In a language with block
structure like Ada or Pascal, which allows for multiple declarations
of a variable, which declaration governs a particular instance of an
identifier? How does one pass arguments to parameters in subroutines?
Evaluate the argument once on entry to the subroutine (e.g., call by
value) or each time it is referenced (e.g., call by reference, call by name)?
Where is the storage to the parameter kept?

All these important issues and many others cannot be solved by sim-
ple syntax, so the concept of programming semantics (i.e., what the
program means) developed.

1.2. Testing

Now it is time for a slight digression. What is wrong with program test-
ing? Software developers have been testing and delivering programs
for over 40 years.

The examples cited at the beginning clearly answer this question. Pro-
grams are still delivered with errors, although the process is slowly
improving.

As Dijkstra has said, “Testing shows the presence of errors, not their
absence.” He gives a graphic demonstration of the failure of testing. To
test the correctness of A + B for 32-bit integers A and B, one needs to
perform 232 � 232 � 1020 tests. Assuming 108 tests per second (about
the limit in 1990s technology), that would require more than 30,000
years of testing.

Introduction 7

Testing is only an approximation to our needs. Verification is the im-
portant concept.

1.3. Attribute Grammars

Probably the first semantic model was the attribute grammar of Knuth.
In this case, attributes (values) were associated with each node in the
syntax tree, and this information could be passed up and down the
tree to derive other properties. The technique is particularly useful for
code generation in a compiler. For example, the expression evaluation
problem above could be solved by the following set of attributes for
producing Polish postfix for expressions:

< expr >! < expr > + < term > Postfix(expr1) = Postfix(expr2)
jjPostfix(term)jj+

j < term > Postfix(expr) = Postfix(term)
< term >! < term > � < factor > Postfix(term1) = Postfix(term2)

jjPostfix(factor)jj�
j < factor > Postfix(term) = Postfix(factor)

where x1 and x2 refer to the left and right use, respectively, of that non-
terminal in the production, and jj refers to the concatenation operator.

With these rules, it is clear that given the parse tree for the expression
2 + 3� 4, its correct postfix is 2 3 4 � + yielding the value 14.

While useful as a technique in compiler design, attribute grammars
do not provide a sufficiently concise and formal description of what we
have informally called the specification of a program.

1.4. Program Veri�cation

The modern concept of program verification was first introduced by
Floyd [16] in 1967. Given the flowchart of a program, associated with
each arc is a predicate that must be true at that point in the program.
Verification then consisted of proving that given the truth of a predicate
before a program node, if that node was executed, then the predicate
following the node would be true. If this could be proven for each node
of the flowchart, then the internal consistency of the entire program
could be proven. We would call the predicate associated with the input
arc to the program the input condition or precondition; the predicate

8 Software Specifications

@@
.......................

��......................
. @@.............

..........

��......................

��......................
.

@@.............
..........��......................

.

@@
.......................

?

? ?

?

?

-
�p2

�p1

�p3 �p4

�p5 �p6

�p7

�p8

�p9

c1

c2

s1 s2

Figure 1.1. Floyd verification model

on the output arc to the program the output condition or postcondition;
and the pair would be our specification, since they determined the
input/output behavior of the program.

For example, Figure 1.1 contains four program nodes (c1 and c2 are
conditional expressions and s1 and s2 are statements) and nine predi-
cates (p1; : : : ; p9) describing properties about the program. In order to
show the correctness of this program, we have to prove the following
propositions:

p1 _ p8) p2 p2 ^ c1) p3
p2 ^ :c1) p4 p3 and s1 executes) p5
p4 and s2 executes) p6 p5 _ p6) p7
p7 ^ c2) p8 p7 ^ :c2) p9

Once we have determined the effects of statements s1 and s2, all except
one of these propositions are fairly straightforward. The one problem
is the very first:

p1 _ p8) p2

Since p2 depends upon p8, and developing p8 depends upon all the pre-
vious pis, the process of generating predicates for loops in the program

Introduction 9

becomes very difficult. It would take a further development by Hoare
to fix this problem.

In 1969, Hoare [29] introduced the axiomatic model for program ver-
ification which put Floyd’s model into the formal context of predicate
logic. His basic approach was to extend our formal mathematical the-
ory of predicate logic with programming language concepts. His basic
notation was: fPgSfQg, meaning that if P were the precondition before
the execution of a statement S, and if S were executed, then postcondi-
tion Q would be true. Since a program is a sequence of statements, we
simply needed a set of axioms to describe the behavior of each state-
ment type and a mechanism for executing statements sequentially. As
will be shown later, this model simplifies but does not eliminate the
problems with loop predicates as given in the Floyd model.

2. A BRIEF SURVEY OF TECHNIQUES

Since the late 1960s and the developments of Floyd and Hoare, sev-
eral models for program verification have been developed. We briefly
summarize them here and will describe them in greater detail in later
chapters.

2.1. Axiomatic Veri�cation

This is the technique previously described by Floyd and Hoare. We can
give a series of axioms describing the behavior of each statement type,
and prove, using formal mathematical logic, that the program has the
desired pre- and postconditions.

For example, given the two propositions: fPgS1fQg and fQgS2fRg, we
can infer that if we execute both statements, we get: fPgS1;S2fRg.
Similarly, if we can prove the following proposition: R) T , we can
then state: fPgS1;S2fTg. Continuing in this manner, we build up a
proof for the entire program. We can extend this model to include data
declarations, arrays, and procedure invocation.

Dijkstra [10] developed a model similar to Hoare’s axiomatic model
which he called predicate transforms, based upon two notions: (a) the
weakest precondition of a statement; and (b) guarded commands and
nondeterministic execution.

10 Software Specifications

� Weakest precondition
The weakest precondition to a given statement S and postconditionQ is
the largest initial set of states for which S terminates and Q is true. A
weakest precondition is also called a predicate transformer since we are
able, in many cases, to derive from a given postcondition the precon-
dition that fulfills this definition. If P is the weakest precondition, we
write P = wp(S;Q). For example, in order to have a variable x equal to
3 after the assignment statement “x := x+1”, the program state prior to
this statement must have x equal to 2. Therefore, wp(x := x+ 1; x = 3)
is the set of all program states such that x has value 2.

As observed in Gries [23], we can prove several theorems from this
basic definition:

wp(S; false) = false
if P) Q then wp(S; P)) wp(S;Q)
wp(S; P _Q) = wp(S; P)_wp(S;Q)
wp(S; P ^Q) = wp(S; P)^wp(S;Q)

� Guarded commands
Dijkstra realized that many algorithms were easier to write nondeter-
ministically, that is, “if this condition is true then do this result.” A
program is simply a collection of these operations, and whenever any
of these conditions apply, the operation occurs. This concept is also the
basis for Prolog execution.

The basic concept is the guard ([]). The statement:

if a1 ! b1 [] � � � [] an ! bn �

means to execute any bi if the corresponding ai is true.

From these, we can build up a model very similar to the Hoare axioms,
as we will later show in Chapter 4.

2.2. Algebraic Speci�cation

The use of modularization, datatypes, and object oriented programming
have led to a further model called algebraic specifications, as developed
by Guttag. In this model we are more concerned about the behavior of
objects defined by programs rather than the details of their implemen-
tation. For example, “What defines a data structure called a stack?”
Any such description invariably includes the example of taking trays
off and on a pile of such trays in a cafeteria and moving your hands up

Introduction 11

l l

.

?

.

.

.o
.

.
.�

.
.
.
.
+

CBA

Figure 1.2. Memory model of storage

and down. More formally, we are saying that a push of a tray onto the
stack is the inverse of the pop operation taking it off the stack. Or in
other words, if S is a stack and x is an object, push and pop obey the
relationship

pop(push(S; x)) = S

That is, if you add x to stack S and then pop it off, you get S back again.

By adding a few additional relationships, we can formally define how
a stack must behave. We do not care how it is implemented as long as
the operations of push and pop obey these relationships. That is, these
relationships now form a specification for a stack.

2.3. Storage

Before discussing the remaining techniques, a slight digression con-
cerning assignment and memory storage is in order. Consider the
following statement: C := A+ B. This statement contains two classes
of components: (a) a set of data objects fA;B;Cg and (b) operators
f+; :=g.

In most common languages like FORTRAN, Pascal, C, or Ada, opera-
tors are fixed and changes are made to data. Storage is viewed as a
sequence of cells containing “memory objects.” The various operators
access these memory objects, change them, (e.g., accessing A andB and
adding them together) and placing the resulting object in the location
for C (Figure 1.2). An ordered collection of colored marbles is probably
the mental image most people have of memory.

On the other hand, we can view data as fixed and manipulate the
operator that views the objects (Figure 1.3). In this case, we model an
operator as a lens that allows us to see the corrected data as modified

12 Software Specifications

?
.
.
.
.
.
.
.
.
.

?
.
.
.
.
.
.
.
.
.

?
.
.
.
.
.
.
.
.
.

?
.
.
.
.
.
.
.
.
.

?
.
.
.
.
.
.
.
.
.

?
.
.
.
.
.
.
.
.
.

?
.
.
.
.
.
.
.
.
.

?
.
.
.
.
.
.
.
.
.

?
.
.
.
.
.
.
.
.
.

?
.
.
.
.
.
.
.
.
.

CBA

Figure 1.3. Applicative model of storage

ll
=

.........
)

............

.

.

.

..........
.................................
........
.................

.......................
.................................
.........
...

?
.
.
.
.
.
.
.
.
.

?
.
.
.
.
.
.
.
.
.

?
.
.
.
.
.
.
.
.
.

?
.
.
.
.
.
.
.
.
.

?
.
.
.
.
.
.
.
.
.

?
.
.
.
.
.
.
.
.
.

?
.
.
.
.
.
.
.
.
.

?
.
.
.
.
.
.
.
.
.

?
.
.
.
.
.
.
.
.
.

CBA

Figure 1.4. Applicative assignment

by the given statement. We call this the applicative view of storage.

In this case, memory is simply a function that returns a value for each
location. Execution of an assignment statement simply modifies the
accessing function (Figure 1.4). In other words, the modified function is
simply the composition of the original function and the new statement.

Pure applicative programming is the basis for languages like LISP;
however, most LISP implementations do include memory storage fea-
tures. As we shall see, this model is also the basis for the denotational
and functional models to be next described and is also the basis of the
array assignment axiom for the Hoare axiomatic system.

Introduction 13

2.4. Functional Correctness

A program can be considered as a function from some input domain
to some output domain. If we can also represent a specification as a
function, we simply have to show that they are equivalent functions.

Using the box notation of Mills [45], if p is a program, then p is defined
to be the function that the program produces. If f is the specification
of this program, then verification means showing the equivalence of
f = p . While this in general is an undecidable property, we can
develop conditions of certain programs where we can show this, that
is, are there cases where we can compare the expected behavior of the
program with the actual behavior?

In particular, if a program p is a sequence of statements s1; � � � ; sn,
then p is just the functional composition of each individual statement
function s1 � � � � � sn .

We later give several axioms for deriving statement functions from
programming language statements and present techniques for proving
this equivalence.

2.5. Operational Semantics

The final model of verification we shall discuss is the operational model.
In this case, model the program using some more abstract interpreter,
show that the program and the abstracted program have equivalent
properties, and “execute” the program in the abstract model. Whatever
effects the abstracted program show will be reflected in the concrete
program.

The first such model based upon this technique was the Vienna Defini-
tion Language (VDL).2 This model extended the parse tree of a program
into a “tree interpreter.” (See Figure 1.5). While the parse tree (com-
ponent s tree) was a static component of this model, some components
like the program store (i.e., data storage component s data) and internal
control (s control) were dynamic and changed over time. Other compo-
nents, like the library (i.e., “microprogrammed” semantic definition of
each statement type in s library), were also static. The semantic defi-
nition of the language was the set of interpreter routines built into the

2Not to be confused with the Vienna Development Method (VDM) to be described later.

14 Software Specifications

�
�

��

Q
Q
QQ

XXXXXXXXXX
�
�
��

T
T
TT

�
�
��

J
J
JJ

�
��
S
SS

�
��

@
@@

�

s tree s data
s control s library

Figure 1.5. Vienna Definition Language Model

library routines. A LISP-like notation was used to define the semantic
routines.

VDL was used briefly in the 1970s, and was used as the basis for the
standardized definition for the language PL/I, but is largely obsolete
today. The major problem is that “debugging” the interpreter routines
in the control aspect of the model is not very different from debugging
programming language statements. While the model did present the
program’s semantics at a higher more abstract level, the level was not
deemed high enough and the information obtained not strong enough
to warrant its use.

A second operational model is still very much in use and has had major
impact on the other models and upon practical specification systems.
That is the technique of denotational semantics developed by Scott and
Strachey. In this case, similar to the functional model of Mills, we view
a program as function from one domain to another.

A fundamental idea is that we view “memory” as simply a function from
a set of identifiers to a set of values. Thus the state of a computation
at any time is simply a function mi with the functional signature id!
value meaning for each j 2 id;mi(j) = k; k 2 value. The “execution” of
statement si+1 simply means we transform function mi into function
mi+1 by the composition with the function for statement si+1. (Note
the similarity with the Mills functional approach above.)

We give a formal description of the functionality that each statement
has on the underlying program store to produce a new program store,
and can use this to model complete languages.

This model has had an effect on other models. The basic functional
approach is the basis for the Mills functional model. We will later
see that the axiomatic array axiom is just the denotational semantics

Introduction 15

assignment property.

3. SEMANTICS VERSUS SPECIFICATIONS

In the discussion so far, the terms “semantics,” “verification,” and “spec-
ification” have been mostly intermixed with no clear distinction among
them. They are highly interrelated, generally describe similar proper-
ties, and their order above generally follows the historical development
of the field.

Initially (duriing the late 1950s through mid-1960s), the problem was to
describe the semantics of a programming language, using techniques
like attribute grammars and VDL-like operational semantics. The
thrust through the 1970s was the proving of the (functional) correctness
of a program, or program verification. Today, we are interested in
building valid systems, that is, programs that meet their specifications.

Using the functional correctness box notation, we can describe some of
today’s issues. Let s be a specification and p be a program.

� Does s = p ? This is the verification problem.

� Given s, build program p such that s = p . This is the program
design problem.

� Given p, find s such that s = p . This is what we call reverse engi-
neering today. It is an important component in the interest in software
reuse. Given a program module, what function does it implement? If
we can answer this, semiautomatically, we can more easily reuse the
module and reduce development costs.

While all these problems are different, the techniques to address them
are the same. Therefore, a study of verification issues has major im-
pact on all of the semantic, verification, specification, and reverse-
engineering problems.

16 Software Specifications

4. LIMITATIONS OF FORMAL SYSTEMS

Although research on formal methods is a worldwide activity, cultural
differences have emerged. Currently, the general view in the United
States is that verification is a mechanism for proving the equivalence
between a specification and a program. Since real programs imple-
mented on real computers using real compilers have numerous limita-
tions, the proofs are necessarily hard and verification has made little
impact in industry.

On the other hand, the European view is that verification is a mecha-
nism for showing the equivalence between a specification and a design.
Since a software design is somewhat removed from the actual imple-
mentation, verification is easier, although one still has the remaining
problem of showing that the design does agree with the implemen-
tation. Because of this, verification is generally more prevalent in
European development activities than in the U.S.

Now that you are “sold” on the value of such formal models, we must
put these techniques in perspective. Hall [28] listed seven “myths” of
formal systems. It is important to understand these concepts as part
of learning about the techniques themselves.

1. Formal methods can guarantee that software is perfect. As we have
shown, all the formal techniques rely on abstracting a program into
an abstract specification that closely approximates reality. However,
this formal specification is rarely exact, so the resulting program only
approximates what you specify. If done well, then this approximation
is close enough. However, even simple propositions like “x + 1 > x
for integer x” fail with real machines with fixed word size and limited
range of integer values.

In addition, we cannot forget that mathematical proofs may have er-
rors in them. Formal proofs certainly help, but are no guarantee of
perfection.

2. They work by proving the programs are correct. As stated at the
beginning, we are interested in more than just functional correctness.
Cost, development time, performance, security, and safety are all prop-
erties that are part of a complete specification.

3. Only highly critical systems benefit from their use. It has been shown
that almost any large system will benefit from using formal techniques.

Introduction 17

The cleanroom is a technique to informally use functional correctness
on large software projects. It has been used at IBM, NASA Godddard
Space Flight Center and at the University of Maryland (albeit with
small student projects in that case). In all instances, reliability was
higher, and development effort was sometimes dramatically lower.

4. They involve complex mathematics. These techniques involve preci-
sion, not complex mathematics. There is nothing in this book that a
well-informed college undergraduate should not be able to understand.
Precision takes much of the ambiguity out of a 300-page informal En-
glish specification that is more typical in industry today.

5. They increase the cost of development. They do increase the cost
of program design, since one must develop the abstract model of the
specification more explicitly that is usually done. For managers im-
patient with programmers not writing any “code,” this certainly looks
like an increase in costs. But as numerous studies have shown (e.g.,
the cleanroom studies above), the project’s overall costs are lower since
the time-consuming and expensive testing phases are dramatically re-
duced.

6. They are incomprehensible to clients. It is our belief that a 300
page English text of ambiguous statements is more incomprehensible.
In addition, the role of formal methods is to help the technical staff
understand what they are to build. One must still translate this into a
description for the eventual user of the system.

7. Nobody uses them for real projects. This is simply not true. Several
companies depend upon formal methods. Also, various modifications
to some of these techniques are used in scattered projects throughout
industry. It is unfortunately true, however, that few projects use such
techniques, which results in most of the problems everyone is writing
about.

The following section will give the notation we will use throughout this
book, and the following chapters will present these techniques outlined
here in more detail.

5. PROPOSITIONAL CALCULUS

Much of the theory of program verification is built upon mathemat-
ical logic. This section is a brief review of some of these concepts.

18 Software Specifications

The propositional calculus is a simple language for making statements
(propositions) that may be viewed as true or false. Strings in this lan-
guage are called formulae.

The syntax for the propositional calculus is

� set of symbols

variables:A, B, P, Q, R, : : :

constants:T, F

connectives:^, _, :,)

parentheses:(,)

� rules for forming legal strings of these symbols, e.g. a formula is
defined as

a variable

a constant

a string: if A and B are formulae, so are A^B, A_B, :A and A) B

We must now define the semantics of propositional calculus. An inter-
pretation is a way of understanding a formula, encoding some informa-
tion. Truth values are assigned to formulae as follows:

� T has value true

� F has value false

� Variables can take on either true or false

� (A ^ B) is true if A is true and B is true, is false otherwise

� (A_B) is true if A is true or B is true, is false otherwise

� :A is true if A if false, is false if A is true

� (A)B) is true if A is false or B is true

Definitions:

truth assignment: A truth assignment is a mapping of the variables
within a formula into the value true or false.

Introduction 19

satisfiable: A formula is satisfiable if there exists some truth assign-
ment under which the formula has truth value true.

valid: A formula is a tautology, or valid, if it has truth value true under
all possible truth assignments.

unsatisfiable: A formula is unsatisfiable if it has the truth value false
for all possible truth assignments.

decidable: Propositional logic is decidable: there exists a procedure to
determine, for any formula, if it is satisfiable (and hence valid) or not,
e.g., truth tables.

5.1. Truth Tables

We can build a truth table by first assigning all possible combinations
of truth values to variables, and then determining the truth value of
each subformula under each truth assignment. For instance, consider
the formula : A _ (A _ B) :

A B :A (A_B) :A_(A _ B)
T T F T T
T F F T T
F T T T T
F F T F T

The given formula is valid because all rows of the truth table show it as
true. Generally, using truth tables are NP-complete procedures: The
number of steps in the decision process is exponentially related to the
number n of variables in a formula (2n).

5.2. Inference Rules

Inference systems allow determination of tautology or unsatisfiability,
but say nothing about formulae in between. An inference system con-
sists of:

� axioms (set of valid formulae)

� inference rules (create new formulae from existing ones)

Two formulae are equivalent if every truth assignment causes their
truth values to be equal. Rules of inference are truth preserving in that

20 Software Specifications

they transform a formula (conjunction of members of a set of formulae)
into an equivalent formula. Starting with axioms (which are valid),
then each subsequent formula derived with inference rules is also valid.
This is soundness: If only valid formulae can be derived, the inference
system is sound.

We say an inference system is complete if it can derive all formulae
which are valid. For example:

� Axioms

1. P) (Q) P)

2. (S) (P) Q))) ((S) P)) (S) Q))

3. : (: P)) P

� Inference rules

1. From (A) B) and A, conclude B (modus ponens)

2. From A, may get A’ by substituting a variable y for variable x
throughout A.

This system is sound and complete.

Axioms are proven valid with truth tables. Another formula may then
be proven valid by discovering (manufacturing) a sequence of rules to
apply to the axioms to get the formula.

In some cases, we want a result if some previous assumption is true.
For example, if p is assumed true, then can we infer q? In such a
situation we will use the notation p ` q. In fact to be quite formal,
given our inference system, any result q that we can infer from our
axioms is properly written as true ` q, or more simply ` q.

In most situations, p ` q and p) q behave quite similarly, and we will
avoid this added level of complexity in this book. But they are quite
different.) is a binary operator applied to predicates, while ` is an
inference rule. For the most part we can ignore the difference, however,
even in our treatment here, we need to differentiate between the two
concepts. For example, we will see that the recursive procedure call
rule in Chapter 2 and VDM in Chapter 7 both need to refer to `.

If we have a rule of inference (p) q) ` (r^ s), then we can write it as:

Introduction 21

p) q

r ^ s

We will interpret this to mean that if we can show the formula above
the ‘bar’ (p) q) to be valid (either as an assumption or as a previously
derived formula), then we can derive the formula below the ‘bar’ (r^ s)
as valid. We shall use this notation repeatedly to give our inference
rules in this book.

If the relationship works both ways (i.e., p) q and q) p), then we will
use the notation:

p

q

Therefore, we can write the two inference rules given above as:

Modus ponens : A) B;A
B

Substitution of x by y : A

Ax
y

5.3. Functions

We shall use the notation x
4
= y to mean that function x is defined by

expression y.

The expression x � y shall mean that logical expressions x and y have
the same truth value. We shall also use this notation to mean that
program x is defined to be the sequence of statements described by y.

It is often desirable to specify functions as a conditional. For example,
the maximum function can be specified by the program:

max � if a > b thenmax := a
elsemax := b

Writing this as a function, we can state:

max(a; b)
4
= if a > b then max := a else max := b

22 Software Specifications

and can then write max(a; b) or max(x; y).

We shall use a notation patterned after the LISP cond construct in this
book to represent such functions. If bi is a boolean condition and ci are
functions, then a conditional function has the syntax: (b1 ! c1)j(b2 !
c2)j : : : j(bn ! cn) with the semantics of evaluating each bi in turn, and
setting the value of the conditional to be ci for the first bi which is true.
If all bi are false, then the statement is undefined. If bn is the default
case (i.e., the expression true), then it can be omitted with the last
term becoming (cn). The Identity function is written as ().

Therefore, we will generally write functions, like max, using the fol-
lowing syntax:

max(a; b)
4
= (a > b ! max := a) j (max := b)

It is important to differentiate between total and partial functions. The
functions (a ! b)j:a! c) and (a ! b)j(c) are both total since they are
defined for every possible input state (i.e., either a or :a must be true).
However, the function (a! b) is only partial since it is undefined if a is
false. While seemingly an anomalous condition, this occurs frequently
in programming (i.e., an infinite while loop that does not terminate.

One last piece of functional notation. Throughout this book, we will
often want to refer to the computation performed by a program as some
expression involving the variables in the program. For example, if we
have the procedure mult that multiplies two arguments together, then
by writing y := mult(a; b), we would like to say that y = ab.

However, the execution of mult may change the final values of a and
b, so the equality y = ab may actually be false after the execution of
procedure mult. This is the inherent difference between functional
mathematics and programming. We need a notation to refer to the
initial values of a and b so that we can refer to the final result. We will
use (as this symbol.

(
a means the original value that a had before

execution of the procedure began. Thus for y := mult(a; b), we can state
y =

(
a
(

b .

5.4. Predicate Calculus

We may now describe the predicate calculus, a more powerful language
for making statements that can be understood to be true or false. Its

Introduction 23

syntax is:

� predicate symbols (P;Q;R; :::;<;>;=; :::)

� variables (x; y; z; :::)

� function names (f; g; h; :::)

� constants (0-argument functions) (a; b; c; :::)

� quantifiers (9, 8)

� logical connectives (^, _, :,))

� logical constants (T; F)

An atomic formula is either:

� a logical constant (T or F)

� any predicate Pn(t1; : : : ; tn) where ti is a term, formed from variables,
constants, or function names, as one would expect.

For example
P (x; f(T; g(x; y)))

is a predicate expression consisting of constant T , variables x and y,
and functions f , g, and P .

A well-formed formula (wff) is defined as:

� any atomic formula

� if � is a wff, so are :�, 8x�, 9x�

� if � and � are wffs, so are (� _ �), (�^ �), (�) �)

� liberal use of parentheses throughout

For example
(:(8xP (x))) (9y:P (y)))

is a valid wff that is a tautology, and it contains no function names.

Functions give a means of calculating the “name” of an item to be
discussed, as opposed to simply specifying the name as a constant. The

24 Software Specifications

added power is akin to using arrays with variables as subscripts, as
opposed to using only constants as subscripts.

We say a variable in a wff is bound if it is in the scope of some quantifier
(shown by parentheses unless obvious). A variable is free if it is not
bound. For example: in 8x9y(Q(x; f(y; z))) x and y are bound, and z is
free.

In predicate calculus, an interpretation I is analogous to truth assign-
ment in propositional calculus.

� set of elements D (the domain)

� each n-place function name fn is assigned a total function hfni: Dn !
D

� each constant, each free variable is mapped intoD (i.e., given a value)

� each n-place predicate name Pn is assigned a total function
hPni: Dn ! f T , F g.

If W is a wff, and I is an interpretation, then (W; I) denotes the truth
value of the statement that the two together represent.

1. W is valid iff (W,I) is true for every I.

2. W is satisfiable iff (W,I) is true for some I.

3. W is unsatisfiable iff (W,I) is true for no I (is false for all I).

However, the predicate calculus is not decidable. There exist W such
that it cannot be determined whether there is an interpretation I such
that (W; I) is valid. There are complete and sound inference systems
for all three of the following:

1. valid: can prove wff W by deriving W from the axioms.

2. unsatisfiable: can prove wff W by deriving the negation of W from
the axioms (assuming : (A ^: A) is an axiom of the system).

3. satisfiable: W is satisfiable if can say nothing about W , since neither
derivation (A and : A) will terminate.

Introduction 25

5.5. Quanti�ers

The propositional calculus is a zero-order language containing only
constants without functions. The predicate calculus is a first-order
language containing functions that compute values. There exist higher-
order languages (second, third, etc.), having functions that compute
(functions that compute : : : (functions that compute values) : : :).

Example:

9x8y(x < y _ x = y)

This is common notation, though the relation could be written more
accurately as _(< (x; y);= (x; y)).

However, is that statement True or false (i.e., a tautology)? That de-
pends on the interpretation:

� If we let D be the set of natural numbers, with normal arithmetic the
this wff is true.

� If let D be the set of all integers, then this wff is false.

Often we need to change the identifiers used in a wff. Informally,
consider this: The “meaning” is unchanged by substituting k for i:

var j : integer;
function f(i : integer) : integer;
begin f := i+ j end

becoming

var j : integer;
function f(k : integer) : integer;
begin f := k + j end

However the “meaning” is changed by substituting j for i, where the
new text becomes

26 Software Specifications

var j : integer;
function f(j : integer) : integer;
begin f := j + j end

because j is already bound in the scope it was substituted into. We can
only replace free occurrences of an identifier by another free identifier
(or expression). To preserve “meaning” of wff under substitution, must
not alter the free/bound status of any of its identifiers. For example:

9x(x < y)

We can substitute f(z; w) for y to get 9x(x < f(z; w)). We cannot
substitute f(z; x) for y, since x is bound already.

More formally, A term t is substitutable for x in a wffA iff for each (free)
variable y in t, x does not occur free in a subterm of A of the form 9y F
(or 8y F). The new wff obtained by this substitution is denoted Axt .

5.6. Example Inference System

Logical Axioms:

1. :F _ F

2. x = x

3. :(x1 = y1) _ : : :_ :(xn = yn) _ f(x1; : : : ; xn) = f(y1; : : : ; yn)

4. :(x1 = y1) _ : : :_ :(xn = yn) _ :P (x1; : : : ; xn) _ P (y1; : : : ; yn)

5. :Ax
t _ 9x A (provided t is substitutable for x in A)

Rules of Inference:

1: A 2: A _ (B _C)

B _A (A _B) _ C

3: A _B;:A _C 4: :A _B

B _C :9x(A _B) provided x is not free in B

5: A;B
A

Introduction 27

Often we “beef up” an inference system to make proofs about certain
entities easier (less lengthy) by adding more axioms that are tailored
to talk about the objects we are interested in. For example, we can
assume the following arithmetic axioms:

1: 8x(x 6= 0) 9y(y + 1 = x))
2: 8x8y(x + 1 = y + 1) x = y)
3: 8x8y(x < y + 1) (x < y) _ (x = y))
4: 8x:(x < 0)
5: 8x8y(x < y) _ (x = y) _ (x > y)
6: 8x(x+ 0 = x)
7: 8x8y(x + (y + 1) = (x+ y) + 1)
8: 8x(x� 0 = 0)
9: 8x8y(x(y + 1) = xy + x)
10: 8x8y8z(x � y = z) x = y + z)

This restricts our focus to the objects the new axioms discuss (here,
positive integers).

Adding axioms like this can lead to incompleteness of the inference
system, since these new “axioms” are not necessarily tautologies, but
instead are true only under one (or a few) interpretations.

Several theorems, which can all be verified by appropriate trace ta-
bles, involving conditional statements will be used in this book. Their
inference rules are given as follows:

1: (a! b)j(:a! c) 2: (a! (b! c))

(a! b)j(c) (a ^ b! c)

3: (a! c)j(b! c) 4: (a! (b _ c))

(a _ b! c) (a! b)j(a! c)

5: A) (B _C) 6: A) (B) C)

(A) B) _ (A) C) (A ^B)) C

6. EXERCISES

Problem 1. Give as complete a list of attributes that you can to describe
a software system.

28 Software Specifications

Problem 2. Define the binary operator , as:

A, B
4
= (A) B) ^ (B) A)

Show that DeMorgan’s laws are valid:

(A ^B) , :(:A _ :B)
(A _B) , :(:A ^ :B)

7. SUGGESTED READINGS

Jon Bentley’s collection of writings

� J. Bentley, Programming Pearls, Addison-Wesley, Reading, MA, 1986.

is an excellent source of ideas for refining practical programming and
problem-solving skills. Chapter Four in particular, “Writing Correct
Programs,” gives a nice introduction to the types of proof methods
which will be discussed in this book. Likewise the book,

� D. Gries, The Science of Programming, Springer-Verlag, New York,
1981.

is a magnificent textbook describing the process of program specifica-
tion and development using predicate transforms.

Background material for this book consists of the following:

Understanding of context free languages, parsing, and general lan-
guage structure. Compiler books like the following are helpful:

� A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques
and Tools, Addison-Wesley, Reading, MA, 1986.

� C. N. Fischer and R. J. LeBlanc, Crafting a compiler, Benjamin Cum-
mings, Menlo Park, CA, 1988.

Understanding the structure of programming languages and their ex-
ecution model in typical von Neumann architectures:

Introduction 29

� T. W. Pratt, Programming Languages: Design and Implementation,
Second Edition, Prentice-Hall, Englewood Cliffs, NJ, 1984.

� R. Sethi, Programming Languages: Concepts and Constructs, Addi-
son-Wesley, Reading MA, 1989.

Some references for specification systems include:

� A. Hall, “Seven Myths of Formal Methods,” IEEE Software, Vol. 7,
No. 5, September 1990, pp. 11-19.

� J. Wing, “A Specifier’s Introduction to Formal Methods,” IEEE Com-
puter, Vol. 23, No. 9, September 1990, pp. 8-24.

� J. Woodcock and M. Loomes, Software Engineering Mathematics,
Addison-Wesley, Reading, MA, 1988. (This is a theory using a Z-like
notation.)

� D. Craigen (Ed.), Formal methods for trustworthy computer systems,
Springer-Verlag, New York, 1990.

30 Software Specifications

Chapter 2

The Axiomatic Approach

An axiomatic approach requires both axioms and rules of inference. For
our purposes, we will accept the axioms of arithmetic which character-
ize the integers and the usual rules of logical inference as discussed
earlier (Chapter 1, Section 5). However, we do not seek to model just
the ‘world of integers’ but also the ‘world of computation,’ and hence
we need additional axioms and inference rules corresponding to the
constructs we intend to use as our programming language.

1. PROGRAMMING LANGUAGE AXIOMS

In order to build programs into our inference system, we must be able
to model a computation as a logical predicate. We adopt the notation
fPgSfQg, where P and Q are assertions about the state of the compu-
tation and S is a statement. This expression is interpreted as “If P ,
called the precondition, is true before executing S and S terminates
normally, then Q, called the postcondition, will be true.” This will
allow us to model a simple “Algol-like” programming language. We do
this by adding the inference rules of composition and consequence:

Composition :
fPgS1fQg; fQgS2fRg

fPgS1;S2fRg

31

32 Software Specifications

Consequence1 :
fPgSfRg; R) Q

fPgSfQg

Consequence2 :
P) R; fRgSfQg

fPgSfQg

If we are to have confidence in a program which has been proven to
be partially correct by this axiomatic method, then it is important for
us to believe in the axioms and inference rules accepted up front. A
good way to find motivation for the choice of these inference rules is to
examine the Floyd-style flow chart associated with each drawing.

The rule of composition is the basic mechanism which allows us to
“glue” together two computations (i.e., two statements). If the postcon-
dition of one statement is the same as the precondition of the following
statement, then the execution of both of them proceeds as expected.

The rules of consequence build in our predicate logic rules of inference.
We can use these to permit us to use alternative pre- and postconditions
to any statement as long as we can derive them via our mathematical
system.

Given this logical model, we need to build in the semantics of a given
programming language. We will use the following BNF to describe a
simple Algol-like language:

< stmt >::= < stmt >;< stmt >
jif < expr > then < stmt >
jif < expr > then < stmt > else < stmt >
jwhile < expr > do < stmt >
j < id > := < expr >

where < id > and < expr > have their usual meanings. Note: The
examples will be kept simple, and we will not worry about potential
ambiguities such as programs like: < stmt >; if < expr > then <
stmt >;< stmt >. that is, is this a “statement and an if” or “statement,
if, and statement?” The examples will be clear as to meaning.

The basic approach is a “backwards verification” method. For example,
for the assignment, we will define the axiom so that given the result
of an assignment statement, what must have been true prior to the
execution of the statement in order for the result to occur? Or in other
words, given the postcondition to an assignment statement, what is its
precondition?

The Axiomatic Approach 33

We accept the assignment axiom schema

fP x
y gx := yfPg

Here P x
y represents the expression P where all free occurrences of x

have been replaced by y. For example,

fz = x+ y � 3gx := x+ y + 1fz = x� 4g

represents the effect of replacement of x by x+ y + 1.

In addition to the above axiom schema, we accept the following rules
of inference for the if and while statements:

Conditional1 :
fP ^Bg S fQg; P ^ :B) Q

fPgif B then SfQg

Conditional2 :
fP ^Bg S1 fQg; fP ^ :Bg S2 fQg

fPgif B then S1 else S2 fQg

While :
fP ^Bg S fPg

fPgwhileB do S fP ^ :Bg

The if statement rules are fairly obvious. Each of the two possible
rules simply traces the execution of the corresponding if � then and
if � then� else statement, and given precondition P , determines under
what conditions postcondition Q will be true.

The axiom for the while statement is perhaps as major a contribution
by Hoare [29] as the entire model of verification that he also developed.
The basic loop has the structure:

while something � is � true

do something

There must be some property that remains true throughout the execu-
tion of the loop. So if we call the body of the loop S, then we will call
the property that must remain true P , and we have the result: “If P is

34 Software Specifications

true and we execute the loop, then P will remain true.” The condition
‘and we execute the loop’ is just the predicate on the while statement
B. This leads to the condition that: fP ^ BgSfPg as the antecedent
property on the while axiom. So if this antecedent is true, then after
the loop ‘terminates,’ we still will have P true, and since the loop ter-
minated, B must now be false, hence the axiom as given. Note we have
not proven that the loop does terminate. That must be shown and is
outside of this axiom system (see Section 1.2).

The property that remains true within the loop is called the invariant
and it is at the heart of developing axiomatic proofs for programs. While
there is no algorithmic method for developing invariants, we later give
some ideas on how to proceed.

1.1. Example: Integer Division

Consider the following example of a Hoare-style proof of partial cor-
rectness of a program to compute the remainder and quotient from a
division of two integers, x and y:

PROGRAM � f
q := 0;
r := x;
while y � r do

r := r � y;
q := 1 + qg

Our input condition is fx � 0^y > 0g, and our desired output condition
is f:(y � r) ^ x = r+yqg. Note how the output condition characterizes
the desired relationship between values in order for r and q to represent
the remainder and quotient, respectively. Also note that the “input” to
this program is assumed to be whatever is contained in the variables
upon starting execution of this program.

If our output condition is to be true, it must be so as a result of applica-
tion of a while rule of inference, corresponding to the execution of the
only while loop in our program. In order to apply the rule, we must
identify the P and B in the rule’s antecedent “P ^B.” This immediately
suggests that our B must be B � r � y, and that our P (which is re-
ferred to as the invariant) must therefore be P � x = qy + r ^ 0 � r.
Hence the inference rule which could be applied would be

The Axiomatic Approach 35

fP ^ r � ygr := r � y; q := q + 1fPg
fPg while r � y do r := r � y; q := q + 1f P ^ :Bg

Continuing to reason backwards from our target assertion, we try to
show how the antecedent to this while rule would be derived, that
is, we must show that the assertion which characterizes the program
state just before execution of the while loop is maintained by continued
execution of the while loop. In short, this inductive step is called
“showing that the invariant is maintained.” We start with our invariant
P and work backwards through the body of our while loop to see what
conditions before the loop will imply P : First, our assignment axiom
schema can be brought in, yielding

fx = (q + 1)y + r ^ 0 � rgq := q + 1fPg

and an additional use of the axiom shows us

fx = (q + 1)y + (r � y) ^ 0 � r � y| {z }
x=qy+r^0�r�y

gr := r � y

fx = (q + 1)y + r ^ 0 � rg

By use of our rule of composition applied to the above two steps, we get

fx = qy + r ^ 0 � r � ygr := r � yfx = (q + 1)y + r ^ 0 � rg;
fx = (q + 1)y + r ^ 0 � rgq := q + 1fPg

fx = qy + r ^ 0 � r � ygr := r � y; q := q + 1fPg

Now by using a rule of consequence, we can show that the invariant is
indeed maintained:

fx = qy + r ^ 0 � r � ygr := r � y; q := q + 1fPg;
P ^ r � y) x = qy + r ^ 0 � r � y

fP ^ r � ygr := r � y; q := q + 1fPg

Now we must determine whether or not the “initialization” steps in our
program will yield us the invariant P . Again working backwards, we
utilize our assignment axiom

fx = qy + x ^ 0 � xgr := xfPg

36 Software Specifications

utilize it again for

fx = 0y + x ^ 0 � x| {z }
(x=x^0�x)�0�x

gq := 0fx = qy + x ^ 0 � xg

and so by using our rule of composition, we may infer

f0 � xgq := 0fx = qy + x ^ 0 � xg; fx = qy + x ^ 0 � xgr := xfPg
fx = x ^ 0 � xgq := 0; r := xfPg

Use composition to add the loop initialization to the loop body:

f0 � xgq := 0; r := xfPg;
fPgwhile r � y do r := r � y; q := q + 1fP ^ :Bg
f0 � xgq := 0; r := x; while r � y do � � � fP ^ :Bg

The input assertion implies the antecedent of our initialization code,
and so we may use a rule of consequence to replace 0 � xwith the input
assertion:

f0 � xgq := 0; r := x;while r � y do � � � fP ^ :Bg;
fx � 0 ^ y > 0) 0 � xg

fx � 0 ^ y > 0gq := 0; r := x; while r � y do � � � fP ^ :Bg

Since P ^ :B is our desired output assertion, we have completed a
demonstration of partial correctness for this program.

The program generates two values: q and r. We can use these to
have this program model integer division (quotient or quot) and the
remainder function (rem or mod) as follows:1

(quot(x; y) = q)
4
= (9r j y > r � 0 ^ x = r + yq)

(rem(x; y) = r)
4
= (9q j y > r � 0 ^ x = r + yq)

1This is left as an exercise.

The Axiomatic Approach 37

We will use these results later.

The example presented is organized to give as much insight as possible
as to how each step is chosen. As with so many proofs, we start with
the desired result and “reason back” to find out what we needed to
start with. This is fine. However, it is also useful to consider the
“straightforward” proof as well, as demonstrated by Hoare [29] in his
original CACM paper. The above discussion can be organized into a
precise proof of our program’s partial correctness as follows:

1. true) x = x+ y � 0 lemma2

2. fx = x+ y � 0g r := x fx = r + y� 0g assignment
3. fx = r + y � 0g q := 0 fx = r + yqg assignment
4. ftrueg r := x fx = r + y� 0g consequence(1,2)
5. ftruegr := x; q := 0fx = r + yqg composition(4,3)
6. x = r + yq ^ y � r) x = (r � y) + y(1+ q) lemma2

7. fx = (r � y) + y(1 + q)g r := r � y assignment
fx = r + y(1 + q)g

8. fx = r + y(1 + q)g q := 1+ q fx = r + yqg assignment
9. fx = (r � y) + y(1 + q)g r := r � y; q := 1 + q composition(7,8)

fx = r + yqg
10. fx = r + yq ^ y � rg r := r � y; q := 1+ q consequence(6,9)

fx = r + yqg
11. fx = r + yqg while y � r do (r := r � y;

q := 1+ q)f:y � r ^ x = r + yqg while(10)
12. ftrueg PROGRAM fdesired outputg composition(5,11)

Note how the proof above isn’t quite the same result as what we orig-
inally derived. The key difference is in the precondition: Our repro-
duction of Hoare’s proof shows true as the predcondition, effectively
stating “you can start in any program state for the following steps to
lead to the postcondition.” In contrast, our first derivation used the
precondition fx � 0 ^ y > 0g, which is slightly more restrictive, since
fewer initial program states satisfy this predicate. In fact, the reason
we choose the invariant in our first derivation was probably more dif-
ficult to understand as a result of this (“Why add the 0 � r?”). Both
proofs are valid, so why make one more difficult? Study the program to
see how it would behave in case our first precondition is not true when
the program is ‘executed.’

2These Lemmas should be proven as an exercise.

38 Software Specifications

1.2. Program Termination

We have shown the “partial correctness” of this introductory example,
that is, if the program begins execution in a state satisfying the precon-
dition, and if the program terminates, then the postcondition will be
true. But how do we know the program actually terminates? We can
often show termination by showing that the following two properties
hold:

1. Show that there is some property P which is positive within a loop.

2. Show that for each iteration of the loop, P is decremented by a fixed
amount. That is Pi > Pi+1.

If both properties are true, and if the second property causes P to
decrement (yet still be positive), then the only way this can be consistent
is for the loop to terminate, or else the first property must become false
at some point.

Applying this principle to the previous example: The only variables
affecting the loop test are y and r. The former does not change through
execution, therefore we concentrate our investigation on what happens
to the latter, r. Its initial value is x, which we know from the initial-
ization of the program. In the case that y is strictly greater than x
on input, then termination is certain, since the body of the while loop
would never be executed. Otherwise, r starts out greater than or equal
to y and the loop begins execution. In the body of the loop, r is decre-
mented by a positive value (we know it is positive by the precondition);
in fact, this decrement is unavoidable. Hence, we may infer that in a
finite number of iterations of the loop, r will be decremented to where
it is no longer the case that y � r and therefore the loop will exit. All
execution paths have been accounted for, and hence we conclude that
the program will indeed terminate when started in a state satisfying
the precondition.

1.3. Example: Multiplication

As a second example we will prove the total correctness of the following
program which computes the product of A and B:

The Axiomatic Approach 39

fB � 0g
1: MULT (A;B) � f
2: a := A
3: b := B
4: y := 0
5: while b > 0 do
6: y := y + a
7: b := b� 1g

fy =
(

A
(

Bg

Note: Since A and B are not modified in the program, we can state the
postcondition simply as: y = AB.

The general approach is to work backwards, starting with the post-
condition, to show that the precondition yields that postcondition. In
this case, the program terminates with a while statement (lines 5-7).
Therefore we need to determine the invariant for the loop. If I is the
invariant and X is the while statement conditional, then we have to
show the following two properties:

1. fI ^Xg lines 6� 7fIg

2. (I ^ :X)) (y = AB)

The first property will allow us to build the while statement, while the
second property shows that we get the multiplication answer that we
desire.

In order to develop the invariant I, it is necessary to determine what
property does not change within the loop. The goal of the loop is to
compute AB, which is a constant. Since the loop is increasing y while
decreasing b, combining them gives a clue to our invariant. Since ab is
just AB initially, we get a clue that our invariant might be something
like:

y + ab = AB

Since we want b = 0 at the end, forcing y to be equal to AB, our
invariant becomes:

I
4
= (y + ab = AB) ^ (b � 0)

40 Software Specifications

Since X is just b > 0, I ^ :X) (y = AB) is shown as follows:

I ^ :X �
(y + ab = AB) ^ (b � 0) ^ :(b > 0) �
(y + ab = AB) ^ (b � 0) ^ (b � 0) �
(y + ab = AB) ^ (b = 0) �
(y + a0 = AB) �
(y = AB)

In order to show that I is the invariant of the loop:

Line 7. b := b� 1

fy + a(b � 1) = AB ^ (b� 1) � 0gb := b� 1
fy + ab = AB ^ b � 0g Assignment axiom

Line 6. y := y + a

fy + a + a(b� 1) = AB ^ b� 1 � 0gy := y + a
fy + a(b � 1) = AB ^ b� 1 � 0g Assign: axiom

y + ab = AB) y + a+ a(b� 1) = AB Theorem

y + ab = AB) (y + a) + a(b� 1) = AB;
fy + a + a(b� 1) = AB ^ b� 1 � 0gy := y + a
fy + a(b � 1) = AB ^ b� 1 � 0g

fy + ab = AB ^ b� 1 � 0gy := y + a
fy + a(b � 1) = AB ^ b� 1 � 0g Consequence

Combining lines 6-7 using Rule of Composition.

fy + ab = AB ^ b� 1 � 0gy := y + afy + a(b� 1) = AB ^ b� 1 � 0g;
fy + a(b� 1) = AB ^ b� 1 � 0gb := b� 1fy + ab = AB ^ b � 0g

fy + ab = AB ^ b� 1 � 0gy := y + a; b := b� 1fy + ab = AB ^ b � 0g

We get the loop invariant as follows:

I ^X �
(y + ab = AB) ^ (b � 0) ^ (b > 0))
(y + ab = AB) ^ (b > 0))
(y + ab = AB) ^ b� 1 � 0

The Axiomatic Approach 41

By the rule of consequence we get:

fy + ab = AB ^ b > 0gy := y + a; b := b� 1fy + ab = AB ^ b � 0g

The above is just fI^Xglines 6�7fIg. Therefore we can use our while
axiom:

fy + ab = AB ^ b > 0gy := y + a; b := b� 1fy + ab = AB ^ b � 0g
fy + ab = AB ^ b � 0gwhile � � � fy + ab = AB ^ b � 0 ^ :b > 0g

We have already shown that this results in y = AB.

We finish up by going backwards through the initial assignment show-
ing that the program’s precondition yields this invariant:

f0 + ab = AB ^ b � 0gy := 0fy + ab = AB ^ b � 0g Line 4
f0 + aB = AB ^B � 0gb := Bf0 + ab = AB ^ b � 0g Line 3

f0 +AB = AB ^ (B � 0)ga := Af0 + aB = AB ^B � 0g Line 2

Since B � 0) 0 + AB = AB ^B � 0 we get by consequence:

fB � 0ga := Af0 + aB = AB ^B � 0g

Combining lines 2-4 by the rule of composition, we complete the proof:

fB � 0gMULT(A;B)fy = ABg

Termination

We have only shown that if the program terminates, then it gives us
the desired answer. We must also show termination.

1. Let property P be b > 0. P is obviously true in loop.

2. The only change to b in loop is b := b � 1. So P is decremented in
loop.

Since both termination properties are true, the loop must terminate,
and we have shown total correctness of the program.

42 Software Specifications

1.4. Another Detailed Example: Fast Exponentiation

Consider the following program to find exponents:

fn � 0 ^ x 6= 0g
PROGRAM � f

k := n;
y := 1;
z := x;
while k 6= 0 do

if odd(k)
then k := k � 1; y := y � z
else k := k=2; z := z � zg

fy = xng

(As in the previous example, x =
(
x and n =

(
n .) First we identify the

invariant. Since k is going down towards zero, we might try something
like y = xn�k^k � 0^x 6= 0, but this isn’t invariant. A better invariant
turns out to be P � yzk = xn ^ k � 0 ^ x 6= 0.

To establish the invariant, we make three applications of our axiom of
assignment:

fyxk = xn ^ k � 0 ^ x 6= 0| {z }
�P 0

gz := xfPg

f1xk = xn ^ k � 0 ^ x 6= 0| {z }
�P 00

gy := 1fP 0g

f1xn = xn ^ n � 0 ^ x 6= 0| {z }
�P 000

gk := nfP 00g

We then use these statements in rules of composition:

fP 00gy := 1fP 0g; fP 0gz := xfPg
fP 00gy := 1; z := xfPg

fP 000gk := nfP 00g; fP 00gy := 1; z := xfPg

fP 000gk := n; y := 1; z := xfPg

Now, since

P 000 � (xn = xn ^ n � 0 ^ x 6= 0) � (n � 0 ^ x 6= 0)

The Axiomatic Approach 43

which is our input condition, then invoking a rule of consequence will
establish our invariant.

Next we verify that the loop invariant is invariant. By use of axiom of
assignment, we know

fy � (z � z)k = xn ^ k � 0 ^ x 6= 0| {z }
�E0

gz := z � zfPg

and

fy � (z2)
k=2

= xn ^ k=2 � 0 ^ x 6= 0| {z }
�E00

gk := k=2fE0g

We can compose these two expressions by

fE00gk := k=2fE0g; fE0gz := z � zfPg

fE00gk := k=2; z := z � zfPg

Likewise, by assignment we know

fy � z � zk = xn ^ k � 0 ^ x 6= 0| {z }
�T 0

gy := y � zfPg

and

fy � z � zk�1 = xn ^ k � 1 � 0 ^ x 6= 0| {z }
�T 00

gk := k � 1fT 0g

so these in turn can be composed by

fT 00gk := k � 1fT 0g; fT 0gy := y � zfPg

fT 00gk := k � 1; y := y � zfPg

Next, since a: y � zk = xn ^ x 6= 0) y � z � zk�1 = xn

b: k � 0 ^ k 6= 0) k � 1 � 0
c: x 6= 0) x 6= 0

we can apply the rule of consequence as follows:

44 Software Specifications

P ^ k 6= 0 ^ odd(k)) T 00; fT 00gk := k � 1; y := y � zfPg

fP ^ k 6= 0 ^ odd(k)gk := k � 1; y := y � zfPg

Likewise, since
a: y � zk = xn ^ x 6= 0 ^: odd(k)) y � (z2)

k=2
= xn

b: k � 0 ^ k 6= 0 ^ : odd(k)) k=2 � 0
c: x 6= 0) x2 6= 0

we can apply a rule of consequence by:

P ^ k 6= 0 ^ : odd(k)) E00; fE00gk := k=2; z := z � zfPg
fP ^ k 6= 0 ^ : odd(k)g k := k=2; z := z � z fPg

This allows us to apply our if rule of inference

fP ^ k 6= 0 ^ odd(k)gk := k � 1; y := y � zfPg;
fP ^ k 6= 0 ^ : odd(k)gk := k=2; z := z � zfPg

fP ^ k 6= 0gif odd(k) then � � � else � � � fPg

followed by our while rule of inference

fP ^ k 6= 0gif odd(k) then � � � else � � � fPg

fPgwhile k 6= 0 do � � � fP ^ k = 0g

Now we compose the loop with its initialization:

fn � 0 ^ x 6= 0gk := n; y := 1; z := xfPg;
fPgwhile k 6= 0 do � � � fP ^ k = 0g

fn � 0 ^ x 6= 0gk := n; y := 1; z := x; while k 6= 0 do � � � fP ^ k = 0g

Finally, we show that the postcondition is a consequence of our input:

fn � 0 ^ x 6= 0gk := n; y := 1; z :=; while k 6= 0 do � � �
fP ^ k = 0g; P ^ k = 0) y = xn

fn � 0 ^ x 6= 0gk := n; y := 1; z := x; while k 6= do � � � fy = xng

The Axiomatic Approach 45

1.5. Yet Another Detailed Example: Slow Multiplication

Consider the following (relatively silly) program to perform multiplica-
tion:

PROGRAM � f
s := 0;
while x 6= 0 do

t := 0
while t 6= y do

s := s + 1;
t := t+ 1;

x := x� 1g

The desired output condition is s =
(
x
(
y . In this proof, it is convenient to

use the following definitions, corresponding to the two loop invariants:

P
4
= s = (

(
x � x)

(
y ^ y =

(
y

Q
4
= s = (

(
x � x)

(
y + t ^ y =

(
y

Starting with the innermost while statement, we have the following
expressions by use of the axiom of assignment:

fQt
t+1gt := t+ 1fQg

fQt
t+1

s
s+1gs := s + 1fQt

t+1g

By composition of the above lines we infer:

fQt
t+1

s
s+1gs := s + 1; t := t + 1fQg

Next, we observe that

Qt
t+1

s
s+1 � s + 1 = (

(
x � x)

(
y + t+ 1 ^ y =

(
y

� s = (
(
x � x)

(
y + t ^ y =

(
y

� Q

and therefore we trivially know that Q ^ t 6= y) Qtt+1
s
s+1, which in

turn allows us to apply a rule of consequence to infer

46 Software Specifications

Q ^ t 6= y) Qt
t+1

s
s+1 ; fQ

t
t+1

s
s+1gs := s + 1; t := t+ 1fQg

fQ ^ t 6= ygs := s + 1; t := t + 1fQg

Our while inference rule then allows us

fQ^ t 6= ygs := s+ 1; t := t+ 1fQg
fQgwhile t 6= y do � � � fQ ^ t = yg

Next, our axiom of assignment provides that

fP x
x�1gx := x� 1fPg

so the rule of consequence implies that

Q ^ t = y) P x
x�1; fP

x
x�1gx := x� 1fPg

fQ ^ t = ygx := x� 1fPg

since

Q ^ t = y � s = (
(
x � x)

(
y + t ^ y =

(
y ^ t = y

P x
x�1 � s = (

(
x � (x� 1))

(
y ^ y =

(
y

� s = (
(
x � x)

(
y +

(
y ^ y =

(
y

and
a: y =

(
y) y =

(
y .

b: s = (
(
x � x)

(
y + t ^ t = y ^ y =

(
y) s = (

(
x � x)

(
y +

(
y .

Hence we may compose this expression with our while loop by:

fQgwhile t 6= y do � � � fQ ^ t = yg; fQ ^ t = ygx := x� 1fPg
fQgwhile t 6= y do � � � ;x := x� 1fPg

By assignment we know fQt0gt := 0fQg, so this can be composed with
the previous expression yielding:

fQt
0gt := 0; while t 6= y do � � � ;x := x� 1fPg

The Axiomatic Approach 47

Since Qt
0 � s = (

(
x �x)

(
y ^y =

(
y and P) Qt

0, the preceding expression
can be used in a rule of consequence to infer

fP ^ x 6= 0gt := 0; while t 6= y do � � � ;x := x� 1fPg

which can then be immediately used in another application of our while
rule of inference yielding:

fPgwhile x 6= 0 do � � � fP ^ x = 0g

This expression together with s = (
(
x � x)

(
y ^ y =

(
y ^ x = 0) s =

(
x
(
y

imply

fPgwhile x 6= 0 do � � � fs =
(
x
(
y g

due to our rule of consequence. Finally, moving into the initialization
part of our program, assignment gives us:

fP s
0 gs := 0fPg

then composed with the while body by

fP s
0 gs := 0fPg; fPgwhile x 6= 0 do � � � fs =

(
x
(
y g

fP s
0 gs := 0; while x 6= 0 do � � � fs =

(
x
(
y g

At last, since Ps
0 � 0 = (

(
x �

(
x)

(
y ^

(
y =

(
y , we know by rule of conse-

quence that

true) P s
0 ; fP

s
0 gs := 0; while � � � fs =

(
x
(
y g

ftrueg PROGRAM fs =
(
x
(
y g

2. CHOOSING INVARIANTS

There are clearly two ‘tough’ problems lurking within this axiomatic
approach to proving partial correctness, and these are

48 Software Specifications

� writing a “reasonable” target specification for your program, and

� identifying (i.e. guessing) the invariant for use of our while loop
inference rule.

For the most part, the first of these above problems is beyond what
we have traditionally dealt with in this course, and has been relegated
to courses in design and software engineering (if at all). The second
of these problems is what stops us from automating the proofs in ax-
iomatic methods.

So the burden of dealing with invariants is shifted to the human prob-
lem solver. There are a few points that can partially ease this burden for
us. First, we can clearly identify the loop testB from simple inspection.
Likewise we know (by the “backwards reasoning” already illustrated
in earlier examples here) what assertion will be needed right after ex-
ecution of the while loop. One part of our invariant, then, can be
suggested by “factoring out” the :B from this assertion. For instance,
if by reasoning back we determine that the output condition for the
loop must be

O
4
= x � 0 ^ 0 � r < y ^ x = qy + r

and if our loop test is B � r � y, then it follows from our understanding
of the inference rule that part of our invariant must be “O �:B,” that
is,

x � 0 ^ 0 � r ^ x = qy + r

After coming up with some assertion I, then a check on the proposed
invariant that I and the negated loop condition are strong enough to
prove the output assertion from the loop. If I ^ :B cannot give you
the next desired assertion, then there is little reason to spend time
insuring that I ^B maintain invariance through execution of the loop
body.

3. ARRAY ASSIGNMENT

Consider a use of our existing axiom of assignment as in the expression
below:

The Axiomatic Approach 49

f?gx[i] := yfx[j] = zg

What do we need before an assignment to an array element to guarantee
the given equality after the assignment? If the expression only uses
array entries in the right-hand side of the assignment, then our old
rule still works with a problem. However, we need an inference rule to
handle when the target of an assignment is an array value.

As mentioned in the introductory chapter, the key is to consider array
assignments as operations which change the value of an entire array
rather than a single element. We will consider the entire set of values
that every element of an array has, and view an array assignment as
a function which transforms this set of values into a new set with a
specific member of that set altered.

x[i] := y assigns to x the function like the old value of x except that it
maps i to y. That is,

�(x; i; y)[j]
4
=

�
y, when j = i
x[j], when j 6= i

Hence, we can discuss and manipulate the different “states” attained
by our array during a program execution simply by choosing the appro-
priate function name. Therefore, our new axiom schema is

fP x
�(x;i;y)gx[i] := yfPg

We will later see (in Chapter 6) that this axiom is just the denotational
semantics definition of assignment. Below are examples of the new
“function” names that can arise to represent different array states due
to assignment:

f�(x; k; 7)[4] = 4 ^ �(x; k; 7)[y] = 5gx[k] := 7fx[4] = 4 ^ x[y] = 5g
f�(x; k; k� 1)[5] = 5gx[k] := k � 1fx[5] = 5g
f�(�(x; j; j + 1); k; k� 1)[5] = 5gx[j] := j + 1f�(x; k; k� 1)[5] = 5g

We can use this new axiom with our previous rules of inference to prove
properties of programs containing arrays, such as:

50 Software Specifications

f�(x; k; 7)[1] = 7gx[k] := 7fx[1] = 7g

f�(x; 1; 7)[1] = 7gk := 1f�(x; k; 7)[1] = 7g

true) �(x; 1; 7)[1] = 7

ftrueg k := 1 f�(x; k; 7)[1] = 7g; f�(x; k; 7)[1] = 7gx[k] := 7fx[1] = 7g
ftrueg k := 1;x[k] := 7fx[1] = 7g

3.1. Example: Shifting Values in an Array

Consider the following program (adapted from [53]) for shifting the
values in an array one element to the left:

PROGRAM � f
k := a;
while k < b do

k := k + 1;
x[k� 1] := x[k]g

For this program, the input condition is fa � b ^ x =
(
xg, and our

desired output assertion is f8i; a � i < b; x[i] =
(
x [i+ 1]g.

First we identify the invariant as being

I
4
= (a � k � b) ^ (8i; a � i < k; x[i] =

(
x [i+ 1])

^(8i; k � i � b; x[i] =
(
x [i])

Our input assertion trivially implies

(a � a � b) ^ (8i; a � i < a; x[i] =
(
x [i+ 1]) ^ (x =

(
x)

since the first clause contains an additional equality, the third clause is
accepted without change, and the second clause is true vacuously and
can hence be added in conjunction.

Since we have

f(a � a � b) ^ (8i; a � i < a; x[i] =
(
x [i+ 1]) ^ (x =

(
x)gk := afIg

The Axiomatic Approach 51

due to the axiom of assignment, we can then use a rule of consequence
to infer that

f(a � b) ^ (x =
(
x)g k := a fIg

Hence we have established the invariant.

Our next step is to show that the loop body maintains I. When Q is
defined by

Q
4
= (a � k � b) ^ (8i; a � i < k; �(x; k� 1; x[k])[i] =

(
x [i+ 1])

^(8i; k � i � b; �(x; k� 1; x[k])[i] =
(
x [i])

then by the array axiom of assignment, we know

fQg x[k� 1] := x[k] fIg

By a similar use of the array axiom of assignment,

f(a � k + 1 � b) ^

(8i; a � i < k + 1; �(x; k+ 1 � 1; x[k+ 1])[i] =
(
x [i+ 1])^

(8i; k + 1 � i � b; �(x; k+ 1 � 1; x[k+ 1])[i] =
(
x [i])g

k := k + 1 fQg

By simple evaluations, the antecedent in the above line is shown to be
equivalent to

(a � k + 1 ^ k < b) ^ (8i; a � i � k; �(x; k; x[k+ 1])[i] =
(
x [i+ 1])

^ (8i; k < i � b; �(x; k; x[k+ 1])[i] =
(
x [i]) � P

and therefore, due to a rule of consequence, we can infer that fPgk :=
k + 1fQg. We now apply the above lines in a rule of composition, by

fPgk := k + 1fQg; fQgx[k� 1] := x[k]fIg
fPgk := k + 1; x[k� 1] := x[k]fIg

In order for us to apply our while inference rule later on, we will need
to show how our expression P “matches” the pattern I ^ B needed in
the rule. To do this, we need the rule of consequence that will show

52 Software Specifications

(I ^B)) P; fPgk := k + 1; x[k� 1] := x[k]fIg

fI ^Bgk := k + 1;x[k� 1] := x[k]fIg

Clearly, B must be k < b. Now we will consider each of the clauses of P
in turn:

1. We know a � k � b from I and also k < b from B, hence (a �
k + 1 ^ k < b) in P .

2. The expression 8i; a � i � k; �(x; k; x[k + 1])[i] =
(
x [i + 1] can be

simplified using the definition of �. If i 6= k, the expression simplifies
to 8i; a � i < k; x[i] =

(
x [i+ 1]. If i = k, the expression simplifies to

x[k+ 1] =
(
x [i+ 1]

or (since i = k) x[k + 1] =
(
x [k + 1]. Thus the original expression is

equivalent to

(8i; a � i < k; x[i] =
(
x [i+ 1]) ^ (x[k+ 1] =

(
x [k+ 1])

The first clause of this conjunction is exactly a clause of I, and the
second clause of this expression directly follows from the last clause of
I.

3. The expression 8i; k < i � b; �(x; k; x[k + 1])[i] =
(
x [i] can also be

simplified because i’s range of values (k+ 1 through b) does not include
k.

(8i; k < i � b; �(x; k; x[k+ 1])[i] =
(
x [i]) � (8i; k < i � b; x[i] =

(
x [i])

The simplified expression is implied by the last clause of I.

Therefore, I ^B) P .

Now that we have the right pattern, we can directly apply our while
axiom, to infer

fIgwhile B do k := k + 1; x[k� 1] := x[k]fI ^:Bg

which in turn can be composed with the initialization part of our pro-
gram yielding

The Axiomatic Approach 53

fa � b ^ x =
(
xg k := a; while � � � fI ^ k � bg

Since I ^ k � b implies that k = b, which in turn implies the first clause
of I is identically 8i; a � i < b; x[i] =

(
x [i + 1], a rule of consequence

allows us to infer that

fa � b ^ x =
(
xgk := a; while � � � f8i; a � i < b; x[i] =

(
x [i+ 1]g

where the consequent is our desired output assertion.

3.2. Detailed Example: Reversing an Array

In all its gory detail, here is a program to reverse an array x[0 : : :n],
along with a proof of partial correctness:

PROGRAM � f
i := 0;
while i � n=2 do

t := x[i];
x[i] := x[n� i];
x[n� i] := t;
i := i+ 1g

Its input condition is n � 1 ^ 8k; 0 � k � n; x[k] =
(
x [k] and the desired

output condition is

8k; 0 � k � n=2; x[k] =
(
x [n� k] ^ x[n� k] =

(
x [k]

The invariant we choose is

I
4
= (i � n=2 + 1) ^

(8k; 0 � k < i; x[k] =
(
x [n� k] ^ x[n� k] =

(
x [k]) ^

(8k; i � k � n� i; x[k] =
(
x [k])

By our axiom of assignment,

f(0 � n=2) ^ (8k; 0 � k < 0; x[k] =
(
x [n� k] ^ x[n� k] =

(
x [k]) ^

(8k; 0 � k � n� 0; x[k] =
(
x [k]gi := 0 fIg

54 Software Specifications

Since the antecedent of this expression is implied by our input condition
(since the input directly implies clauses one and three of this expression
and clause two is satisfied vacuously), we can conclude by a rule of
consequence that

finputg i := 0 fIg

Next we must show that the loop maintains the invariant. By repeated
use of our axioms of assignment, we obtain the following sequence of
expressions:

f(i + 1 � n=2 + 1) ^ (8k; 0 � k < i+ 1; x[k] =
(
x [n� k]^

x[n� k] =
(
x [k])^ (8k; i+ 1 � k � n � i � 1; x[k] =

(
x [k]| {z }

�S

g

i := i + 1fIg

f(i � n=2)^
(8k; 0 � k � i; �(x; n� i; t)[k] =

(
x [n� k]^

�(x; n� i; t)[n� k] =
(
x [k])^

(8k; i+ 1 � k � n � i � 1; �(x; n� i; t)[k] =
(
x [k]| {z }

�R

g x[n� i] := tfSg

f(i � n=2)^
(8k; 0 � k � i; �(�(x; i; x[n� i]); n� i; t)[k] =

(
x [n� k]^

�(�(x; i; x[n� i]); n� i; t)[n� k] =
(
x [k])^

(8k; i+ 1 � k � n � i � 1; �(�(x; i; x[n� i]); n� i; t)[k] =
(
x [k]| {z }

�Q

g

x[i] := x[n� i]fRg

f(i � n=2)^
(8k; 0 � k � i; �(�(x; i; x[n� i]); n� i; x[i])[k] =

(
x [n� k]^

�(�(x; i; x[n� i]); n� i; x[i])[n� k] =
(
x [k])^

(8k; i+ 1 � k � n � i � 1; �(�(x; i; x[n� i]); n� i; x[i])[k] =
(
x [k]| {z }

�P

g

t := x[i]fQg

By repeated use of our inference rule of composition, we thus know that

fPg � � �while body � � � fIg

The Axiomatic Approach 55

However, in order to apply our while rule of inference, we must have
the expression I ^B as the antecedent (where B is i � n=2.) Hence, we
must determine whether I ^ B) P . If so, then a rule of consequence
will give us the desired pattern for application of the while inference
rule. That, in turn, would allow us to compose the while with the
initialization of our program, yielding

finputgPROGRAMfI ^ :Bg

I ^ :B) output because i � n=2 + 1) ^ i > n=2) imply i = n=2 + 1.
Thus applying a rule of consequence would finish off our proof. Hence,
all that remains for us is to verify that I ^B) P .

>From this point on, it will be convenient for us to refer to the three
clauses of our invariant I as I1, I2, and I3. Likewise, P is a conjunction
of three clauses. P ’s first clause is trivially implied by I ^ B, and each
of its remaining two clauses can in turn be broken down to a pair of
conjunctions each. We will consider each of these in turn as enumerated
below to complete the proof.

� Show that I ^B)

8k; 0 � k � i; �(�(x; i; x[n� i]); n� i; x[i])[k] =
(
x [n� k]

By simplifying the expression containing � notation, we obtain three
cases.

1. If k = n�i, the expression simplifies to (8k; 0 � k � i; x[i] =
(
x [n�k]).

Substituting i for n� k, we can also eliminate the quantifier to obtain
x[i] =

(
x [i].

2. If k 6= n�i^k = i, the expression simplifies to (8k; 0 � k � i; x[n�i] =
(
x [n � k]). Substituting i for k, we can also eliminate the quantifier to
obtain x[n� i] =

(
x [n� i].

3. If k 6= n� i ^ k 6= i, the expression simplifies to (8k; 0 � k < i; x[i] =
(
x [n� k]).

Reassembling the parts, we have

(x[i] =
(
x [i]) ^ (x[n� i] =

(
x [n� i]) ^ (8k; 0 � k < i; x[i] =

(
x [n� k])

56 Software Specifications

The first two conjuncts are implied by I3. (Note that I3 is not vacuously
true since i < n=2 and n� i > n=2.) The final conjunct is implied by I2.

� Show that I ^B)

8k; 0 � k � i; �(�(x; i; x[n� i]); n� i; x[i])[n� k] =
(
x [k]

By simplifying, we obtain the following cases.

1. If i = k, the expression simplifies to (8k; 0 � k � i; x[i] =
(
x [k]).

Substituting i for k, we can eliminate the quantifier to obtain x[i] =
(
x [i].

2. If i 6= k^n�k = i, the expression simpifies to (8k; 0 � k � i; x[n�i] =
(
x [k]. Substituting n� i for k, we can eliminate the quantifier to obtain
x[n� i] =

(
x [n� i].

3. If i 6= k^n�k 6= i, the expression simpifies to (8k; 0 � k < i; x[n�k] =
(
x [k]).

Reassembling the parts, we have

(x[i] =
(
x [i]) ^ (x[n� i] =

(
x [n� i]) ^ (8k; 0 � k < i; x[n� k] =

(
x [k])

which is identical to the previous case.

� Show that I ^B)

8k; i+ 1 � k � n � i � 1; �(�(x; i; x[n� i]); n� i; x[i])[k] =
(
x [k]

Since the range of values for k includes neither i nor n�i, the expression
can be simplified to

1. 8k; i+ 1 � k � n� i� 1; x[k] =
(
x [k].

This last expression is implied by I3.

The Axiomatic Approach 57

4. PROCEDURE CALL INFERENCE RULES

We are now in a position to extend the language we are modeling to
include code blocks and procedure calls. As we extend our language, so
must we extend the inference rules available to us for reasoning about
procedures. Our goal is only to prove a procedure’s body once, and then
use that result as needed when that procedure is called throughout the
main code body.

In order to define scope rules and local variables, variable x inside
statement S will be a local variable if it does not affect any pre- or
postcondition around S. That is, if fPgSfQg is proven, and variable x
does not appear in either P or Q, then we can make x a local variable
inside S. By defining Sxy to mean substitute all occurrences of x by
a variable y that does not appear in either P or Q, then we have the
following inference rule for declarations:

Declaration :
fPgSxyfQg

fPg begin new x; S end fQg

A trivial program illustrating the use of this new inference rule is:

PROGRAM � f
x := 1;
begin

new x;
x := 2
y := x+ 1

end

y := x+ yg

We should be able to prove that with precondition true, then a post-
condition is y = 4. We have to show that assignment of 2 to x within
the begin block has no effect on the outer value of x.

1: fx+ y = 4 ^ x = 1gy := y + xfy = 4 ^ x = 1g assignment

This gives the postcondition for the begin block.

In determining the internal begin block, the postcondition involves x.
So we must use a “local” variable different from x. Since it will be

58 Software Specifications

bound to the block we are creating, the name we use has no real effect,
so choose any name different from x. Therefore, choose variable z that
does not appear in either pre- or postcondition for the block to replace
the local variable x. Therefore, the body of the block becomes:

z := 2
y := z + 1

Verifying the block:

1: fx+ z = 3 ^ x = 1gy := z + 1 assignment
fx+ y = 4 ^ x = 1g

2: fx = 1 ^ x = 1gz := 2fx+ z = 3 ^ x = 1g assignment
3: fx = 1gz := 2; y := z + 1fx+ y = 4 ^ x = 1g decl:(x for z)

fx = 1gbegin new x;x := 2; y := x+ 1 end
fx+ y = 4 ^ x = 1g

4: f1 = 1gx := 1fx = 1g assignment
5: f1 = 1gx := 1fx = 1g; composition(4; 3)

fx = 1gbegin : : :endfx+ y = 4 ^ x = 1g
f1 = 1gx := 1;begin � � � fx+ y = 4 ^ x = 1g

6: true) 1 = 1; consequence(5)
f1 = 1gx := 1; begin � � � fx+ y = 4 ^ x = 1g
ftrueg PROGRAM fy = 4 ^ x = 1g

The next rules deal directly with procedure calls. Once a body of code
has been verified separately, our next step will usually be to encapsulate
this body in a procedure, then condition that procedure name for use
in the caller’s context. Conditioning a call for use in a main program
body is itself a two step activity: first the actual parameter names
must be installed, and then the assertions which describe procedure’s
behavior must be adapted for use in the caller’s context.

4.1. Invocation

If we can show that fPgSfQg then we should be able to replace S by
a procedure ! containing S. The problem is the arguments to ! may
contain variables that appear in P and Q.

Our rule of invocation, wherein we can capture a code body as a
procedure, is

The Axiomatic Approach 59

Invocation :
!(x) : (v) procedure S; fPgSfQg

fPg call !(x) : (v) fQg

where x and v represent lists of nonlocal variables which can change
and which do not change in the body of code S, respectively. Note that
these do not directly correspond to our usual notion of “by reference”
versus “by value” parameters. The key difference is that we distin-
guish here between parameters based on whether they change in the
body of the code, as opposed to whether the parameter would have
been changed after exiting from the body and returning to the caller.
Furthermore, we explicitly disallow the body S from ever referencing
a nonlocal variable (hence all program variables which are used must
appear in either x or v.) Informally, we would read this rule as “If ! is a
procedure whose body is implemented by S, and if we know executing
S yields Q from P , then we can infer that calling ! from state P will
yield Q.”

4.2. Substitution

Next is a rule of substitution for obtaining an expression involving
actual (instead of formal) parameters in a procedure call. We would
like a simple rule like the following:

Almost substitution :
fPg call !(x) : (v) fQg

fP x
a
v
eg call !(a) : (e) fQx

a
v
eg

where x and v again represent the lists of formal parameters which
change and do not change, respectively; and a and e represent the
actual parameters in the call.

It seems like we should simply be able to replace x and v by a and e
everywhere in P , S and Q and have substitution work. Unfortunately,
the use of aliases – multiple names for the same object – prevents such
a simple substitution rule. Consider the procedure:

p(x) : (y) procedure � f
precondition true
postcondition x = y + 1
x := y + 1;
g

60 Software Specifications

and the invocation call p(a) : (a). Our proposed substitution rule allows
us to conclude a = a + 1! Our problem is that we have aliased a to x
and a to y in the call statement. To reduce aliasing problems, we
forbid duplicate identifiers from appearing in the list of actual variable
parameters, and the same identifier from appearing in both actual
parameter lists.

Unfortunately, this simple restriction does not eliminate aliasing prob-
lems. The pre- and post-conditions may contain assertions about non-
local variables. Additional precautions are necessary if the non-local
variables appear as actual parameters. Consider the following pro-
gram:

PROGRAM � f
p(a) : (b; c) procedure � f

precondition b = d ^ c > 0
postcondition a = b � c ^ a < d
a := b� cg

e := d;
f := 1;
call p(d) : (e; f)g

With precondition true, we can prove the postcondition d = e�f^d < d!
First show that the procedure body meets its specifications by starting
with our axiom of assignment:

fb� c = b� c ^ (b� c) < dga := b� cfa = b� c ^ a < dg

Our rule of consequence shows

b = d ^ c > 0) b� c < d; fb� c < dga := b� cfa = b� c ^ a < dg
fb = d ^ c > 0ga := b� cfa = b� c ^ a < dg

Now apply the rule of invocation to obtain:

fb = d ^ c > 0gcall p(a) : (b; c)fa = b� c ^ a < dg

Next we apply our “simple” rule of substitution, substituting d for a, e
for b and f for c to obtain:

The Axiomatic Approach 61

fe = d ^ f > 0gcall p(d) : (e; f)fd = e � f ^ d < dg

We could then use assignment twice for:

fe = d ^ 1 > 0gf := 1fe = d ^ f > 0g
fd = dge := dfe = dg

Then composition for:

ftrueg e := d; f := 1fe = d ^ f > 0g

then

ftrueg e := d; f := 1; call � � � fd = e� f ^ d < dg

which is clearly a result we do not desire. Of course, the problem is in
the clash between the actual parameter d in the main program’s call
to p and the variable d as a “changeable” parameter in the procedure
body. The error is in using too simple a rule of substitution.

The corrected rule of substitution is:

Substitution :
fPg call !(x) : (v) fQg

fP k
k0

x
a
v
eg call !(a) : (e) fQk

k0

x
a
v
eg

where x and v again represent the lists of formal parameters which
change and do not change, respectively; a and e represent the actual
parameters in the call; and the lists k and k0 have the following special
interpretation: k is a list of all symbols which are free in P and Q
but do not appear in the procedure interface, and which furthermore
correspond to symbols appearing in either a or e. This list is thus
obtained by first enumerating all free variables in P and Q, crossing
out those appearing in either x or v, and then crossing out those that do
not appear in either a or e. Any of these symbols k which then appear
in P or Q must then be replaced with completely new symbols k0. It
is essential that this substitution be performed first in applying this
substitution rule.

Returning to our previous example, the rule of substitution identifies
the variable d as being a member of this list k and we introduce a

62 Software Specifications

new variable d0 in its place. Hence, at the point where substitution is
applied, we should first obtain the expression

fb = d0 ^ c > 0gcall p(a) : (b; c)fa = b� c ^ a < d0g

and only then apply our simple rule of substitution to obtain

fe = d0 ^ f > 0gcall p(d) : (e; f)fd = e � f ^ d < d0g

We would then only be able to obtain the global postcondition

d = e � f ^ d < d0

which is not nearly as unsettling a result.

4.3. Adaptation

Once we have an expression for procedure calls using the actual pa-
rameters, we are ready to take any assertions used to describe the
procedure and adapt them to the context of the call. What we want is
a rule similar to the previous rule of consequence, as in the following
incorrect rule:

Improper consequence :
fPgcall !(a) : (e) fRg; P ^ R) Q

fPgcall !(a) : (e) fQg

Why can’t we use such a rule? The reason is that we only know the
pre- and postcondition to the call to !, we do not know the details of
!. It is possible that there are changes to the parameter a or to other
free variables within P and Q. These side effects make the above an
invalid rule of inference.

Instead we need a more complex rule of adaptation, given as:

Adaptation :
fRg call !(a) : (e) fSg

f9k (R ^ 8a(S) T))gcall !(a) : (e) fTg

The Axiomatic Approach 63

where k is the list of all variables free in R and S but not occurring
in a, e, or T . While the motivation for why this rule appears as it
does is obscure at first, what we are saying is that there must be some
assignment to the free variables of R and S (i.e., k) which makes a true
precondition R to the call of !, such that for any possible alteration
within ! to the parameter a, S will still imply T . If so, then we can use
our “rule of consequence” above to produce T as a postcondition.

In order to better understand the role of the axioms to represent pro-
cedure calls, the following examples are presented.

Universal quanti�cation in adaptation

The following example illustrates the need for universal quantification
of parameters whose values may vary. Consider the following proce-
dure p:

p(x; y) : () procedure � f
precondition x = 3 ^ y = 4
postcondition x � y = 12
int t;
t := x;
x := y;
y := t;
g

Suppose we want to show:

fa = 3 ^ b = 4gcall p(a; b) : ()fa � b = 12 ^ a < bg

After using invocation and substitution, we can conclude:

fa = 3 ^ b = 4gcall p(a; b) : ()fa � b = 12g

Using the improper rule of consequence, we could combine this result
with a proof of the implication:

(a = 3 ^ b = 4 ^ a � b = 12)) (a � b = 12 ^ a < b)

to achieve our goal.

However, using adaptation, the results of invocation and substitution
only permit us to conclude:

64 Software Specifications

(a = 3 ^ b = 4) ^ (8a; b(a � b = 12)) (a � b = 12 ^ a < b))
call p(a; b) : ()fa � b = 12 ^ a < bg

Since any quantified variable can be renamed, we could rewrite the
conclusion as:

(a = 3 ^ b = 4) ^ (8m;n(m � n = 12)) (m � n = 12 ^ m < n))
call p(a; b) : ()fa � b = 12 ^ a < bg

Thus, it is clear that assertions about values of variable parameters
before a call (e.g., a = 3 ^ b = 4) cannot be used to prove assertions
about their values after the call (e.g., m < n).

Existential quanti�cation in adaptation

Consider the trivial program

fx = x0gx := x+ 1fx = x0 + 1g

with the pre- and postconditions as given. We might elect to encapsu-
late this fragment into a procedure (call it !(x) : ()) and try to prove
the program

ftrueg z := 1; call !(z) : ()fz = 2g

After proving the body of the procedure using assignment, we use in-
vocation to conclude:

fx = x0gx := x+ 1fx = x0 + 1g
fx = x0g call !(x) : ()fx = x0 + 1g

Then using our rule of substitution, we can obtain:

fx = x0g call !(x) : ()fx = x0 + 1g
fz = x0g call !(z) : ()fz = x0 + 1g

Using an adaptation rule without existentally quantifying x’ we obtain:

The Axiomatic Approach 65

fz = x0g call !(z) : ()fz = x0 + 1g
f(z = x0 ^ 8z(z = x0 + 1) z = 2))g call !(z) : ()fz = 2g

Now when we use the assignment axiom, we have:

f1 = x0^8z(z = x0+1) z = 2))gz := 1f(z = x0^8z(z = x0+1) z = 2))g

or simply:

f1 = x0g z := 1 f(z = x0 ^ 8z(z = x0 + 1) z = 2))g

Unfortunately, we cannot show (true) 1 = x0) so that we can apply a
rule of consequence to conclude

ftrueg z := 1 f(z = x0 ^ 8z(z = x0 + 1) z = 2))g

However, had we used the existential quantifier in adaptation, we
would have concluded:

fz = x0g call !(z) : ()fz = x0 + 1g
f9x0(z = x0 ^ 8z(z = x0 + 1) z = 2))g call !(z) : ()fz = 2g

The result of the adaptation axiom asks whether there is any assign-
ment to the free variables of the pre- and postconditions (e.g., 1 in this
case) such that no matter what happens to z inside !, the postcondition
will imply the derived result. If our program’s input assertion implies
this, then we can always get the derived answer. Or in other words, we
want to be able to prove:

z = 1) 9x0(z = x0 ^ 8z(z = x0 + 1) z = 2))

But clearly this is the case, since we can satisfy the implication by
selecting x0 = 1 in the existential quantifier.

Since this last statement is just a logical implication, we can apply our
normal rule of consequence to conclude:

fz = 1g call !(z) : ()fz = 2g

Now the assignment axiom yields:

f1 = 1g z := 1 fz = 1g

and the proof can be completed using composition.

66 Software Specifications

4.4. Detailed Example: Simple Sums

The following is a detailed example (adapted from [61]) of how our
inference rules for procedure call and parameters can be employed.

PROGRAM � f
procedure e(x) : (y; z) � f

precondition � z � 0 ^ y 6= 0
postcondition � x = yz

new i;
i := 0;
x := 1;
while i < z do

i := i + 1;
x := xyg

new a; p; s; n;
a := 1;
n := 3;
s := 0;
while a � m do

call e(p) : (a; n);
s := s+ p;
a := a+ 1g

For this program, the input condition ism � 0 and the output condition
is s =

Pm
i=1 i

3.

Procedure body

Proof: We begin by showing that the procedure e satisfies its specifi-
cation, that is, fy 6= 0^ z � 0gbody of efx = yzg. The loop invariant for
the while statement in the procedure body is y 6= 0^x = yi ^0 � i � z.

First, we verify that the invariant holds before execution of the while
statement. Twice using our axiom of assignment we see that

f1 = yi ^ 0 � i � zgx := 1fx = yi ^ 0 � i � zg
f1 = y0 ^ 0 � 0 � zgi := 0f1 = yi ^ 0 � i � zg

then these can be composed to yield

The Axiomatic Approach 67

f1 = y0 ^ 0 � 0 � zgi := 0;x := 1fx = yi ^ 0 � i � zg

Since y 6= 0 ^ z � 0) 1 = y0 ^ 0 � 0 � z, then a rule of consequence
assures us that

fy 6= 0 ^ z � 0gi := 0;x := 1fx = yi ^ 0 � i � zg

Next we verify that the invariant is maintained by the loop. Twice
applying our axiom of assignment, we find:

fxy = yi ^ 0 � i � zgx := xyfx = yi ^ 0 � i � zg
fxy = yi+1 ^ 0 � i + 1 � zgi := i+ 1fxy = yi ^ 0 � i � zg

hence, by composition we know

fxy = yi+1 ^ 0 � i+ 1 � zgi := i + 1;x := xyfx = yi ^ 0 � i � zg

Our while loop conditional is clearly i < z, and since x = yi ^ 0 � i �
z ^ i < z) xy = yi+1 ^ 0 � i+ 1 � z, a rule of consequence implies that

fx = yi ^ 0 � i � z ^ i < zgi := i + 1;x := xyfx = yi ^ 0 � i � zg

This expression verifies that the invariant is maintained, and further
is clearly in the right form to apply our while rule of inference. Hence
we know

fx = yi ^ 0 � i � zgwhile � � � fx = yi ^ 0 � i � z ^ :(i < z)g

Now, since i � z^ i � z) i = z, then x = yi and i = z imply that x = yz

which is our desired output condition. All that now remains is for us to
compose the initialization part of our program with the loop body, by

fy 6= 0 ^ z � 0gi := 0;x := 1fx = yi ^ 0 � i � zg;
fx = yi ^ 0 � i � zgwhile � � � fx = yzg

fy 6= 0 ^ z � 0gprocedurefx = yzg

68 Software Specifications

Main program proof

The loop invariant is

I
4
= s =

Pa�1
i=1 i

n ^ 1 � a � m+ 1 ^ n = 3

We are able to establish that it holds after the program initialization
part by first utilizing our axiom of assignment three times:

f0 =
a�1X
i=1

in ^ 1 � a � m + 1 ^ n = 3

| {z }
�P

gs := 0fIg

f0 =
a�1X
i=1

i3 ^ 1 � a � m + 1 ^ 3 = 3

| {z }
�P 0

gn := 3fPg

f0 =
1�1X
i=1

i3 ^ 1 � 1 � m + 1

| {z }
�P 00

ga := 1fP 0g

Hence, the obvious composition of the above expressions yields

fP 00ga := 1;n := 3; s := 0fIg

Now since m � 0) m + 1 � 1 and it is vacuously true that the sum in
P 00 is zero, application of our rule of consequence implies that

fm � 0ga := 1;n := 3; s := 0fIg

We must now verify that the invariant is maintained by the while loop.
By the axiom of assignment, we know each of

The Axiomatic Approach 69

fs =
a+1�1X
i=1

in ^ 1 � a+ 1 � m + 1 ^ n = 3

| {z }
�Q

ga := a+ 1fIg

fs+ p =
aX
i=1

in ^ 1 � a+ 1 � m+ 1 ^ n = 3

| {z }
�Q0

gs := s + pfQg

Hence the composition of these expressions allows us to infer

fQ0gs := s + p; a := a + 1fIg

We are now in a position to move our line of reasoning through the
procedure call. Previously, we verified the body of our procedure e.
Hence, we may use our rule of invocation as follows:

fz � 0 ^ y 6= 0g body of e fx = yzg

fz � 0 ^ y 6= 0g call e(x) : (y; z) fx = yzg

Next, we can condition this expression to suit the actual call by our
rule of substitution:

fz � 0 ^ y 6= 0g call e(x) : (y; z) fx = yzg
fn � 0 ^ a 6= 0g call e(p) : (a; n) fp = ang

Finally, we must adapt the assertions in this procedure call to this
program’s context:

fn � 0 ^ a 6= 0g call e(p) : (a; n) fp = ang

fn � 0 ^ a 6= 0 ^ (8p; p = an) Q0)g call e(p) : (a; n) fQ0g

This can now be composed with the expression describing the remaining
part of this loop, yielding

fn � 0 ^ a 6= 0 ^ (8p; p = an) Q0)gcall e(p) : (a; n) fQ0g;
fQ0gs := s+ p; a := a+ 1fIg

fn � 0 ^ a 6= 0 ^ (8p; p = an) Q0)gcall e(p) : (a; n);
s := s+ p; a := a+ 1fIg

70 Software Specifications

Hence, in order to complete our verification that the invariant is main-
tained by the while loop, we must show that

I ^ a � m) n � 0 ^ a 6= 0 ^ (8p; p = an) Q0)

For if this is the case, then this can be used in a rule of consequence with
the previous expression, showing us that I ^a � mfbody of whilegI. At
this point we claim that the implication is true, defer its proof to the
next section, and complete our current line of reasoning.

Once the invariant is shown to be maintained, then we can directly
apply our while inference rule, yielding

fIgwhile a � m do � � � fI ^ a > mg

This can be composed with the initialization part of our main program,
yielding

fm � 0ga := 1;n := 3; s := 0;while � � � fI ^ a > mg

Since I ^ a > m) s =
Pm

i=1 i
3, which is our desired output condition,

then our rule of consequence implies that

fm � 0gPROGRAMfs =
Pm

i=1 i
3g

Key step

We now return to a key step, showing that

I ^ a � m) n � 0 ^ a 6= 0 ^ (8p; p = an) Q0)

This can be seen by considering each of the parts of the desired conse-
quent separately, a valid approach since it is a conjunction.

� I ^ a � m) n � 0 ^ a 6= 0 : The invariant forces n = 3 which
guarantees that n � 0, and likewise the invariant guarantees that
1 � a which certainly implies that a 6= 0.

The Axiomatic Approach 71

� I ^ a � m) (8p; p = an) Q0): Since the invariant contains no
occurrences of p, the universal quantifier can be moved further outside
giving us 8p; I ^ a � m) (p = an) Q0). This can be directly rewritten
as

8p; I ^ a � m ^ p = an) s+ p =
Pa

i=1 i
n ^ 1 � a+ 1 � m+ 1 ^ n = 3

(which also includes an expansion of our symbol Q0.) In turn, we know
that each of
a. 1 � a ^ a � m) 1 � a+ 1 � m + 1
b. n = 3) n = 3, and
c. s =

Pa�1
i=1 i

n ^ p = an) s + p =
Pa

i=1 i
n

This verifies our desired implication, and the proof is complete.

Derivation of adaptation

In order to gain more insight as to why this rule of adaptation looks
as it does, we provide another more general rule of inference (one not
even involving procedure calls) and suggest how the earlier rule of
adaptation can follow from it.

Theorem: If code body S modifies only the value of variable x and
fPgSfQg is known, then fP ^ 8x(Q) R)gSfRg.

In order to prove this theorem, it is useful to have an informal under-
standing of “program state,” by which we mean a symbol table listing
all variables used by the program along with the corresponding values.
When running a program, we execute each statement by operating on
the program state to produce a new program state, that is, a symbol
table where one of the entry’s values might have been changed.

Proof: Say we have a state �1 which satisfies P ^ 8x(Q) R). This
means that (a) �1 makes P true, and (b) �1 has the property that no
matter what value you assign to variable x in the �1 state, then the
resulting program state still allows you to infer Q) R. Our objective
is to show that R holds after execution of S; call this new state �2. By
assumption, �2 only differs from �1 at x, and also we know that �2
satisfies Q. Also, since only x could have changed, �2 still allows us to
know Q) R. Hence Q ^ (Q) R) allow us to infer R. 2

72 Software Specifications

It should be clear that we can augment this proof to deal with lists of
variables x, not just single values. Likewise, it should be possible to
specify this proof for the case when our code S is a procedure call in
particular; since procedure calls can only alter the “in-out” parameters,
those are the only symbols we need include in our list x here. All that
remains is to determine where the existential quantifiers come into
play.

4.5. Recursion in Procedure Calls

So far we have not dealt with proofs of a procedure which calls itself
(either directly or indirectly.) In order to do so, however, we require a
strengthened rule of invocation. The existing rule would not allow us
to prove the body of a procedure without knowing that the assertions
surrounding the nested call could be proven, yet we can not verify those
assertions at the call without having first proven the body!

The solution lies with induction: First we will show that the assertions
surrounding a procedure body can be “conditionally” verified if the
assertions at the point of the recursive call are assumed to hold. Then
we will show a “base case” for induction holds as well by verifying the
part of the body that does not contain any recursive call. Together,
these will allow us to infer that the invocation of a recursive procedure
is true by induction. Therefore, we have the Recursive Invocation
rule:

!(x) : (v) procedure S ; fRgcall !(x) : (v)fQg ` fRgSfQg

fRgcall !(x) : (v)fQg

which we read “If ! is a procedure whose body is implemented by S, and
if in addition we know that fRgSfQg is deducible from the assumption3

that fRgcall !(x) : (v)fQg, then we can infer that fRgcall !(x) :
(v)fQg.” In many ways this is analogous to what motivated our devel-
opment of the invariant for while loops, another inductive argument
where we initially had to assume that the assertion I was true in or-
der to show that execution of the body maintained I. Here, instead,
we perform induction based on the state produced by execution of the
entire procedure.

3Note that this is one of the few cases where we need p ` q rather than p) q since we
are assuming that the recursive call does work in order to prove that the body of the call
is consistent with that assumption.

The Axiomatic Approach 73

4.6. Example: Simple Recursion

Consider the following simple, recursive program for obtaining sums
of the form

Pl
i=1 i :

fl � 1g
PROGRAM � f

s(r) : (k)procedure � f
precondition k � 1
postcondition r =

Pk
i=1 i

new t;
if k = 1

then r := 1
else

t := k � 1;
call s(r) : (t);
r := r + kg

call s(t) : (l)g
ft =

Pl
i=1 ig

Proof of procedure body

Proof: Reasoning back through the body of the procedure, we first
account for the base case by starting with an axiom of assignment:

f1 =
Pk

i=1 ig r := 1 fr =
Pk

i=1 ig

Since k = 1) 1 =
Pk

i=1 i then a consequence of our above axiom is

fk = 1g r := 1 fr =
Pk

i=1 ig

Next we account for the inductive step. Using assignment,

fr + k =
Pk

i=1 ig r := r + k fr =
Pk

i=1 ig

Since r =
Pk�1

i=1 i) r + k =
Pk

i=1 i, then a consequence of this is that

fr =
Pk�1

i=1 ig r := r + k fr =
Pk

i=1 ig

74 Software Specifications

By our original rule of invocation, followed immediately by substitution,
we can infer:

fk � 1g call s(r) : (k) fr =
Pk

i=1 ig

ft � 1g call s(r) : (t)f r =
Pt

i=1 ig

Notice that it is directly at this point that we have assumed the validity
of the routine s recursively. Now, we apply our rule of adaptation to
this expression, yielding

ft � 1 ^ 8r(r =
tX

i=1

i) r =
k�1X
i=1

i)

| {z }
�P

g call s(r) : (t) fr =
k�1X
i=1

i

| {z }
�Q

g

Hence we may use composition:

fPg call s(r) : (t) fQg ; fQg r := r + k fr =
Pk

i=1 ig

fPg call s(r) : (t); r := r + k fr =
Pk

i=1 ig

We now use our assignment axiom by

fk� 1 � 1 ^ 8r(r =
Pk�1

i=1 i) r =
Pk�1

i=1 i)g t := k � 1 fPg

which can be composed with our previous expression to yield

fk � 1 � 1 ^ 8r(r =
Pk�1

i=1 i) r =
Pk�1

i=1 i)g
t := k � 1; call s � � � ; r := r + k

fr =
Pk

i=1 ig

Observe that the universally quantified subexpression above is a tau-
tology, hence we obtain:

fk � 1 � 1gt := k � 1; call s � � � ; r := r + kfr =
Pk

i=1 ig

The Axiomatic Approach 75

With trivial uses of rule of consequence, we can condition the above ex-
pressions to match the needs of our “conditional” inference rule, which
we show applied below to join our basis and inductive cases:

fk � 1 ^ k = 1g r := 1 fr =
kX
i=1

ig;

fk � 1 ^ k 6= 1g t := k � 1 � � � fr =
kX
i=1

ig

fk � 1g if k = 1 then � � � fr =
kX
i=1

ig

Hence we can conclude

fk � 1g begin proc body end fr =
Pk

i=1 ig

Proof of main program

By use of our rule of recursive invocation, and since above we showed
that we could deduce the partial correctness of the procedure by induc-
tively assuming the routine’s correctness, then

s(r) : (k) proc proc body ; fk � 1g begin proc body end fr =
Pk

i=1 ig

fk � 1g call s(r) : (k) fr =
Pk

i=1 ig

By substitution, we thus know

fk � 1g call s(r) : (k) fr =
Pk

i=1 ig

fl � 1g call s(t) : (l) ft =
Pl

i=1 ig

which is our desired result.

2

5. EXERCISES

Problem 1. Consider the multiplication problem described in Section
1.3.

76 Software Specifications

P � f
a := A;
b := B;
y := 0;
while b > 0 do

y := y + a
b := b� 1g

fy = A�Bg

1. Show that the precondition fA = 0g also leads to a correct proof of
the program.

2. What do your answers to the above and the previously generated
precondition say about the domain for A and B and for preconditions
and invariants in general?

Problem 2. Consider the program

fa > b > 0g
r := a mod b;
while r > 0 do

a := b;
b := r;
r := a mod b;

fb = gcd(
(
a ;

(

b)g

The postcondition means b is the greatest common divisor of the input
values a and b. Using Hoare techniques, prove the total correctness of
this program.

Problem 3. Consider the following program:

P � f
s := sum;
while s � 10 do

x := s div 10;
y := s � 10 � x;
s := x+ y;

if (s mod 3) = 0 then ans := true

else ans := false g

The Axiomatic Approach 77

A number is divisible by 3 if its digital sum is divisible by 3. The digital
sum is reached by adding together the digits of a number, and repeating
the process until the sum is less than 10. For example, 72 ! 7+2 = 9
which is divisible by 3. But 68 ! 6+8 = 14 ! 1+4 = 5 which is not
divisible by 3. Show that the above program computes the digital sum,
give the pre- and postconditions for this program and demonstrate the
total correctness of this program.

Problem 4. The following program is to determine if the array a[1::l]
contains a palindrome.

P � f
p := true;
i := 1;
while (i < l=2 + 1) ^ p do

if a[i] = a[l � i+ 1]
then i := i+ 1
else p := falseg

Give input and output specifications, and verify the partial correctness
of this program.

Problem 5. Demonstrate the partial correctness of the following pro-
gram:

fn � 1 ^ (8k; 0 � k < n; a[k] � a[k + 1]) ^ a[0] � x < a[n]g
PROGRAM � f

i := 0;
j := n;
while i+ 1 6= j do

h := (i+ j)=2;
if a[h] � x

then i := h
else j := hg

f(a[i] � x < a[i+ 1]) ^ (8k; 0 � k < n; a[k] � a[k+ 1])g

Problem 6. Consider the program in Section 3.1. Change the assign-
ment statement to the following:

78 Software Specifications

x[k] := x[k� 1]

What does the program do? Give the postcondition and demonstrate
the correctness of the program to that postcondition.

Problem 7. Demonstrate the partial correctness of the following pro-
gram:

fn > 0g
PROGRAM � f

k := 0;
x[0] := 1;
while k < n do

k := k + 1;
x[k] := k � x[k � 1]; g

f8i; 0 � i � n; x[i] = i!g

Problem 8. Using Hoare’s method, prove the partial correctness of the
following program fragment:

fN � 0g
I := 1;
while I � N do

if V [I] = E then

if N > 1 then V [I] := V [N];
N := N � 1

else I := I + 1
f8k; 1 � k � N; V [k] 6= Eg

Problem 9. The following code fragment merges two sorted arrays a
and b to produce a new sorted array c. Verify that the elements of c
appear in ascending order.

The Axiomatic Approach 79

k := 0;
i := 1;
j := 1;
while (i � m) and (j � n) do begin

k := k + 1;
if a[i] � b[j] then begin

c[k] := a[i];
i := i+ 1;
end

else begin

c[k] := b[j];
j := j + 1;
end

end

Problem 10. Prove the partial correctness of the following procedure:

f(x > 0 ^ y � 0)g
q(a) : (x; y)procedure � f

if x > y
then a := (y = 0)
else if x = y

then a := true

else i := y � x; q(a) : (x; i)g
fa = (mod(y; x) = 0)g

Problem 11. Consider the program

fn � 1g
z(a) : (i; n)procedure� f

precondition : i � n
postcondition : 8j; i � j � n; a[j] = 0
new m

if i 6= n then
m := i+ 1;
call z(a) : (m;n);

a[i] := 0g
j := 0;
call z(a) : (j; n)
f8i; 1 � i � nja[i] = 0g

80 Software Specifications

Using Hoare techniques and assuming that the array a is everywhere
defined, prove the partial correctness of this program.

Problem 12. Consider the procedure

max(x; a; i) : (n)procedure � f
if n = i then

x := a[i]
else

i := i + 1;
call max(x; a; i) : (n);
i := i � 1;
if a[i] > x then x := a[i]g

Provide reasonable pre- and postconditions to this procedure, and, us-
ing Hoare techniques, verify the partial correctness of this procedure
with respect to those pre- and postconditions.

Problem 13. Use the max procedure and your pre- and postconditions
for it from the previous problem, and provide a precondition which
allows you to prove the partial correctness of the main program:

i := 2
callmax(y; b; i) : (n)

where b is an array of values indexed from 1 through n, and the post-
condition is

y = maximumfb[j] : 1 � j � ng

Problem 14. Consider the procedure

The Axiomatic Approach 81

f1 � i � ng
swap(a; i) : (n)procedure �

begin

new t
t := a[i];
a[i] := a[n� i+ 1];
a[n� i+ 1] := t
end

fa[i] =
(
a [n� i + 1] ^ a[n� i + 1] =

(
a [i]g

Verify the partial correctness of this procedure with respect to the pre-
and postconditions.

Problem 15. The following program reverses the elements of the in-
teger array a[1::n]. As usual, assume the values of n and all array
elements are set before the program begins execution. Write the ap-
propriate pre- and postconditions, and prove the partial correctness of
this program.

procedure shift(var b : array of integer; i : integer);
new j
ffor j := 1 to i do b[j] := b[j + 1]g

PROGRAM � f
i := n� 1;
while i > 0 do

t := a[1];
shift(a; i);
a[i+ 1] := t;
i := i � 1g

Problem 16. Verify the partial correctness of the following program:

82 Software Specifications

fn � 1g
i := 2;
while i � n do

Prime[i] := true;
i := i + 1

i := 2;
while i � n do

j := 2i;
while j � n do

Prime[j] := false;
j := j + i

i := i + 1
f8 2 � i � n(:PRIME[i], 9 2 � j; k � n; i = kj)g

Problem 17. Prove the partial correctness of the following recursive
procedure.

procedurep(var x : integer);
= � pre : x � 0 ^ x = x0; post : x = 2 � x0 � =
begin

if x 6= 0 then begin
x := x� 1;
p(x);
x := x+ 2
end

end;

Problem 18. Write an appropriate precondition and postcondition for
the following recursive procedure. Verify the procedure’s implementa-
tion.

procedure p(var x : t; s; f : integer);
begin

if s � f then begin
x[s] := 0;
p(x; s+ 1; f)

end

end;

The Axiomatic Approach 83

Problem 19. First, write a rule of inference for the repeat: : :while
language construct. Likewise, make one for repeat: : :until. Then
write a rule of inference to describe the semantics of the construct

while B1 do S1 exit B2 ; S2 od
which corresponds to the following flowchart:

�
��

�
��

@
@@

@
@@

B1

�
��

�
��

@
@@

@
@@

B2
- - -

S1
- -

66

?

6

�� S2

- -

P
Q

false

true

true

false

In each case, present an argument that will support your choice of
inference rules.

Problem 20. Consider the language we have modeled using Hoare
techniques so far in class. We now wish to extend this language to
include a return statement within procedures, and of course we will
need a corresponding rule of inference to model this new language
construct.

� Derive an inference rule to model the semantics of a return state-
ment.

� Use the inference rule you developed above to prove the partial cor-
rectness of the following procedure:

ftrueg
p(i) : ()procedure � f

i := 7;
return;
i := 8g

program � f
call p(i) : ()g

fi = 7g

84 Software Specifications

6. SUGGESTED READINGS

The original work on this axiomatic approach is due to Floyd and Hoare,
and entries in the following list ought to be viewed as “classics.”

� R.W. Floyd, “Assigning Meanings to Programs,” Symposium in Ap-
plied Mathematics 19, American Mathematical Society, 1967, pp. 19-
32.

� C.A.R. Hoare, “An Axiomatic Basic for Computer Programming,”
Communications of the ACM, Vol. 12, No. 10, October, 1969, pp. 576-
580, 583.

� C.A.R. Hoare, “Procedures and Parameters, An Axiomatic Approach,”
Symposium on the Semantics of Algorithmic Languages, Springer-
Verlag, New York, 1971, pp. 102-116.

� C.A.R. Hoare and N. Wirth, “An Axiomatic Definition of the Program-
ming Language PASCAL,” Acta Informatica, Vol. 2, 1973, pp. 335-355.

� D.C. Luckham and N. Suzuki, “Verification of Array, Record, and
Pointer Operations in Pascal,” ACM Transactions on Programming
Languages and Systems, Vol. 1, No. 2, October, 1979, pp. 226-244.

Readers will find these classics nicely augmented by these works:

� J.H. Remmers, “A Technique for Developing Loop Invariants,” Infor-
mation Processing Letters, Vol. 18, 1984, pp. 137-139.

� J.C. Reynolds, The Craft of Computer Programming, Prentice-Hall,
Englewood Cliffs, NJ, 1981.

Examples of more recent work that are related to the original work of
Floyd and Hoare (either applying it or extending it) are found in:

� L. Lamport and F.B. Schneider, “The ‘Hoare Logic’ of CSP, and All
That,” ACM Transactions on Programming Languages and Systems,
Vol. 6, No. 2, April 1984, pp. 281-296.

� D. Gries and G. Levin, “Assignment and Procedure Call Proof Rules,”
ACM Transactions on Programming Languages and Systems, Vol. 2,
No. 4, October 1980, pp. 564-579.

Functional Correctness*

Chapter 3

.

Let � be a string representing a source program. For example, a Pascal
program is just the linear string:

PROGRAM main(input; output); � � �END:

We express the mathematical function denoted by program � by a box
notation. � represents the function that computes the same values as
program �.

Although a function is the intuitive model of a specification, often we
simply want one feasible solution out of many possibilities. For exam-
ple, by choosing one optimal strategy among several equivalent ones
(e.g., equivalent optimal moves in a game-playing program), we usually
do not care which solution the program employs. Because of this, we
only need to define a specification as a relation. If r is such a specifica-
tion relation, it is equivalent to a program p by the following correctness
theorem:

Theorem:Program p is correct with respect to specification relation r
if and only if domain(r \ p) = domain(r).

�Parts of this chapter are a revision of an earlier paper [64]. Copyright c1993 by Aca-
demic Press, Inc. Reprinted by permission of Academic Press.

85

86 Software Specifications

In other words, if we take the subset of r by considering those pairs in
r that are also in function p (i.e., r \ p) we have a function. If this
function has the same domain as r, then p includes a pair of values for
each member of relation r and we get a feasible (or correct) implemen-
tation of the specification. In what follows, however, we will use the
simpler case, where we have chosen the more restricted specification
function f instead of the more general relation rwith the corresponding
correctness theorem of f � p .

1. PROGRAM SEMANTICS

A program is a sequence of declarations followed by a sequence of
statements. Every program maps a set of values for every variable
into a new set of values. We pattern the following development on
techniques also used in denotational semantics (which we will discuss
in greater detail in Chapter6). We can define the meaning of such a
program as follows.

id.Id is a primitive set of objects we will call the variables or identifiers
in a program.

value.V alue is a primitive set of values that each member of id can
take. We will assume that value is the set of integers for most of this
discussion, but it can be any discrete set of values.

state.The primitive storage mechanism is the state. If id is a set of
variable names and value is a set of values, a state is a function with
the signature state : id ! value. For every member of set id, we
associate a value in value.

Since a state is a function, it is a set of ordered pairs. Thus for state s
we can discuss (a; b) 2 s, or s : id! value and s(a) = b.

Given state s, if a is a variable in a program, we define a (s) as s(a).

This concept of a state represents the formal model for program storage
(e.g., activation records).

expressions.If expr is an expression, expr is the function that ac-
cesses the current state function and evaluates the expression (i.e.,
“returns its value”). More formally, we state that expr : state ! value.

Functional Correctness 87

We typically can define the expr function via the BNF for the language.
Consider the BNF rule:

< expr >!< expr > + < term > j < term >

If (x; a) and (y; b) represent entries in the state function s representing
variables x and y, then we define:

x+ y (S) =

x (S) + y (S) =

S(x) + S(y) = a+ b

statements.IfP is a statement, then P is a function that maps a state
into a state, that is, each statement maps a set of values for all variables
into a new set of values. If P is a declaration, then the resulting state
includes a (id; value) pair for the newly declared variable. For example,
if s is the state f(x; 1) ; (y; 2); � � �g, then the function y := x when
applied to s results in the state f(x; 1) ; (y; 1)g.

statement execution.It is easy to see the correspondence between
sequential execution and function composition. If p is the sequence
p1; p2; : : :pn of statements, then

p = p1; p2; : : : pn = p1 � p2 � : : : pn = pn : : : p2(p1()) : : :)

All that is needed to complete this definition is the primitive for
each required statement type.

Consider Pascal. The function p for program:

PROGRAM MAIN (INPUT;OUTPUT);BEGIN S1;S2; � � �END:

is given by: PROGRAM MAIN (INPUT;OUTPUT) � S1 � S2 �

: : : � where the signature for PROGRAM : : : is value ! state, for
� it is state! value, and state! state for all other statements. Hence

a program maps a value to a value and is composed of functions that
map states to states. Details of how to handle individual statement
types like assignments, conditionals and iteration are given later.

Developing a program requires several separate activities:

88 Software Specifications

1. Development of a specification that expresses the task to be per-
formed.

2. Refinement of that specification into a formal explicit statement that
captures the intended functionality of the specification; and

3. Development of a program that correctly implements that function-
ality.

Most of this chapter is concerned with the transition between these last
two steps. The transition between steps 1 and 2 is admittedly difficult
and some heuristics will be given.

With this notation, there are three separate activities that can be in-
vestigated:

1. If f is a function and if p is a program, show p = f (i.e., verification).

2. If f is a function, develop program p such that p = f (i.e., program
design). As a practical matter, we only care that f � p since any value
in p and not in f represents a value computed by the program which
is outside of its specifications and not of interest to us.

3. If p is a program, then find a function f such that p = f (i.e.,
reverse engineering). Given a program, determine its specifications.
Some heuristics are given, but the basic method is to “guess” a solution
and show by Rules 1 and 2 above that it is the correct solution.

2. SYMBOLIC EXECUTION

Symbolic execution is an aid in showing functional composition. In
order to show that p = f , symbolically execute program p and show
that the resulting function is the same as f . For example, consider the
sequence:

x := x+ 1;
y := x+ y;
x := y + 1

Since we know that

Functional Correctness 89

x:=x+1; y:=x+y; x:=y+1 = x:=x+1 � y:=x+y � x:=y+1

we can symbolically execute each statement function. We use a trace
table where we write under Part the relevant statement function, and
under each relevant variable the new value that results from that
execution by substituting into the statement function the current value
that each variable has at that point in the computation. This results
in a new function that can transform each variable into its new value.
For the above, we get the trace table:

Part x y
x := x+ 1 x+ 1
y := x+ y (x+ 1) + y
x := y + 1 (x+ 1 + y) + 1

= x+y+2

This states that x is transformed by the function x := x+ y + 2 and

simultaneously y is transformed by y := x+ y + 1 .

The extension of the trace table to handle conditionals (e.g., if state-
ments) requires the use of a condition column. We write the predicate
that must be true at that point in the computation for that execution
path to proceed and develop trace tables for each such path through
the program.

For example, the program sequence

x := x+ y;
if x > y then

x := x� 1

has two possible execution sequences (i.e., x > y and x � y), and two
corresponding traces:

90 Software Specifications

Part Condition x y
x := x+ y x+ y

if x > y (x+ y) > y
x := x� 1 (x+ y) � 1

and

Part Condition x y
x := x+ y x+ y

if x > y (x+ y) � y

We summarize these two tables by saying that the function they repre-
sent is: “if x+y > y, then the function is x := x+ y � 1 and if x+y � y

then the function is x := x+ y .” In the next section we show how to
write this as a conditional assignment function.

3. DESIGN RULES

As given earlier, software development consists of (a) specification de-
sign; (b) formalizing the specification; and (c) developing the source
program. We use a functional notation for (b) that is closely tied to
the eventual source program. This notation includes (a) concurrent
assignment; (b) conditional assignment; and (c) loop verification. This
notation was strongly influenced by the earlier work by McCarthy on
LISP.

3.1. Design of Assignment Statements

Concurrent assignment is defined as simultaneous assignment. The
function: (x; y; z := y; z; x) simultaneously accesses the current values
of variables y, z, and x and stores them, respectively, into variables x,
y, and z. Mathematically, we are stating that the state function that
results will have the same values for all state variables other than x,
y, and z, and that these three will have new values.

Given statement p, showing that p does implement this concurrent
assignment is simply a matter of building its trace table. The more

Functional Correctness 91

interesting problem is how to develop p given some concurrent assign-
ment as its specification. This leads to three design heuristics for
concurrent assignment:

1. All values on the right side of the intended concurrent assignment
(i.e., all values that are needed by a lefthand side variable) must be
computable at each step.

2. At each step, if a variable can be assigned its intended value, do so;
otherwise introduce a temporary variable and assign to it a value that
must be preserved.

3. Stop when all variables on the left side of the intended concurrent
assignment have been assigned their intended values (i.e., finished).

If we “execute” a trace table as we develop each assignment statement,
then we are also verifying that the design works as we wish. Once the
values in the trace table are the values we desire, then we have shown
that the assignment statements we have written do indeed implement
the intended concurrent assignment.

An important point to remember is that the three design rules are
heuristics and not an algorithm. They indicate how to search for a
solution and how to check if the solution is correct. They do not give
the solution. We have not replaced the art of programming by an
implementable methodology to automatically build correct programs
from specifications.

3.2. Design of Conditional Statements

Using the conditional function, we can represent the design of condi-
tional statements as a series of if statements that test each condition
in turn. For example, given the specification:

(b1 ! c1)j(b2 ! c2)j : : : j(bn ! cn)

the program can be written directly as:

if b1 then c1
else if b2 then c2
else if b3 then c3
� � �

92 Software Specifications

If all the bi are false, since the code is everywhere defined, the specifi-
cations are actually a (correct) subset of this source program.

3.3. Veri�cation of Assignment and Conditional Statements

Assume p is the program to be verified and it consists of only if and
assignment statements. There are only a finite number of execution
paths through the program. For each path, compute the condition that
must be true to execute that path and use a trace table to determine
what happens to the variables by executing that given path. Assume
p1; p2; � � � are the conjunctions of all conditions on each execution path,
and a1; a2; � � � are the corresponding concurrent assignments. The func-
tion f that this implements is:

(p1 ! a1)j(p2 ! a2)j � � � j(pn ! an)

Consider the following example:

x := x+ y f1g
y := y � x; f2g
if x+ y > 0 then

y := x+ y f3g
else

y := �x � y f4g

This has two execution sequences, 1-2-3 and 1-2-4, with two different
traces:

if is true

Part Condition x y
x := x+ y x+ y y

y := y � x x+ y �x
if x+ y > 0 (x+ y) � x > 0
y := x+ y x+ y � x =

y

if is false – so : (if) is true

Functional Correctness 93

Part Condition x y
x := x+ y x+ y y

y := y � x x+ y �x
if x+ y > 0 (x+ y) � x � 0
y := �x� y �(�x) � (x+ y) =

�y

This gives the function:

(y > 0 ! x; y := x+ y; y)j(y � 0 ! x; y := x+ y;�y)

or since the assignment to y (i.e., (y > 0 ! y := y) and (y � 0 !
y := �y)) is just function abs(y), the function reduces to: (x; y := x +
y; abs(y)).

While we could have left our answer as a conditional assignment, re-
placing it as a concurrent assignment using the absolute value function
leads to a more understandable solution. Knowing when (and how) to
apply such reductions is probably as complex an issue as any encoun-
tered in axiomatic verification.

4. SEMANTICS OF STATEMENTS

We have given the semantics for state transition and have described a
functional notation for conditionals. We must now give the semantics
for each statement type in order to fully describe the meaning for a
program.

4.1. Begin Blocks

The begin statement adds no semantics to a program; therefore we
will define the begin block as follows:

begin S end = S

4.2. Assignment Statement

The assignment statement has a meaning similar to the assignment
axiom in Chapter 2.

94 Software Specifications

x := y (s) = f(i; j) j (i; j) 2 s ^ i 6= xg [f(x; y)g

We can also write it as:

x := y = f(s; s0) j (i 6= x! s0(i) = s(i)) j (i = x! s0(x) = y (s)g

4.3. If Statement

The if statement simply traces both possible paths through the pro-
gram:

if b then s1 else s2 = (b ! s1) j (: b ! s2)

if b then s1 = (b ! s1) j ()

Remember for the if - then, you need the identity alternative to make
sure that the function is total.

4.4. While Statement

In order to handle full program functionality, we must address loops.
Given a functional description f and a while statement p, we first de-
scribe three verification rules that prove that f and p are equivalent.
These will be denoted as V.I-III. Once we have these verification con-
ditions, we would like to use them as design guidelines to help develop
p, given only f . We call these five design rules B.I-V.

The while statement while b do d is defined recursively via the if to
mean:

while b do d = if b then begin d;while b do d end

That is, if b is true, perform d and repeat the while. Via a simple trace
table we get the same result as:

while b do d = if b then d;while b do d (��)

= if b then d � while b do d

Functional Correctness 95

Let f be the meaning of the while statement, that is, f = while b do d .
By substituting back into (**) above, we get the first condition that:

V.If = if b then d � f

What other conditions on f insure that it is indeed the specification of
the while statement? If f is undefined for some input x, then both
sides of the equation are undefined. In order to insure that this cannot
happen, we require that f is defined whenever while is defined, or
that domain(while) � domain(f). (Note: For ease in reading, we will
use while to stand for while b do d .)

Similarly, if while is everywhere the identity function then any f

will fulfill the equation, because, if while is everywhere the identity,
then similarly if b then d must also be the identity and the recursive
equation reduces to f = ()�f = f . Thus we must also have domain(f) �
domain(while). This yields:

V.IIdomain(f) = domain(while b do d)

Consider any state s 2 domain(while). If b (s) is true, that is, ex-
pression b in state s is true, then from (**), s1 = d (s) and s1 2

domain(while). This will be true, for s2; s3; � � � until at some point,
b (sn) is false and both if b then d (sn) and while b do d (sn) equal sn.

This sn is a member of domain(while) and of range(while). More
importantly, if b (s) evaluates to false, then while (s) = s, or stated
another way, while (s) = s for all states s where b (s) is false. This
is just a restriction on the while function to those states where b is
false, which is the function (:(b) ! while). This must be equal to
the identity function () also restricted to the same domain, or just:
(:(b) ! ()). Any candidate function f must also have this property,
yielding the third constraint:

V.III(:b! f) = (:b! ())

96 Software Specifications

�
�
�
�
�
�
��

aaaaaaaaaa
�

�
�

�
��

range(f)domain(f)

s5

s4

s3s2

s1

Figure 3.1. Domain and range of while function

Design of while loops

Consider the problem of designing a loop. Given a specification f , how
can we design a while from the three statement verification conditions
given above?

From V.III, the while terminates when b evaluates to false, and
range(while) is just the set of states where b is false. But since we
can apply while to this state initially, it is also part of domain(while).
Therefore, range(while) � domain(while) (see Figure 3.1). Since f
must also have this property, we get:

D.Irange(f) � domain(f).

Similarly, we have shown that for an f where b (s) is false, while (s) =

s, we must also have f(s) = s, because if b (s) is false, the body d is
not executed. But these are just the points in range(f). Therefore, we
get the second design constraint:

Functional Correctness 97

D.IIif s 2 range(f); then f(s) = s.

D.I and D.II must be true if f is the meaning of a while statement.
Therefore they show the existence of a possible solution. From D.II,
we know f must be an identity on range(f) in order to be implemented
with a while. We can restate this as:

D.III b evaluates to true in domain(f)�range(f) and false in range(f).

Similarly to the assignment design, we develop the while loop via:

� D.IV Develop d so that all values are preserved for f .

� D.V Show that f is everywhere defined, that is, the loop must termi-
nate for all x 2 domain(f).

Given function f we develop a while statement such that while = f
as follows:

� Existence. Verify conditions D.I and D.II. If these cannot be satis-
fied, then no such while statement can be written.

� Range determination. Use D.III to develop some predicate b such
that b is false on range(f) and true on domain(f) � range(f). Since f
and while are to be the same function, b becomes the predicate for the
loop.

� Loop body. Use D.IV to develop an appropriate d. These guidelines
do not give absolute solutions to this problem but do indicate how to
verify whether the d is a solution once found. It is comparable to finding
the loop invariant in an axiomatic proof.

� Termination. Prove that the selected b and d causes the loop to
terminate (condition D.V.). If proven that the loop terminates, and
since the second step shows that b (x) is false for x 2 range(f), this
shows that the loop will terminate with some x in this range.

98 Software Specifications

5. USE OF FUNCTIONAL MODEL

5.1. Example: Veri�cation

Show that the function f = (A � B ! A;B := (B � (B �A)=2); (B �
(B �A)=2)j()) is implemented by the source program:

1 while A < B do
2 begin
3 A := A+ 1;
4 if A < B then
5 B := B � 1
6 end

where A and B are integers and division means integer trun-
cated division (e.g., 1=2 = 0).

The approach we follow is to first determine the functionality of the
assignment statement (line 3), then the if statement (lines 4-5), then
the entire begin block (lines 2-6) and finally the functionality of the
entire segment (lines 1-6).

1. Line 3. A := A + 1.

This is just the concurrent assignment: (A := A + 1).

2. Lines 4-5. d1 = if A < B then B := B � 1

If A < B is true, evaluate the function B := B�1, and if it is false, skip
the then statement and do nothing, e.g., the Identity function. The
conditional assignment can be written as:

d1 = (A < B ! B := B � 1)j()

3. Lines 2-6. d2 = begin A := A + 1; if A < B then B := B � 1 end

d2 = A:=A+1 � if A<B then B:=B-1
= (A := A+ 1) � d1
= (A := A+ 1) � ((A < B ! B := B � 1)j())

Develop a trace table for the begin block. There will be two paths
through this block (e.g., first alternative for d1 and second), and hence
there will be two trace tables:

Functional Correctness 99

Part Condition A B
3 : A := A + 1 A+ 1
4 : if A < B (A + 1) < B
5 : B := B � 1 B � 1

and

Part Condition A B
3 : A := A + 1 A + 1
4 : if A < B (A + 1) � B

We then get: d2 = (A+ 1 < B ! A;B := A+ 1; B � 1)j(A := A + 1)

4. Lines 1-6 Show

f = while A < B do begin A := A + 1; if A < B then B := B � 1 end

To accomplish this, we must show that function f meets the three V
constraints of Section 4.4. We will do this in the order V.III, V.II, and
V.I.

1. Show (V.III) (:(A < B) ! f) = (:(A < B) ! ())

(:(A < B) ! f) =
(A � B ! (A � B ! A;B := B � (B � A)=2; B � (B �A)=2)j()) =
(A � B ^A � B ! (A;B := B � (B � A)=2; B � (B � A)=2))

j(A � B ! ()) =
(A = B ! A;B := B � (B �A)=2; B � (B � A)=2)j(A � B ! ()) =
(A = B ! A;B := A;B)j(A � B ! ()) =
(A � B ! ())

2. Show (V.II) domain(f) = domain(while)

f is defined for all A and B. For A � B, an explicit assignment is given,
and for all other A and B, f is the identity function.

The while function is also defined for all A and B. If A � B, the body
of the while does not execute giving the identity function for such A
and B. If A < B, then for each pass through the loop, A is increased by
1 and B may be decremented by 1. At some point, B � A must reach
0 or become negative. If B � A � 0, then B � A and the while loop
terminates. So for all A and B, the while statement must terminate
and will generate some value for A and B.

100 Software Specifications

3. Show (V.I) f = if b then d � f

The meaning of the body of the if statement (4) is the previously defined
function:

d2 = (A+ 1 < B ! A;B := A+ 1; B � 1)j(A := A + 1)

The problem then reduces to showing that:

f = if A < B then (A+ 1 < B ! A;B := A+ 1; B � 1)j(A := A + 1)
�((A � B ! A;B := B � (B �A)=2; B � (B � A)=2)j())

In order to show this, we need to generate the set of functions that
represent each separate path through each possible trace table. If we
let c1 be the if expression A < B, c2 be A+ 1 < B in d2, and c3 be A � B
in f , then there are six possible paths through this function yielding
six different trace tables, each deriving a different function gi:

c1 c2 c3 function
true true true g1
true false true g2
true true false g3
true false false g4
false – true g5
false – false g6

(Note, if c1 is false, then d2 is not evaluated giving only six possibilities
rather than the full complement of eight that normally occurs with
three predicates.) We need to show that: f = g1jg2jg3jg4jg5jg6

1. g1

Part Condition A B

c1 true A < B
c2 true A + 1 < B A + 1 B � 1
c3 true A + 1 B � 1 B � 1

� B � 1 �(B � 1 � (A + 1))=2 �(B � 1� (A+ 1))=2
= B � (B �A)=2 = B � (B � A)=2

The resulting predicate (A < B)^ (A+1 < B)^ (A+1 � B�1) reduces
to A < B � 1.

Functional Correctness 101

g1 = (A < B � 1 ! A;B := B � (B �A)=2; B � (B �A)=2)

2. g2

Part Condition A B

c1 true A < B
c2 false A+ 1 � B A + 1
c3 true A+ 1 � B B � (B � (A+ 1))=2 B � (B � (A + 1))=2

The resulting predicate is: (A < B)^ (A+ 1 � B) ^ (A+ 1 � B), which
reduces to A = B � 1. By substituting B � 1 for A, we get:

g2 = (A = B � 1 ! A;B :=
B � (B � (A+ 1))=2; B � (B � (A + 1))=2)

= (A = B � 1 ! A;B := B � (B � (B � 1 + 1))=2;
B � (B � (B � 1 + 1))=2)

= (A = B � 1 ! A;B := B;B)

However, if A = B � 1, then (B � A)=2 = 0. Thus we can write g2 as:

g2 = (A = B � 1 ! A;B := B � (B �A)=2; B � (B �A)=2)

3. g3

Part Condition A B
c1 is true A < B

c2 is true A + 1 < B A+ 1 B � 1
c3 is false A + 1 > B � 1

This leads to the condition (A < B) ^ (A + 1 < B) ^ (A + 1) > (B � 1).
We get (A < B � 1) and (A > B � 2) which is the null function.

4. (4) g4

Part Condition A B
c1 is true A < B

c2 is false A+ 1 � B A+ 1
c3 is false A+ 1 > B

The resulting condition is (A < B) ^ (A + 1 � B) ^ (A + 1 > B). But
(A < B) and (A+ 1 > B) are mutually disjoint, making g4 null.

102 Software Specifications

5. (5) g5

Part Condition A B
c1 is false A � B

c3 is true A � B B � (B �A)=2 B � (B � A)=2

The resulting condition is (A � B) ^ (A � B) or A = B. For A = B,
B � (B � A)=2 = B = A.

g5 = (A = B ! A;B := A;B)

6. (6) g6

Part Condition A B
c1 is false A � B
c3 is false A > B A B

The resulting condition is (A � B) ^ (A > B) or just (A > B).

g6 = (A > B ! A;B := A;B)

Show f = g1jg2jg3jg4jg5jg6

Since g3 and g4 are null, we have to show that f = g1jg2jg5jg6.

g1 j g2 j g5 j g6 =
(A < B � 1 ! A;B := B � (B � A)=2; B � (B � A)=2) j
(A = B � 1 ! A;B := B � (B � A)=2; B � (B � A)=2) j
(A = B ! A;B := A;B) j
(A > B ! A;B := A;B)

The first 2 terms reduce to:

(A < B ! A;B := B � (B �A)=2; B � (B � A)=2)

for A = B, the third term becomes:

(A = B ! A;B := A;B) =
(A = B ! A;B := B � (B �A)=2; B � (B � A)=2)

Functional Correctness 103

and the last is:

(A > B ! A;B := A;B) = (A > B ! ())

We have therefore shown that:

g1 j g2 j g5 j g6 =
(A � B ! A;B := B � (B � A)=2; B � (B � A)=2)j(A > B ! ()) =
(A � B ! A;B := B � (B � A)=2; B � (B � A)=2)j() =
f

5.2. Example: Design

Develop a while loop for the following specification: f(x; y) =
(x > 100 ! x; y := x; x+ 1) j (x; y := x; y)

In order to develop this program from its specifications, use the four-
step process based upon rules D.I through D.V. First determine if f is
realizable by a while loop.

D.I: Is range(f) � domain(f)?

Since f is defined for all input values, domain(f) includes all values of
x and y. Range(f) is a subset of (x; y), so condition D.I is true.

D.II: For (x; y) 2 range(f), do we have an identity function, that
is, f(x; y) = (x; y)?

There are two cases for x: x > 100 and x � 100. For the case of
x > 100, we have from the specification that (x; x+ 1) 2 range(f); and
f(x; x+1) = (x; x+1), which is an identity. For the case where x � 100,
we know from the specification that f(x; y) = (x; y).

D.III: Find b that evaluates to true in domain(f) � range(f) and
false in range(f).

Find a predicate b that is false on its range and true elsewhere. Since
we want y to take on the value x+1 or we want x to be less than or equal
to 100 on the range of f , we know that (y = x+1)_(x � 100) will be true
on the range and hence false on domain(f)� range(f). So the negative
of this has our desired property: :((x � 100) _ (y = x + 1)) = (x >

104 Software Specifications

100) ^ (y 6= x+ 1). Since the loop will exit when this predicate is false,
b = (x > 100) ^ (y 6= x+ 1), giving the partial solution

while(x > 100) ^ (y 6= (x+ 1)) do
fdg

D.IV: Develop d so that all values are preserved for f .

Find a function d that preserves the values needed for f . y needs to
become x+ 1, so let d = (x; y := x; x+ 1). Our solution is now:

while(x > 100) ^ (y 6= x+ 1) do
x; y := x; x+ 1

or just

while(x > 100) ^ (y 6= x+ 1) do
y := x+ 1

D.V: Show that the loop must terminate.

We know that b is false on the range of the while statement, so if we
can prove that the loop terminates, the current values of x and y when
the loop terminates must be a feasible solution. The loop can easily be
shown to terminate after one iteration.

5.3. Multiplication { Again

As a third example, let us revisit the multiplication program previously
proven in Chapter 2, Section 1.3:

fB � 0g
1: MULT (A;B) �
2: a := A
3: b := B
4: y := 0
5: while b > 0 do f
6: y := y + a
7: b := b� 1g

fy = ABg

Functional Correctness 105

We first need to give the specification. One possibility is just:

B � 0 ! y := AB

However, more formally, we are interested in how MULT modifies the
state space for all variables, so we can write a specification as follows:

9m1;m2;m3;m4; (B � 0 ! (a; b; y; A;B) := (m1;m2; AB;m3;m4))

This clearly shows that the specification is a relation, and all that we
care about is the effect of the program on the variable y.

Because of composition of assignment statement functions, it should
be clear that we need to show:

MULT (A;B) = a := A � b := B � y := 0 � while = AB

While verification

The while loop adds ab to y and sets b to 0, therefore, we can use as a
candidate function f for this loop the equation:

f(a; b; y) = (b > 0 ! (a; 0; y + ab))j()

To show this, we must show that the three properties V.I–V.III are true.

f = if b then d �f . In this case, predicate b is b > 0 and d is assignment
statements 6 and 7 in the program.

This requires four trace tables since we have two choices for the predi-
cate in if and two choices for the predicate in f .

1. f1 = both are true.

Part Condition a b y

if b > 0
y := y + a y + a

b := b� 1 b� 1
f b� 1 > 0 a 0 y + a+ a(b� 1) =

y + ab

106 Software Specifications

f1(a; b; y) = (b > 0 ^ b� 1 > 0 ! (a; 0; y + ab)) =
(b > 1 ! (a; 0; y + ab))

2. f2 = if is false, f is true.

Part Condition a b y

if b � 0
f b > 0 a 0 y + ab

f2(a; b; y) = (b � 0 ^ b > 0 ! (a; 0; y + ab)) = null function

3. f3 = if is true, f is false.

Part Condition a b y

if b > 0
y := y + a y + a

b := b� 1 b� 1
f b � 1 � 0

f3(a; b; y) = (b > 0 ^ b� 1 � 0 ! (a; b� 1; y + a)) =
(b > 0 ^ b � 1 ! (a; b� 1; y + a)) =
(b = 1 ! (a; 0; y + ab))

4. f4 = both are false.

Part Condition a b y

if b � 0
f b � 0

f4(a; b; y) = (b � 0 ! ())

We then compute the required functionality for the while statement:

f = f1jf3jf4 =
(b > 1 ! (a; 0; y + ab))j(b = 1 ! (a; 0; y + ab))j(b � 0 ! ()) =
(b > 0 ! (a; 0; y + ab))j()

Now that we have defined f , we have to show that it meets the other
two properties:

Property V.II: domain(f) = domain(while)

Both functions are defined for all b, so domains are equal.

Property V.III: :b! f = :b! ().

Functional Correctness 107

:b! f =
b � 0 ^ (b > 0 ! (a; 0; y + ab))j()) =
((b � 0 ^ b > 0) ! (a; 0; y + ab))j(b � 0 ! ()) =
(false ! (a; 0; y + ab))j(b � 0 ! ()) =
(b � 0 ! ())

Program veri�cation

Now that we have identified the function of the while statement, we
can complete the proof of MULT by a trace table of the four program
components:

Part Condition a b y

a := A A
b := B B
y := 0 0
f A 0 0 + AB =

AB

This clearly shows that MULT (A;B) = AB. We also need to show
termination of the program, but the same argument used previously is
still true here.

6. DATA ABSTRACTION DESIGN

The discussion so far has concentrated on the process of developing
a correct procedure from a formal specification. However, program
design also requires appropriate handling of data.

6.1. Data Abstractions

A data abstraction is a class of objects and a set of operators that ac-
cess and modify objects in that class. Such objects are usually defined
via the type mechanism of a given programming language, and a mod-
ule is created consisting of such a type definition and its associated
procedures.

Crucial to the data abstraction model are the isolation of the type def-
inition and invocations of the procedures that operate on such objects.

108 Software Specifications

Each procedure has a well-defined input-output definition. The im-
plementor is free to modify any procedure within a module as long as
its input-output functional behavior is preserved, and any use of such
a procedure can only assume its functional specification. The result
of this is that rather than viewing a program as a complex interac-
tion among many objects and procedures, a program can be viewed as
the interaction among a small set of data abstractions, each relatively
small and well-defined.

Languages such as Ada (or C++) allow data abstractions to be built rel-
atively easily, since the object type can be specified as the private part
of a package (or class) specification. Only the body of the package
has access to the type structure while other modules have access only
to the names of the procedures that are contained in the module.

However, even in older languages, such as C or Pascal, data abstrac-
tions form a good model of program design. Even though not automat-
ically supported by the language, with reasonable care, programs can
be designed which adhere to the data abstraction guidelines.

6.2. Representation Functions

A procedure within a data abstraction translates a high-level descrip-
tion of a process into a lower-level programming language implemen-
tation. For example, suppose character strings up to some predefined
maximum value are needed. Pascal, for example, only defines fixed-
length strings; therefore, we must implement this as objects using
primitive Pascal data types.

In procedures outside of the defining module, we would like to refer to
these objects (e.g., call them Vstrings) and be able to operate on them,
while inside the module we need to operate on their Pascal representa-
tion (arrays of characters). In the former case, we call such functions
abstract functions that define the functional behavior of the opera-
tion, while we call the latter case concrete functions that give the
details of the implementation.

For the Vstring example, we could define such a string via an abstract
comment containing the functional definition:

fabs : xabs = < x1; x2; : : :xn >g

Functional Correctness 109

while the concrete representation of a Vstring could be:

con : xcon : record
chars : array(1::maxval) of char;
size : 0::maxval
end;

To show that both representations are the same, we define a represen-
tation function which maps concrete objects into abstract objects by
mapping a state into a similar state leaving all data unchanged except
for those specific objects. Let r map a concrete object into its abstract
representation. If Cstrings is the set of concrete strings (i.e., the set
of variables defined by the above record description) and if Vstrings is
the set of abstract strings, then we define a representation function r
with the signature: r : state! state such that

r
4
= f(u; v)ju = v except that if u(x) 2 Cstrings; then v(x) 2 V strings g

We simply mean that u and v represent the same set of variables in the
program store, except that each occurrence of a concrete variable in u
is replaced by its abstract definition in v.

For each implementation of a string, we have its abstract meaning
given by function r:

xabs :=< xcon:chars[i]j1 � i � xcon:size >

The purpose of a procedure in an abstraction module is to implement
an abstract function on this abstract data. For example, if we would
like to implement an Append operation, we can define x := Append(x; y)
as:

fabs : x1; : : : ; xn; : : : ; xn+m := x1; : : :xn; y1; : : : ; ymg

Similarly, we can define a concrete implementation of this same func-
tion as:

fcon : x:chars[n+ 1]; : : : ; x:chars[n+m]; x:size :=
y:chars[1]; : : : ; y:chars[y:size]; x:size + y:sizeg

110 Software Specifications

6

6

--

--

6

6

x0abs

x0con(xcon; ycon)

(xabs; yabs) Appendabs

Appendcon

rr

Figure 3.2. Commuting Representation Diagram

If xcon and ycon represent the concrete implementations of Vstrings
x and y, and if xabs and yabs represent their abstract representation,
and if Appendcon and Appendabs represent the concrete and abstract
functions, we have:

x0con := Appendcon(xcon; ycon)
x0abs := Appendabs(xabs; yabs)

We want to know if both the concrete and abstract functions achieve
the same result, that is, the abstract representation of what we get
by implementing Appendcon is the same as our abstract definition of
Append. This is just the result: Is r(x0con) = x0abs? We say that the
representation diagram of Figure 3.2 commutes (i.e., either path from
(xcon; ycon) to x0abs gives the same result). We have to show that r
applied to x0con gives us x0abs (e.g., x1; x2; : : : ; xn; y1; : : : ; ym).

As given by our correctness theorem, a program (e.g., Appendcon) may
often compute a value larger than is necessary (domain(Appendabs(x)
in this example). Thus, we actually want to show:

r �Appendabs � Appendcon � r

Functional Correctness 111

7. USING FUNCTIONAL VERIFICATION

We have seemingly developed two mechanisms for designing programs:
(a) a functional model for showing the equivalence of a design and
its implementation, and (b) a commuting diagram for showing correct
data abstractions. However, both are complementary ideas of the same
theory. For example, the concrete design comment for Append in the
previous section is just a concurrent assignment which we can translate
into a source program via the techniques described earlier.

This leads to a strategy for developing correct programs:

1. From the requirements of a program, develop the abstract data ob-
jects that are needed.

2. For each object, develop abstract functions that may be necessary to
operate on the abstract object.

3. Using the abstract object and operations as a goal, design the con-
crete representation of the object and corresponding representation
function.

4. Design a concrete function for each corresponding abstract function.

5. Show that the representation diagram commutes. That is, the con-
crete function does indeed implement the abstract function.

6. Develop correct programs from each concrete function.

Note the order of Steps 2 and 3. It is important to understand the
abstract functions before one designs the concrete representation, since
the appropriate representation will depend greatly on the application.
Consider the implementation of a date data object. The following
are all feasible concrete representations depending upon the required
abstract functions:

� Store as character string ‘MM/DD/YY.’ This is appropriate if the
date is simply a unique tag associated with some data and has no other
semantic meaning.

� Store as < Y Y;DDD > where integer YY is the year and integer
DDD is the day of year. This is quite efficient if sequential dates are
needed.

112 Software Specifications

� Store as number of days since some initial date. This is most
efficient to compute distances between two days. It also avoids certain
problems such as accounting for leap years in all functions, but it is
cumbersome to print out in its usual format.

� Store as < MM;DD; Y Y > for integers MM, DD, and YY. Com-
puting dates is a bit more cumbersome, but conversion to its usual
printed form is quite easy.

The importance of this technique is that it can be applied at any level
of detail. Here, we obviously considered only short program segments.
For larger programs, only those concepts that are critical to the success
of a program need be formalized, although a long range goal would be
to develop this or other techniques which can be applied to very large
systems in their entirety. Its major difference from other verification
techniques is that it forces the programmer or designer to consider
the functionality of the program as a whole, and requires the designer
to design data structures with operations that operate on those struc-
tures. Since this is central to the data abstraction model of program
design, this technique is quite applicable to current thinking about
programming.

8. EXERCISES

Problem 1. It is not always the case that a while loop can be used to
implement a desired specification. Therefore, as designers it is impor-
tant for us to know when a loop can and cannot be used:

Theorem: A while statement can be devised to implement a desired
specification f if and only if

1. range(f) � domain(f), and

2. f behaves as the identity function in range(f).

In each of the following parts, a specification f is given, and you are to
state whether or not a while-loop construct can be devised to imple-
ment that specification. If so, then give such a loop. If not, then justify
your claim. In all cases, x and y are integer valued variables.

Functional Correctness 113

(a) f = (true! x; y := x+ 1; y)
(b) f = (x � 0 ! x; y := x+ 1; y)
(c) f = (true! x; y := x+ y; 0)
(d) f = (y � 0 ! x; y := x+ y; 0)
(e) f = (x � 0 ^ y � 0 ! ()) j (true! x; y := y; x)
(f) f = (true! x; y := max(x; y);min(x; y))

Problem 2. Why does the Mills’ style method of functional correctness
not have a rule corresponding to Hoare’s rule of adaptation?

Problem 3. Consider the specification

f = (n � 0 ^ n � k! x; n; k :=
n!

k! � (n � k)!
; n; k)

which ignores any effect a program might have on any other program
variables. Write a program to implement this specification, and demon-
strate that your program satisfies f by using the Mills approach.

Problem 4. Now consider the specification

f = (n � 0 ^ n � k! x; n; k :=
n!

n! � (n � k)!
; n; k)

and write a program to implement this specification, and demonstrate
that your program satisfies f by using the Mills approach.

Problem 5. Prove that the following program P satisfies the specifica-
tion

F = (n � 1 ! t; i := n!; n+ 1)

Use Mills’ techniques.

P � f
t := 1
i := 1
while i � n do

t := t � i
i := i + 1g

114 Software Specifications

Problem 6. Prove that the following program P satisfies the specifica-
tion

F = (i > 0 ^ j > 0 ! i; j := gcd(i; j); 0)
j (i � 0 ^ j > 0 ! i; j := j; remainder(i; j))
j (j � 0 !)

Use Mills’ techniques.

P � f
while j > 0 do

r := remainder(i; j)
i := j
j := rg

Problem 7. Define the semantics of the repeat : : : until statement,
and verify that the program fragment

frepeat y := y � 1 ; x := x+ 2 until y � 0g

computes the function

(y > 0 ! x; y := x+ 2 � y; 0) j (y � 0 ! x; y := x+ 2; y � 1)

Problem 8. Find the function computed by the following procedure,
and verify your answer using Mills’ techniques:

z(a; b) : ()procedure � f
if a > 0 then

a := a � 1
call z(a; b)
b := b+ 1g

Problem 9. Prove that the following program P satisfies the specifica-
tion

F = (n � 0 ! y := xn)

Use Mills’ techniques.

Functional Correctness 115

P � f
k := n
y := 1
z := x
while k > 0 do

if odd(k)
then fk := k � 1; y := y � zg
else fk := k=2; z := z � zgg

Problem 10. Write a program that takes an integer z � 2 and deter-
mines whether or not (say, by setting a Boolean flag appropriately on
output) z is a prime number. One method that could be used to check
primality is to see whether any integers from 2 up to z will evenly divide
z (you are free to assume the existence of a primitive function mod as
in Pascal). Prove the correctness of your program by Mills’ techniques.

Problem 11. Most formal systems for reasoning about programs re-
strict procedure bodies to contain no nonlocal variable references. Is
this restriction truly necessary when using Mills’ techniques? Clearly
state your answer. If the restriction is not necessary, provide a con-
vincing argument to support your claim. If the restriction is necessary,
provide a simple example to illustrate why it is so.

Problem 12. Consider the program:

k := 0
while n > 1 do

if prime(n) then k := k + 1
n := n� 1

which assumes the existence of a Boolean-valued function called prime
having the obvious behavior. Using Mills’ techniques, prove that this
program meets the formal specification

(2 � n � 100 ! k := '(n))

where '(i) is defined to be “the number of primes in the range [2; i].”

Problem 13. Determine the function computed by the following code:

116 Software Specifications

while x 6= 0 do
t := 0
while t 6= y do

s := s+ 1
x := x+ 3
t := t + 1
y := y + x

x := x� 1

Problem 14. Write a program whose function exactly equals the fol-
lowing specification:

(2 � n < 5 ! x := prime(n))

where in this case, our function prime(i) returns the ith prime num-
ber (for example, prime(1) = 2 and prime(7) = 17). Verify that your
program behaves exactly like the specification using Mills’ techniques.

Problem 15. Determine the function computed by the following proce-
dure, and prove it is so by Mills’ techniques:

mystery procedure (x; n; z) : () � f
if n = 0 then

z := 1
else

n := n� 1
callmystery(x; n; z) : ()
x := 2x
z := 2g

Problem 16. Consider the functional specification

f = (0 � n ! k := bits(n))

where bits(j) is defined as “the number of 1 bits used to represent the
integer j as a binary numeral.” (For instance, bits(1)=1, bits(8)=1,
and bits(7)=3.)

Write a program that implements this specification. Verify the imple-
mentation using Mills’ techniques.

Functional Correctness 117

9. SUGGESTED READINGS

The first sections of the paper

� D.D. Dunlop and V.R. Basili, “A Comparative Analysis of Functional
Correctness,” ACM Computing Surveys, Vol. 14, No. 2, June 1982,
pp. 229-244.

provide an especially useful introduction to this area. The original
works, of course, are also invaluable:

� R.C. Linger, H.D. Mills and B.I. Witt, Structured Programming: The-
ory and Practice, Addison-Wesley, Reading, MA, 1979, Chapter 6.

� H.D. Mills, “The New Math of Computer Programming, Communica-
tions of the ACM, Vol. 18, No. 1, 1975, pp. 43-48.

The papers

� J.D. Gannon, R.B. Hamlet and H.D. Mills, “Theory of Modules,” IEEE
Transactions on Software Engineering, Vol. 13, No. 7, 1987, pp. 820-
829.

� M. V. Zelkowitz, “A functional correctness model of program verifica-
tion,” IEEE Computer, Vol. 23, No. 11, 1990, pp. 30-39.

are works that clarify many of the more subtle points associated with
functional correctness. Finally, even though the material can not be
described as being compact, chapters 6–11 in

� H.D. Mills, V.R. Basili, J.D. Gannon and R.G. Hamlet, Principles
of Computer Programming: A Mathematical Approach, William C.
Brown, Dubuque, IA, 1987.

provide a large number of exercises for students of the functional ap-
proach.

118 Software Specifications

Chapter 4

Predicate Transformers

In work related to the Hoare-style axiomatic proof, Dijkstra developed
the concept of the weakest precondition [10]. Using the concept of
a state, much like in the functional model of Chapter 3, the idea of
the weakest precondition is defined. In addition, Dijkstra considered
the concept of nondeterminacy in programming languages with the
introduction of the guarded command. These simplify some of the
verification properties we wish to prove.

1. GUARDED COMMANDS

Most programming languages (and algorithms) are sequential and de-
terministic. For example, the symbolic trace table method of Chap-
ter 3 is strictly based upon being able to trace the execution of a pro-
gram statement by statement in a prescribed order. However, there
are times when nondeterminacy makes a software design easier. Un-
fortunately, we have not had the programming tools for constructing
“nondeterministic” programs in existing languages. We first describe
several constructs for introducing nondeterminacy into languages and
then show how some algorithms become easier to describe using this
method.

The basic concept is the guard which is written as: []. IfB is a predicate
and S is a statement, then in a guarded command, B ! S means that

119

120 Software Specifications

statement S is “enabled” or ready for execution if guard B is true. We
use guards in guarded if and repetitive statements:

1.1. Guarded If Statement

If Bi is a set of predicates and Si is a set of statements, the guarded if
is written as:

if B1 ! S1 [] B2 ! S2 [] : : : [] Bn ! Sn �

This has the meaning that at least one of the predicates is true, and
the execution is that corresponding statement, or:

9i 3 Bi and execution is Si

Note that this is not the same as the LISP cond or the conditional
design statement from Chapter 3. In those cases, the statement to
execute was the one with the minimal i such that Bi = true. Here we
arbitrarily choose any i with Bi true.

Two implications of this definition:

1. At least one of the predicates must be true; otherwise the statement
is equivalent to an abort statement.

2. If more than one predicate is true, no indication of which statement
to execute is made. Any statement having a true guard is executed.
This introduces nondeterminacy into algorithms.

1.2. Repetitive statement

This is the generalization to the sequential while statement and is
similar to the guarded if: If Bi is a set of predicates and Si is a set of
statements, the do is written as:

do B1 ! S1 [] B2 ! S2 [] : : : [] Bn ! Sn od

Execution proceeds as follows: If any guard Bi is true, the correspond-
ing Si is executed. This process repeats as long as some guard is true.

There are several implications to this definition:

Predicate Transformers 121

1. If no guard is true initially, the do is equivalent to the skip or null
statement.

2. As in the guarded if, nondeterminacy is introduced into the execu-
tion if more than one guard is true at the same time.

3. When execution exits the do, we know that all guards must be equal
to false.

Using guarded commands often makes many algorithms easier to de-
velop or understand. Consider the following two examples:

Example 1. Trivial example for maximum of two numbers:

if x � y ! maximum := x [] y � x ! maximum := y �

This simply says if x is greater, then use x; if y is greater, use y. We
have an ambiguous situation when x = y, but either choice gives the
same answer.

Example 2. Consider the binary search algorithm given as Problem 6
at the end of Chapter 2:

PROGRAM � f
i := 0;
j := n;
while i + 1 6= j do

h := (i + j)=2;
if a[h] � x

then i := h
e
¯
lse j := hg

We can write this using guarded commands as:

PROGRAM � f
i := 0;
j := n;
do i+ 1 6= j !

h := (i + j)=2;
if a[h] � x! i := h

[] a[h] � x! j := h �
odg

122 Software Specifications

2. WEAKEST PRECONDITIONS

Let S be a statement in some programming language and let Q be a
predicate. wp(S;Q) is the set of initial states (described by a predicate)
for which S terminates and Q is true on termination. Note that this
differs from the earlier axiomatic model since termination is inherent
in the definition of pre- and postconditions.

A program S is correct with respect to predicates [P;Q] if P) wp(S;Q).

2.1. Axioms

Several axioms must be satisfied by the weakest precondition wp:

1: wp(S; false) = false

2: P) Q

wp(S; P)) wp(S;Q)

3: wp(S; P _Q)

wp(S; P) _wp(S;Q)

4: wp(S; P ^Q)

wp(S; P) ^wp(S;Q)

Since we are building an axiomatic model, many of the properties from
Chapter 2 still apply:

Assignment.If x := e is an assignment statement and Q is a postcon-
dition:

wp(x := e;Q) = Qx
e

Composition.If S1 and S2 are statements and Q is a predicate:

wp(S1;S2; Q)
4
= wp(S1; wp(S2; Q))

2.2. If Statements

Given if statement:

if � if B1 ! S1 [] B2 ! S2 [] : : : [] Bn ! Sn �

Predicate Transformers 123

we define its weakest precondition as follows:

wp(if;Q)
4
= (9j; 1 � j � n 3 Bj) ^

(8i; 1 � i � n 3 Bi) wp(Si; Q))

= (B1 _B2 _ : : :_Bn) ^
(B1) wp(S1; Q)) ^
(B2) wp(S2; Q)) ^
(B3) wp(S3; Q)) ^
...
(Bn) wp(Sn; Q))

Using the definition of the if statement, we get the following theorem:

Theorem: Let BB 4
= (9j; 1 � j � n 3 Bj), predicates Q and R, and if

statement

if � if B1 ! S1 [] B2 ! S2 [] : : : [] Bn ! Sn �

If Q) BB and (8i; 1 � j � n 3 (Q ^Bj)) wp(Sj; R))
then Q) wp(if; R)

Proof:

1: Q) BB Assumption
2: Show : Q) (8j; 1 � j � n 3 Bj) wp(Sj ; R))

(8j; 1 � j � n 3 (Q ^Bj)) wp(Sj ; R)) Assumption
Q ^B)W � :(Q^B) _W �
:Q _ :B _W � :Q_ (B)W) �
Q) (B)W)

3: Q) BB ^ (8j; 1 � j � n 3 Bj) wp(Sj ; R)) 1 and 2
4: Q) wp(if; R) Def: of wp(if; R)
2

Using these results, we can derive weakest preconditions for the tra-
ditional if then and if then else statements used elsewhere in this
book:

If then else statement.

124 Software Specifications

wp(if B then S1 else S2; R)
4
=

(B) wp(S1; R)) ^ (:B) wp(S2; R)) = See Problem 6
(B ^wp(S1; R)) _ (:B ^wp(S2; R))

If then statement.

wp(if B then S1; R)
4
=

(B) wp(S1; R))^ (:B) R) =
(B ^wp(S1; R)) _ (:B ^R)

For these statements, BB = B _ :B = true. Thus Q) BB must be
true, so we do not have to establish that to conclude Q) wp(if; R).

Example 3: Verify the following program with respect to its specifica-
tion:

fa � 0 ^ b � 0 ^ c � 0g
if a < b then a := b;
if a < c then a := c

fa � b ^ a � cg

We develop the proof as follows:

wp(a := c; a � b ^ a � c) = (c � b ^ c � c) = c � b
wp(if a < c then a := c; a � b ^ a � c) =

(a < c ^ c � b) _ (a � c ^ a � b ^ a � c) =
(a < c ^ c � b) _ (a � b ^ a � c))

wp(a := b; (a < c ^ c � b) _ (a � b ^ a � c)) =
(b < c ^ c � b) _ (b � b ^ b � c) =
(c > b _ b � c) =
true

wp(if a < b then a := b; (a < c ^ c � b) _ (a � b ^ a � c)) =
(a < b) _ (a � b ^ ((a < c ^ c � b) _ (a � b ^ a � c))) =
(a < b) _ (a � b ^ a < c ^ c � b) _ (a � b ^ a � c) =
(a < b) _ (a � b ^ a < c) _ (a � b ^ a � c) =
(a < b) _ (a � b ^ (a < c _ a � c)) =
(a < b) _ (a � b) = true

wp(if a < b then a := b; if a < c then a := c; a � b ^ a � c) =
true

Predicate Transformers 125

Since a � 0 ^ b � 0 ^ c � 0) wp(if � � � ; a � b ^ a � c), the program is
correct.

2.3. Do Statements

Consider the repetitive or do statement:

do � do B1 ! S1 [] B2 ! S2 [] : : : [] Bn ! Sn od

Let BB; Q, and R be defined as before. Define if as the do statement
with do od replaced by if fi (i.e., it represents one “pass” through the
loop).

We define wp(do;R)
4
= (9k; k � 0 3 Hk(R)) where we need auxiliary

functions Hi defined as follows:

H0(R)
4
= R ^ :(9j; 1 � j � n 3 Bj) = R ^ :BB

Hk(R)
4
= wp(if;Hk�1(R)) _H0(R) for k > 0

The function Hk represents the number of passes through the loop. H0
represents a loop that has no enabled guards, hence is equivalent to the
null statement. Hk represents k passes through the loop, where each
pass is equivalent to the if statement defined above. Writing a general
expression for Hk in this model is equivalent to the loop invariant of
the Hoare axiomatic model.

In order to use this definition, since the weakest precondition depends
upon termination, we need to know that the do terminates. In the
axiomatic model we used property P such that P (i) was always positive,
yet decreasing in the loop. This was handled outside of the formal
Hoare axioms.

In this case, the termination property equivalent to the P (i) of the
axiomatic model is the value of k in function Hk. We give the following
theorem which permits us to use this definition.

Iteration Theorem: Given a repetitive do, predicate P , integer func-
tion t, and new identifier t1:

If 1: 8i; 1 � i � n; P ^Bi) wp(Si; P)
2: P ^BB) t > 0
3: 8i; 1 � i � n; P ^Bi) wp(t1 := t;Si; t < t1)

then P) wp(do; P ^:BB)

126 Software Specifications

Proof:

1. Show (8i; P ^Bi) wp(Si; P))) (P ^BB) wp(if; P)).

(8i; P ^Bi) wp(Si; P)) = P ^ (8i; Bi) wp(Si; P))
(P ^B1) _ (P ^B2) _ � � � = P ^BB Assumption 1
P ^BB ^ P ^ (8i; Bi) wp(Si; P))
) BB ^ (8i; Bi) wp(Si; P)) = wp(if; P)

2. Show (8i; P^Bi) wp(t1 := t;Si; t < t1))) (8t0; P^BB^t � t0+1)
wp(if; t � t0)).

P ^Bi = (P ^B1) _ (P ^B2) _ � � � _ (P ^Bn) =
P ^ (B1 _B2 _ � � � _Bn) = P ^BB

wp(t1 := t;Si; t < t1) = wp(Si; t < t1)
t1
t Def of assignment

(8i; P ^Bi) wp(t1 := t;Si; t < t1)) =
P ^ (8i; Bi) wp(Si; t < t1)

t1
t)

P ^BB ^ P ^ (8i; Bi) wp(Si; t < t1)
t1
t)

) BB ^ (8i; Bi) wp(Si; t < t1)
t1
t)

) wp(if; t < t1)
t1
t

Thus P ^BB) wp(if; t < t1)
t1
t

The following holds for all values of t0:

P ^BB ^ t � t0 + 1) wp(if; t < t1)
t1
t ^ t � t0 + 1

Add t � t0 + 1 to both sides :
P ^BB ^ t � t0 + 1

) (wp(if; t < t1)
t1
t ^ t1 � t0 + 1)t1

t Text subst:
P ^BB ^ t � t0 + 1

) (wp(if; t < t1)
t1
t ^wp(if; t1 � t0 + 1))t1

t

if does not refer to t1 or t0. Thus wp(if; t1 � t0 + 1) = t1 � t0 + 1 ^BB.
Since BB appears on the left of the implication, we have not added
anything that cannot be proven on the right side.

P ^BB ^ t � t0 + 1) wp(if; t � t1 ^ t1 � t0 + 1)t1
t

P ^BB ^ t � t0 + 1) wp(if; t � t0)
t0
t

t < t1 ^ t1 � t0 + 1) t � t0
P ^BB ^ t � t0 + 1) wp(t1 := t; if; t � t0)
P ^BB ^ t � t0 + 1) wp(if; t � t0)wp(t1 := t; if; t � t0) =
wp(if; t � t0)

Predicate Transformers 127

3. Show P ^ t � k) Hk(P ^ :BB) for k � 0 by induction.

Base case: k = 0.

P ^BB) t > 0 Assumption 2
:P _ :BB _ t > 0 � :P _ :(t � 0) _ :BB �

:(P ^ t � 0) _ :BB � P ^ t � 0) :BB
P ^ t � 0) P ^ :BB = P ^ t � 0

) H0(P ^ :BB)

Recursive case: Assume P ^ t � k) Hk(P ^ :BB). Show: P ^ t �
k + 1) Hk+1(P ^ :BB).

P ^ t � k + 1 �
(P ^BB ^ t � k + 1) _ (P ^ :BB ^ t � k + 1)

P ^BB ^ t � k + 1) wp(if; P ^ t � k)
P ^BB) wp(if; P) Step (b)
P ^BB ^ t � k + 1) wp(if; t � k + 1)
wp(if; P) ^wp(if; t � k + 1) =

wp(if; P ^ t � k + 1)
P ^BB ^ t � k + 1) wp(if;Hk(P ^:BB))

P ^ t � k + 1) Hk(P ^ :BB) Inductive Hyp:
P ^ :BB ^ t � k + 1) H0(P ^ :BB)

H0(P ^ :BB) = P ^ :BB
P ^ t � k + 1) wp(if;Hk(P ^ :BB))

_H0(P ^:BB) = Hk+1(P ^ :BB)

Thus P ^ t � k + 1) Hk(P ^ :BB).

The proof assumed the existence of an upper bound k for t in any state:
(9k; 0 � k; t � k) is true in any state.

P = P ^ (9k; 0 � k; t � k) = (9k; 0 � k; P ^ t � k))
(9k; 0 � k;Hk(P ^ :BB)) = wp(do; P ^ :BB)

2

128 Software Specifications

3. USE OF WEAKEST PRECONDITIONS

Using this theory, let us revisit some of the programs we already dis-
cussed in Chapter 2 in order to see how the proofs change.

3.1. Example: Integer Division

We previously discussed this program in Chaper 2, Section 1.1:

fx � 0 ^ y > 0g
PROGRAM � f

q := 0;
r := x;
while y � r do

r := r � y;
q := 1 + qg

f(0 � r < y) ^ x = r + yqg

The postcondition to this program is given asP
4
= x = qy+r ^ 0 � r < y

and we have already shown in Chapter 2 that the invariant to the while
loop in this program is x = qy + r ^ 0 � r. We will assume the same
invariant and show that it works in this case also.

However, we also need the integer function t for computing Hk by the
Iteration Theorem. We will use t � r as our candidate function.

Consider the three steps on proving the weakest precondition for a do
statement by the Iteration Theorem:

1: Show P ^BB) wp(Si; P)
wp(r := r � y; q := 1 + q; P) =

0 � r � y ^ 0 < y ^ x = (1 + q)y + r � y =
0 � r � y ^ 0 < y ^ x = qy + r

P ^ r � y) 0 � r � y ^ 0 < y ^ x = qy + r

2: Show P ^BB) (t > 0)
r � y ^ y > 0) r > 0

3: Show P ^BB) wp(t1 := t;Si; t < t1)
wp(t1 := r; r := r � y; q := 1 + q; r < t1) =
wp(t1 := r; r� y < t1) = r � y < r

wp(t1 := r; r� y < t1) = wp(t1 := t;Si; t < t1)

Predicate Transformers 129

So P) wp(do; P ^ :r � y).

P ^ :r � y) 0 � r < y ^ x = qy + r)
wp(do; P ^:r � y)) wp(do; 0 � r < y ^ x = qy + r) Axiom 2

So we can conclude that our invariant is the weakest precondition to
the loop:

P) wp(do; 0 � r < y ^ x = qy + r)

We complete the proof, by computing the weakest precondition of the
two initialization statements:

wp(q := 0; r := x; P) =
wp(q := 0; 0 � x ^ 0 < y ^ x = qy + r) =
0 � x ^ 0 < y ^ x = 0y + x = 0 � x ^ 0 < y

This results in: 0 � x^0 < y) wp(PROGRAM;x= qy+r^0 � r < y).

3.2. Still More Multiplication

Let us repeat the multiplication programMULT that we proved earlier
in Chapter 2, Chapter 1.3:

fB � 0g
1: MULT (A;B) � f
2: a := A
3: b := B
4: y := 0
5: while b > 0 do
6: y := y + a
7: b := b� 1g

fy = ABg

We will redo the proof, and will show that except for notational differ-
ences, it is quite similar to the Hoare-axiomatic proof done earlier.

We already know that the invariant I for the loop is y+ab = AB^b � 0.
By Axiom 2 after we establish I ^ :b > 0) y = AB, we can conclude

130 Software Specifications

wp(S; I^:b > 0)) wp(S; y = AB). Next we use the Iteration Theorem
to demonstrate I) wp(whileb > 0do � � � ; I ^ :b > 0).

The function t is just the value of b. If we let S refer to the body of the
while loop, by using the iteration theorem, we need to show:

1: I ^BB) wp(S; I)
2: I ^BB) b > 0
3: I ^BB) wp(t1 := b;S; b < t1)

1. Show I ^BB) wp(S; I).

wp(y := y + a; b := b� 1; I) �
wp(y := y + a; b := b� 1; y + ab = AB ^ b � 0) �
y + a+ a(b� 1) = AB ^ (b� 1) � 0 �
y + ab = AB ^ b > 0

I ^BB �
(y + ab = AB ^ b � 0) ^ b > 0 �
y + ab = AB ^ b > 0

2. Show I ^BB) b > 0.

I ^BB � (y + ab = AB ^ b � 0) ^ b > 0
� y + ab = AB ^ b > 0

3. Show I ^BB) wp(t1 := b;S; b < t1).

wp(t1 := b;S; b < t1) �
wp(t1 := b; y := y + a; b := b� 1; b < t1) �
wp(t1 := b; y := y + a; b� 1 < t1) �
wp(t1 := b; b� 1 < t1) �
b� 1 < b � true

Computing the weakest precondition of the three initialization state-
ments with respect to I completes the proof:

wp(a := A; b := B; y := 0; I) �
wp(a := A; b := B; y := 0; y + ab = AB ^ b � 0) �
wp(a := A; b := B; 0 + ab = AB ^ b � 0) �
wp(a := A; aB = AB ^B � 0) �
AB = AB ^B � 0 �
B � 0

Predicate Transformers 131

Thus B � 0) wp(MULT (A;B); y = AB)

However, Problem 2 of Chapter 2 demonstrates that A = 0 is also a
valid precondition to this program. Since the weakest precondition is
the largest set that fulfills the postcondition, why didn’t we find it in
this case?

The reason is that we have simply shown that B � 0) wp(� � �) and not
that B � 0 = wp(� � �). In order to show equality, let’s repeat the proof
using the actual definition of wp(do;R) using functions Hk.

Define the following:

R
4
= y = AB

S
4
= y := y + a; b := b� 1

BB
4
= b > 0

H0(R) = R ^ :BB � (y = AB ^ b � 0)
H1(R) = wp(if;H0(R)) _H0(R) �

wp(if b > 0then begin y := y + a; b := b� 1 end;
y = AB ^ b � 0) _ (y = AB ^ b � 0) �

((b > 0 ^wp(y := y + a; b := b� 1; y = AB ^ b � 0))
_(b � 0 ^ (y = AB ^ b � 0)) _ (y = AB ^ b � 0) �

((b > 0 ^ y + a = AB ^ b � 1 � 0) _ (b � 0 ^ (y = AB) �
(y + a = AB ^ b = 1) _ (b � 0 ^ y = AB)

H2(R) = wp(if;H1(R)) _H0(R) �
wp(if b > 0then begin y := y + a; b := b� 1 end;

(y + a = AB ^ b = 1) _ (b � 0 ^ y = AB))
_(y = AB ^ b � 0) �

((b > 0 ^wp(y := y + a; b := b� 1; (y + a = AB ^ b = 1)_
(b � 0 ^ y = AB))

_(b � 0 ^ ((y + a = AB ^ b = 1) _ (b � 0 ^ y = AB)))
_(y + ab = AB ^ b � 0) �

((b > 0 ^ y + a + a = AB ^ b� 1 = 1) _ (b > 0 ^ b� 1 � 0
^y + a = AB))

_(false) _ (b � 0 ^ y = AB)))
_(y + ab = AB ^ b � 0) �

(y + a+ a = AB ^ b = 2) _ (b = 1 ^ y + a = AB)_
(y + ab = AB ^ b � 0)

H3(R) = wp(if;H2(R)) _H0(R)
...

132 Software Specifications

We are now in a position to guess Hk(R)

Hk(R) � (9k > 0;
Wk
i=1(b = i ^ y + ia = AB)) _ (y = AB ^ b � 0)

We can finish computing the weakest precondition for the program.

wp(y := 0; wp(while; � � �)) = ((9k > 0;
Wk
i=1(b = i ^ 0 + ia = AB))_

(0 = AB ^ b � 0))
wp(b := B;wp(� � �)) = ((9k > 0;

Wk
i=1(B = i ^ ia = AB))_

(0 = AB ^B � 0))
wp(a := A;wp(� � �)) = ((9k > 0;

Wk
i=1(B = i ^ iA = AB))_

(0 = AB ^B � 0))

We have therefore computed the weakest precondition for the given
output to be exactly:

B > 0 _ (0 = AB ^B � 0)

But we can write this as:

B > 0 _ (0 = AB ^B = 0) _ (0 = AB ^B < 0)

which is equivalent to:

B > 0 _B = 0 _ (A = 0 ^B < 0)

or

B � 0 _ (A = 0 ^B < 0)

4. EXERCISES

Problem 1. Determine a sufficient precondition for the following pro-
gram and postcondition, then show that this predicate implies wp.

Predicate Transformers 133

i := 1
m := a[1]
while i 6= 100 do

if m < a[i+ 1] thenm := a[i+ 1]
i := i+ 1

f(9j 3 1 � j � 100;m = a[j])^ (8k 3 1 � k � 100;m � a[k])g

Problem 2. Determine a sufficient precondition for the following pro-
gram and postcondition, then show that this predicate implies wp.

k := a
while k < b do

k := k + 1
x[k � 1] := x[k]

fa � k � b ^ (8i 3 a � i < b; x[i] =
(
x [i+ 1])g

Give the precondition if the postcondition were written as:

fa � k � b ^ (8i 3 a � i < b; x[i] = x[i+ 1])g

Problem 3. Using predicate transformers verify the following pro-
gram:

fn � 0g
i := 1
p := 1
while i 6= n do

if b[i] 6= b[i� p]
then i := i + 1
else i := i+ 1; p := p+ 1

f(9k 3 0 � k � n � p; b[k] = b[k+ p� 1])^
(8k 3 0 � k � n� p� 1; b[k] 6= b[k+ p])g

Problem 4. Using the method of predicate transformers, demonstrate
the correctness of the following array reversal program:

134 Software Specifications

fi = 1 ^ n > 0g
while i � n=2 do

z := a[i]
a[i] := a[n� i+ 1]
a[n� i + 1] := z
i := i+ 1

f8j 3 1 � j � n; a[j] =
(
a [n� j + 1]g

Problem 5. Consider the following program:

fi = 1g
while i < n do

a[i+ 1] := a[i] + a[i+ 1]
i := i + 1

f8j 3 1 � j � n; a[j] =
Pj

k=1
(
a [k]g

Verify the total (strong) correctness of the program with respect to the
given pre- and postconditions using the method of predicate transform-
ers.

Problem 6. From the definition of the weakest precondition for the
traditional if then else statement, show the following is true:

(B) wp(S1; R)) ^ (:B) wp(S2; R)) =
(B ^wp(S1; R))_ (:B ^wp(S2; R))

5. SUGGESTED READINGS

� E. W. Dijkstra, “Guarded commands, nondeterminacy and formal
derivation of programs,” Communications of the ACM, Vol. 18, No.
8, 1975, pp. 453-458.

� S. K. Basu and R. T. Yeh, “Strong Verification of Programs,” IEEE
Transactions on Software Engineering, Vol. 1, No. 3, 1975, pp. 339-
346.

� E. W. Dijkstra, “A Discipline of Programming,” Prentice-Hall, Engle-
wood Cliffs, NJ, 1976.

Predicate Transformers 135

� D. Gries, The Science of Programming, Springer-Verlag, New York,
1981.

136 Software Specifications

Chapter 5

Algebraic Specifications

Up to this point, we have dealt primarily with integer data types in
the application programs. But to continue to do so would be very
restrictive to programmers. In fact, not only do we want to find ways
to reason about programs having many different primitive types (such
as strings, characters, or floating point numbers), but we want to build
an inference system that allows programs to be verified even when the
application programmer is free to enrich the environment with new
and special purpose types.

1. MORE ABOUT DATA ABSTRACTIONS

Being able to add new data types on a program by program basis is a
powerful capability. This concept, which evolved in the 1970s, is known
as data abstraction (or, looked at another way, encapsulation), and it is
a major “divide and conquer” technique available to help programmers
keep development costs down. The idea is to identify commonly used
activities or information, and then, abstracting from the situation, ex-
plicitly describe that information structure in a concise and centralized
way. Once the structure has been isolated, then one programmer can
go off and implement the data-handling routines, another can work on
the application program using the data, and both will be assured that
the union of their efforts will function as intended.

137

138 Software Specifications

We previous discussed data abstractions in Chapter 3. Here we extend
the concept and discuss why we have this concept of “type” in the
first place. Associating a “type” name with some piece of data is a
declaration by the programmer concerning how that data is intended
to be used. When the only thing we can declare about a datum is that
it is an integer or string, then there is still much room for misuse of
that information. However, when a designer abstracts some collection
of desirable properties and declares this collection to be a new “type,”
then it is easier to infer more about the intended usage of the data. The
programmer can say stronger things about the program components.
In general, the way a designer will perform this abstraction activity
will vary from methodology to methodology, and this is (currently) well
beyond what we study in this course. However, once a new type has
been defined it is essential that we be able to

1. verify that implementations of the new type preserve properties that
characterize it, and

2. reason about application programs that use the new type.

For our purposes, a data type consists a set of values (its domain)
and a set of operations on the domain. Defining the domain is usually
straightforward: Small, finite domains can be enumerated. Others can
be defined constructively, by first identifying a small number of base
elements, and then describing how to generate the remaining elements
of the domain. For instance, the string domain can be constructed by
saying:

� A single letter is a string.

� Any string followed by a single letter is a string.

� Nothing else is a string.

This third assertion helps us get a bound on what can be a string.

Once the domain is specified, we are faced with describing the oper-
ations on it. The first step is to enumerate these operators’ names,
and identify in some way what types of values they both operate on
(completely) and also return. This step is referred to as prescribing the
syntax, and the way we give syntax is usually dependent on the way
we intend to describe the operator’s functionality (or semantics).

Algebraic Specifications 139

There are several ways to give semantics. One is quite informal: to
give a textual description of the behavior. Due to the ambiguities of
natural language, this is generally unsatisfactory. It allows ambigui-
ties, does not lend itself to automatic checking, and requires more space
to accomplish the task than other methods. Two other techniques for
specifying abstract data types (ADTs) are more formal. These are op-
erational specifications and algebraic specifications, and are described
in detail in the following sections. In each case, we first concentrate on
what the specifications look like (along with related issues that come
up in the approach), then move on to consider how implementations of
that data type are verified. We conclude discussion on each approach
with detailed examples of how application programs using the ADTs
are themselves verified.

2. OPERATIONAL SPECIFICATIONS

An operational specification describes an operation in terms of another
type with well-defined mathematical properties, e.g., sequences, sets,
or tuples. The VDL model of Chapter 1 was one general class of op-
erational specification. As another specific example, consider speci-
fying operations to make rational numbers from integers and to add
two rational numbers using fractions as the implementation of ratio-
nal numbers. Each procedure defines one of the operations using pre
and post conditions that define the semantics of the operation. The
postcondition is the essential operational semantics of that particular
operation.

The meaning of AddRat is defined using the “+” operator on fractions.

procedureMakeRat(var Result : Rational;N;D : integer);
fpre : D 6= 0
post : Result = N=Dg

procedure AddRat(var Result; Op1; Op2 : Rational);
fpre : true
post : Result = Op1 + Op2g

Specifying rational numbers using fractions does not seem like giving
an implementation because there is no difference in abstraction be-
tween the two types. A better example of operational specifications is
the specification of type stack in terms of type sequence[62]. For this,

140 Software Specifications

we need a definition for sequences and the operation which manipulate
them.

< s1; :::; sk > denotes the sequence of elements specified
<> empty sequence
s � x is the sequence resulting from concatenating

element x at the end of s
s1&s2 is the sequence resulting from concatenating

sequence s2 after s1
length(s) the number of elements in s
first(s) the leftmost element of s
last(s) the rightmost element of s
tail(s) the sequence resulting from deleting the first

element of s
lead(s) the sequence resulting from deleting the last

element of s
seq(V; n;m) < V [n]; V [n+ 1]; :::; V [m] >; also

seq(V; n;m) = seq(V; n;m � 1) � V [m]

Note that first, last, tail, and lead are undefined for <>.

Assuming we have this notation for sequences, we define type stack as
follows.

constMaxDepth := : : :
type Stack := : : :
finvariant :0 � length(S) � MaxDepthg
procedure NewStack(varS : Stack);

fpre : true
post :S =<>g

procedure Push(varS : Stack;E : StackElt);
fpre : length(S) < MaxDepth
post :S = S0 � Eg

procedure Pop(varS : Stack);
fpre : true
post :(length(S0) = 0 ^ S = S0) _ (length(S0) > 0 ^ S = lead(S0)g

function Top(varS : Stack) : StackElt;
fpre : length(S) > 0
post :Top = last(S)g

functionEmpty(varS : Stack) : boolean;
fpre : true
post :Empty = (length(S) = 0)g

Algebraic Specifications 141

These specifications are relatively easy to construct because they seem
like programming, although they have been criticized since they sug-
gest implementations too strongly. Thus, one might argue that opera-
tional specifications should be very inefficient implementations so that
no one is tempted to use the specification as an implementation.

3. ALGEBRAIC SPECIFICATION OF ADTS

An alternative to operational specification of ADTs is to define them
algebraically. In this approach, we define the semantics of ADT oper-
ators in terms of how they interact with one another, instead of how
they act in terms of a concrete type. It may be a bit harder to come up
with good axioms in algebraic specification as opposed to operational
specifications — after all, in operational specifications we deal with
implementations of single operations.

Algebraic specifications are divided into two parts: syntax and seman-
tics. The syntactic description is often referred to as the signature of
the algebra, and each “auxiliary” data type used to give this signature
is called a sort. For instance, the sorts for STACK above are integers
and booleans.

push : STACK � INTEGERS ! STACK
pop : STACK ! STACK
top : STACK ! INTEGERS [fundefinedg
empty : STACK ! BOOLEAN
newstack : ! STACK

The domain of STACK (as opposed to the domain of any of the above
operators) may now be described. This can actually be more difficult
than it sounds. Informally, we know that we want our type STACK to
encompass all the stacks of integers that could arise in some program.
Formally, we need a way to describe them. Since we have have listed
the operators, we can now identify a subset of the operators as being
constructors for the type. That is, we want to identify the least number
of operators necessary to be able to construct all possible stacks that
could come up. Intuitively, we can believe that newstack and push
are constructors, since any stack that was formed by using a pop some-
where along the way can be formed by using only a smaller number of
calls to push.

142 Software Specifications

Axioms describe the meanings of operators in terms of how they interact
with one another. For instance, our ADT STACK can be specified as:

1: pop(newstack) = newstack
2: pop(push(S; I)) = S
3: top(newstack) = undefined
4: top(push(S; I)) = I
5: empty(newstack) = true
6: empty(push(S; I)) = false

where S and I are considered to be universally quantified as an instance
of stack and integer, respectively. Consider Axiom 1 above: Remember
we are not declaring that there is some special instance of a stack that
is distinguished by being a “newstack.” Instead, this axiom is read “the
effect of composing a call to pop and a call to my function newstack is
just the same as having called newstack directly.” Likewise, Axiom 2
is read “the effect of composing a our pop function with a call to push
on some stack S and an integer I yields a stack which is just the same
as the stack S we started with.”

This choice of axioms defines an abstract type that we call STACK, and
seems to capture the basic semantics of the stack of our intuition. Note
what this specification does not capture, for instance, boundedness.
The above specification allows us to generate arbitrarily deep stacks,
which might not correspond to what our underlying implementations
should be expected to support. To capture boundedness, we might also
define a “hidden function” (i.e. an operator not normally exported for
users to access, but which allows us to capture a desired property in
our specification) such as size:STACK!INTEGERS, then use the fol-
lowing algebra in place of our earlier specification:

1: pop(newstack) = newstack
2: pop(push(S; I)) = if size(S) = MAX then pop(S) else S
3: top(newstack) = undefined
4: top(push(S; I)) = if size(S) = MAX then top(S) else I
5: empty(newstack) = true
6: empty(push(S; I)) = false
7: size(newstack) = 0
8: size(push(S; I)) = if size(S) = MAX then size(S)

else size(S) + 1

Algebraic Specifications 143

where MAX is some agreed-upon parameter.

In general, a list of axioms appears as a set of equations, with each left-
hand side containing a composition of operators, and each right-hand
side containing a description of how the composition behaves in terms
of the type’s operators and simple “if-then-else” constructs. Iteration
or other auxiliary variables are not used.

These axioms are often thought of as “rewrite rules.” Informally, this
is because we can take one instance of the ADT and appeal to the list
to find a simpler way to express that instance. However, there is a
more mathematical criteria for rewrite rules, which will be explored
later. In the meantime, the key is that all axioms should take one
composition of functions and show how it can be expressed in only one
of the arguments or functions, that is, we rewrite the composition in a
simpler way.

Notice also that this functional approach to building ADTs treats in-
stances of the type as being “immutable.” (In contrast, and from an
implementation point of view, we usually think of a stack as being
one object which accumulates side effects based on the operations on
the stack.) According to the specification above, all the push operation
guarantees is that it returns an instance of STACK which is constructed
from another instance of STACK and some INTEGER. This situation,
together with our ability to view the axioms as rewrite rules, allows
us to think of instances of an algebraically specified ADT as being
sentences in a language, a very useful perspective. For example, one
sentence might be formed by calling newstack, then applying a push,
then another push, then a pop, then applying the query empty, for
example,

empty(pop(push(push(newstack; 42); 17)))

Using Axiom 2 above (from unbounded stacks), we can simplify the
outermost composition of pop and push, and rewrite the sentence as:

empty(push(newstack; 42))

At this point we can appeal to axiom (6) and simplify the string to
be simply false. Note how we were able to squeeze the call to pop
out, and express the argument to empty using a sentence which only
contains calls to either push or newstack. This illustrates our point
in the earlier discussion concerning constructors. We will often refer to

144 Software Specifications

an instance of the ADT which is built only through use of constructor
operations as being in normal (or canonical) form. In general, it is
very useful to look at intermediate expressions as being strings in a
language to which transformations can be applied. This will assist us
in our reasoning about programs using algebraically specified ADTs.

3.1. Developing Algebraic Axioms

For the axiomatization of type T to be sufficiently complete, it must
assign a value to each term of type T [24]. Since the constructors pro-
duce all the values of the domain of the type being defined, then we
need only specify how non-constructor operations affect each construc-
tor. Thus if c11 and c2 are constructors operations of type T and f
is a non-constructor operation whose signature is r : T ! T1, we
write axioms to define f(c1) and f(c2). For example, for type stack
push and newstack are constructors, while pop, top and empty are not
constructors. Thus, we wrote axioms to define the meanings of:

pop(newstack)
pop(push(S; i))
top(newstack)
top(push(S; i))
empty(newstack)
empty(push(S; i))

Consider another pair of examples. Let us define the ADT “SET of
integers,” having syntax

newset : ! SET
insert : SET � INTEGER! SET
delete : SET � INTEGER! SET
member : SET � INTEGER! BOOLEAN

having semantics

member(newset; i) = false
member(insert(S; i); j) = if i = j then true else member(S; j)
delete(newset; i) = newset
delete(insert(S; i); j) = if i = j then delete(S; j)

else insert(delete(S; j); i)

Algebraic Specifications 145

Alternately, we can define the ADT “BAG of integers” as:

newbag : ! BAG
insert : BAG � INTEGER! BAG
delete : BAG � INTEGER! BAG
member : BAG � INTEGER! BOOLEAN

having semantics

member(newbag; i) = false
member(insert(B; i); j) = if i = j then true else member(S; j)
delete(newbag; i) = newbag
delete(insert(B; i); j) = if i = j then B

else insert(delete(B; j); i))

It would be very useful for you to go through a few simple examples
using these two close but different sets of axioms. Build a few sentences
in the “language” of the type, and verify for yourself that, for instance,
you can add several copies of the same integer to a set, and that after
removing it you will be able to ask “member” of that set and integer and
get the right answer. In the next subsections, we give a more complete
development of a set of axioms.

We have more choices for axioms when defining operations which have
more than one argument of the type being defined. The examples
below illustrate several different sets of axioms defining add for the
type natural numbers generated by 0 and succ: Each of the sets of
axioms are sufficiently complete.

add(0; X) = X
add(succ(Y); Z) = succ(add(Y; Z))

add(0; 0) = 0
add(succ(X); 0) = succ(X)
add(Y; succ(Z)) = succ(add(Y; Z))

add(0; 0) = 0
add(0; succ(W)) = succ(W)
add(succ(X); 0) = succ(X)
add(succ(Y); succ(Z)) = succ(succ(add(Y; Z)))

146 Software Specifications

Huet and Hullot describe an algorithm for determining if the set of
arguments of an operation’s axioms is sufficiently complete. [33] For
each operation, a set of n-tuples representing the operation’s arguments
is constructed. Initially all the arguments in the first positions of
the axioms for a particular operation are examined to determine that
they “cover” the set of constructors, either by containing an instance of
each constructor or by containing a variable which can represent any
constructor. For example, the second set of axioms defining add have
the following set of argument two-tuples: f < 0; 0 >, < succ(X); 0) >;
< Y; succ(Z) > g. We consider the arguments in the first positions:
0; succ(X); and Y , and conclude that all constructors are present and
that succ’s argument covers all its constructors because it is a variable.
If all the constructors are present, we consider each set of n-1-tuples
formed from that subset of the axioms having the first constructor or a
variable in their first positions, followed by the set of n-1-tuples formed
from the subset of axioms having the second constructor or a variable
in their first positions, etc. until we have processed all the constructors.
Again, by example, we consider the sets of 1-tuples f< 0 >;< succ(Z) >
g (whose first arguments were 0 or Y) and f < 0 >;< succ(Z) > g
(whose first arguments were succ(X) or Y). Since all the constructors
are present in each of these sets and succ’s argument covers all its
constructors, the axioms are sufficiently complete.

Huet and Hullot’s algorithm is given below.

function complete(F: ff1,...,fmg where fi = < s1
i ; :::; s

k
i >): boolean;

for every fi do if fi contains duplicate variables then
return(false);

if k = 0 and F = f <> g then return(true);
for i in 1..m do

if s1
i is a variable and complete(f< s2i ; :::; s

k
i >j s

1
i

is a variableg) then return(true);
for every constructor c(p1,...,pn) do

if there exists one s1
i with leading function symbol c and

complete(f< p1; :::; pn; s
2
i ; :::; s

k
i >j s

1
i = c(p1,...,pn)g

[f< X1; :::; Xn; s
2
i ; :::; s

k
i >j

s1
i is a variable and Xj ’s are fresh variablesg)

then skip
else return(false);

return(true)

Algebraic Specifications 147

3.2. Hints For writing algebraic axioms

The process of writing algebraic specifications is similar to that of
programming.1 The main difference is that in programming we are
interested in the efficiency of the solutions, whereas in specifying we
are interested in expressing the functionality and nothing else (i.e.,
avoid implementation bias). This means that in writing specifications
we want to express only the function to be computed, not the method
of computation. Besides, algebraic specification languages do not have
the concept of side effect (e.g., variable assignment) every time a new
value is created, so algebraic specifications resemble so-called func-
tional programs.

Determine functionality

You should determine the use of the data type, what operations create
instances of the data type, what operations modify instances,2 what
operations obtain values from the data type, etc. To determine these
functions you must think about the uses of the data type. This might
be hard, especially if this is a “general-purpose” type and you cannot
anticipate all its uses.

Write signatures

Once you have decided which is the set of functions, you write the
signatures of them. In this step you can provide a lot of insight on the
abstract type if you use appropriate, meaningful names. Note, however
that the final word on meaning is not the name: This is the whole point
of using formal specifications.

Choose constructors

Initially all functions that yield the defined type are candidates for con-
structors. In principle, you can have them all as constructors, but that
will introduce many problems both in the consistency of your axioms
and also in the number of axioms (equations) that you have to provide.

1We are indebted to Pablo Straub of the Catholic University of Chile for contributing this
part.

2In the specification no modification is allowed, but modification is expressed by creation
of a new instance that is very similar to the original.

148 Software Specifications

Hence you want a “minimal” set of constructors. This set of construc-
tors will have at least one function that has no parameter of the type
defined (usually it will be a function with no parameters at all).

If you can figure out how to express the semantics of a function in terms
of others, then this function is not a constructor. Besides, the way you
express the semantics of the function will dictate the axioms you will
write later.

Sometimes which operations are constructors is evident from the speci-
fication; sometimes there are explicit choices to be made. For example,
consider a specification for a dequeue, a list with insertion and deletion
on both ends. We have two possible sets of constructors: fAddFront,
Newg and fAddBack, Newg. Which one to use is a matter of taste, but
you should decide on one of them.

Write axioms

The first part is to determine which axioms you need to write. Con-
structors do not need axioms: you will only write axioms for noncon-
structors. For each nonconstructor function, you need to cover all cases
of the parameters. As a rule of thumb, if there are n constructors you
will need n equations for each nonconstructor.

This rule of thumb is not complete, though, because sometimes there
is more than one parameter of the defined type, so you may need more
axioms. For example if you are defining a function with 3 parameters
of the type defined and you have 2 constructors, you may need 23 = 8
equations to cover all constructor combinations. Besides, sometimes
you need to consider nesting of constructors to discriminate different
cases. Fortunately, this rarely occurs in practice, and you will usually
be able to cover all cases with just a few equations.

Now that you know all cases to consider, you write the left-hand side
of all axioms. There are no general methods to write the right-hand
side, though. While writing the axioms you will notice that some left
hand sides are meaningless (e.g., extract information from an empty
data structure). From this you define your exceptions.

Algebraic Specifications 149

Example: Finite integer functions

We want to design a data structure to represent finite integer func-
tions. A finite function is a function whose domain is finite, that is, the
function is defined in a finite number of points. Finite functions can be
represented by a lookup table whose entries are ordered pairs. In this
case these ordered pairs will be pairs of integers.

Note that even though here we are defining the data structure for the
case of integers, the specification that we will develop can be parame-
terized for finite functions with any domain and range.

Determine functionality

We want to be able to manipulate finite mappings by creating simple
mappings, modify mappings at a specific point (define the value, make
the value undefined), and make the union of mappings. The union of
two mappings is not commutative, because if both mapping are defined
at a particular point, the definition from the second mapping takes
precedence. We need to be able to handle empty mappings and also
have a function to create a single-entry mapping. Obviously, given
an integer, we want to know the value of the function at that point.
Besides, given a mapping, we want to get its domain.

Writing signatures

Given the requirements expressed before, define the following functions
with their corresponding signatures.

EmptyMapping: ! mapping
SingleMapping: integer � integer ! mapping
Define: mapping � integer � integer ! mapping
Undefine: mapping � integer ! mapping
Union: mapping � mapping ! mapping
Apply: mapping � integer ! integer
Domain: mapping ! set[integer]

Choosing constructors

Candidates for constructors are:

EmptyMapping; SingleMapping;Define; Undefine; Union

150 Software Specifications

Of them, either EmptyMapping or SingleMapping must be chosen as
constructor, because these are the only ones that do not have a pa-
rameter of type mapping. SingleMapping can be easily expressed by
defining an EmptyMapping. Further thought can lead us to choose
EmptyMapping and Define as the constructors.

Writing axioms

First, consider which axioms we need. Our rule of thumb tells us
that we need two axioms for each nonconstructor, with the caveat that
Union might require four axioms. Besides, since SingleMapping has
no parameters of type mapping, we can define it with only one axiom.

The left-hand sides are then:

SingleMapping(i; v) =

Undefine(Empty; i) =
Undefine(Define(m; i1 ; v); i2) =

Apply(Empty; i) =
Apply(Define(m; i1 ; v); i2) =

Domain(Empty) =
Domain(Define(m; i; v)) =

We delay the left-hand sides for the Union operation because we do not
know yet whether we will be able to do it with two or four equations.

Now we define the semantics of all operations except Union.

SingleMapping(i; v) = Define(Empty; i; v)
Undefine(Empty; i) = Empty
Undefine(Define(m; i1 ; v); i2) = if i1 = i2 then Undefine(m; i2)

else Define(Undefine(m; i2); i1; v)
Apply(Empty; i) = unde�ned

Apply(Define(m; i1 ; v); i2) = if i1 = i2 then v else Apply(m; i2)
Domain(Empty) = NullSet
Domain(Define(m; i; v)) = AddMember(Domain(m); i)

Now let us consider function Union. Obviously union with the Empty
mapping does not modify the mapping. So as long as one of the map-
pings is empty the result is trivial. What happens with two nonempty

Algebraic Specifications 151

mappings? We want the value of the second mapping to take prece-
dence. Here we present 4 equations to consider all possible cases.

Union(Empty;Empty) = Empty
Union(Define(m; i; v); Empty) = Define(m; i; v)
Union(Empty;Define(m; i; v)) = Define(m; i; v)
Union(Define(m1 ; i1; v1); Define(m2 ; i2; v2)) =

Define(Union(Define(m1 ; i1; v1);m2); i2; v2)

By looking at the complex specification of the Union function we note
that we can use only two equations, because the first parameter is never
used in recursion: It is always taken in toto. If the second parameter is
Empty we always return the first; if the second parameter is not Empty
we add all of its definitions to the first one.

The new equations are these

Union(m;Empty) = m
Union(m1; Define(m2 ; i; v)) = Define(Union(m1 ;m2); i; v)

3.3. Consistency

Axioms sets are consistent if we always get the same final result, inde-
pendent of the order in which we apply the axioms to simplify terms.
As an example (adapted from [27]), consider adding the following axiom
to the definition of BAGs above:

member(delete(S; i); j) = if i = j then false else member(S; j)

Then consider the simplification of string:

member(delete(insert(insert(newbag; 3); 3); 3); 3)

By first applying our new axiom, this can be rewritten as

if 3 = 3 then false else member(: : :)

or false. However, by our original delete(insert()) axiom, this can
become

member(if 3 = 3 then insert(newbag; 3) else delete(: : :)

152 Software Specifications

or
member(insert(newbag; 3); 3)

or
if 3 = 3 then true else member(: : :)

or true, a contradiction. In general, questions of consistency can be an-
swered by using the Knuth–Bendix algorithm [38], which is described
in detail later in this chapter.

3.4. Term Equality

Other interesting predicaments arise. Consider two strings for SETs,
insert(insert(newset, 3), 4)

and
insert(insert(newset, 4), 3)

Intuitively we want the sets represented by these two strings to be
equal. After all, we see each as being a set of two elements, 3 and
4, and we know a property of sets is that there is no order property.
However, it is impossible to prove this using only the axioms given to
define the SET semantics.

In general, questions of equality are very difficult to deal with. In
so-called “initial algebras,” two sentences are considered equal only if
they can be proven so as a consequence of axioms. Some researchers,
such as Guttag [17], say that two sentences are equal unless one of the
operations mapping out of the type of interest carries them to distinct
values. In effect, the question of equality is then punted into the equal-
ity interpretation of the ADT’s sorts. Regardless, when you discuss
equality in the manipulation of abstract data types, it is essential to be
absolutely clear as to “which equals” you are talking about.

4. DATA TYPE INDUCTION

Data type induction is an important technique in verifying properties of
algebraic specifications. This induction works as follows, and is closely
related to natural induction of the positive integers.

Given the set of operations defined on some ADT X, we can separate
them into three sets:

Algebraic Specifications 153

1. ffig are those functions which return objects of type X but do not
contain arguments of type X. These generating functions create the
primitive objects of type X.

2. fgig are those functions which return objects of type X and do con-
tain an argument of type X. These generating function creates non-
primitive objects of type X.

3. fhig are all other functions, generally taking arguments of type X
and returning values of some other type. These represent uses of the
type.

For the stack ADT, we get:

f = fnewstackg
g = fpush; popg
h = fempty; top; sizeg

In general there will be one f member, one or two g members, and
a small number of h members, but there are no prohibitions on more
than these.

Let P (x) be some predicate concerning x 2 X for ADT X. Under
what conditions will P be true for every member of type X? Similar
to natural induction, we want to show that primitive objects are true
under predicate P and that we can use these primitive values to show
that by constructing new values of the type, the property remains true.

We can define data type induction as follows:

� Given ADT X with functions fi, gi and hi defined as above and pred-
icate P (x) for x 2 X.

� Show that P (fi) is valid (base case).

� Assume P (x) is valid. Show that this implies P (gi(x)) is valid (i.e.,
P (x) ` P (gi(x))).

� We can then conclude 8x 2 X P (x).

For the stack ADT, this would mean that we show P (newstack) and
P (x) ` P (gi(x)) (i.e., both P (push(x; i)) and P (pop(x)).) However, we
do not need to show this for pop since pop is not needed to generate all

154 Software Specifications

stacks. The normal-form lemma gives us this. This lemma is a formal
assertion of what we have already informally claimed earlier, namely
that all instances of a STACK can be built using only calls to newstack
and push; that is, each stack has a normal form.

Lemma: For every S 2 STACK, either

1. S = newstack, or

2. 9S1 2 STACK and I 2 INTEGER such that S = push(S1; I)

(The uniqueness of this normal form requires a separate proof, and is
left as an exercise.).

This lemma simply says that we can replace any pop operation by an
equivalent set of newstack or push operations. The proof of this lemma
is quite complex and beyond the scope of this book. It depends upon
the following argument:

1. The STACK ADT is primitive recursive and each object is con-
structible by a finite application of the constructors.

2. “Count” the number of function applications in constructing stack S.

3. For each instance of pop(Si), consider the definition of Si. If it
is of the form newstack, then pop(newstack) = newstack. If it is of
the form pop(push(Sj ; j)), then by axiom, this is just Sj . If it is of
the form pop(pop(Sj)) apply the same argument to Sj until you get a
pop(newstack) or pop(push(: : :)).

4. In all of the above cases, the “count” of function applications by ap-
plying these reductions will be less. Thus, the process must terminate.

5. This can be repeated as long as a pop operation remains. So all pop
operations can be removed from any stack description.

This explanation was generally intuitive. See the Guttag and Horning
reference [24] at the end of the chapter for complete details on the proof
of the normal form lemma.

This normal form lemma is not essential for verifying properties of
an ADT. However, proving such a lemma is often a way to reduce the
amount of work associated with verifications because arguments which

Algebraic Specifications 155

previously needed to be made for all operators returning the type of
interest can then be replaced by an argument for only the constructors
of the type.

4.1. Example: Data Type Induction Proof

Using data type induction, we can prove that pushing a value on a stack
increases its size by proving the theorem size(push(S;X)) > size(S).
The axioms for stacks are shown below.

axiom top1 : top(newstack) = undefined
axiom top2 : top(push(S; I)) = I
axiom size1 : size(newstack) = 0
axiom size2 : size(push(S; I)) = size(S) + 1
axiom pop1 : pop(newstack) = newstack
axiom pop2 : pop(push(S; I)) = S

We start the proof of size(push(S;X)) > size(S) by using the axioms
until no more simplifications are possible.

size(push(S;X)) > size(S)
size(S) + 1 > size(S) by size2

At this point, we resort to data type induction. First we replace S by
newstack and show the theorem holds.

Begin induction on S = newstack
size(newstack) + 1 > size(newstack) replace S with newstack
0 + 1 > 0 by size1
true

Next, we assume that the theorem holds for S0, i.e, size(S 0) + 1 >
size(S0); and show the theorem holds for S = push(S0; X).

Induction on S = push(S0; X)
Inductive hyp: : size(S0) + 1 > size(S0)
size(push(S0 ; X)) + 1 > size(push(S0 ; X)) push(S0; X) replaces S
size(S0) + 1 + 1 > size(S0) + 1 by size2
size(S0) + 1 > size(S0) subtract 1 from each side
true by inductive hypothesis

156 Software Specifications

5. VERIFYING ADT IMPLEMENTATIONS

5.1. Verifying Operational Speci�cations

Proving that operations are implemented correctly is difficult because
of the abstraction gap between the objects in the specifications (se-
quences) and those in the implementation (arrays and integers). We
add two new pieces of documentation to bridge this gap: a represen-
tation mapping (R) that maps implementation objects to specification
objects, and implementation-level input and output assertions for each
operation. For the stack example, these are:

constMaxDepth := : : :
type Stack := record Sp : 0::MaxDepth;

V : array[1::MaxDepth] of : : :end
finvariant : 0 � S:Sp �MaxDepthg
frepresentationmapping : R(S:V; S:Sp) = seq(S:V; 1; S:Sp)g
procedure NewStack(varS : Stack);

fin : true
out : S:Sp = 0g

procedure Push(varS : Stack;E : StackElt);
fin : S:Sp < MaxDepth
out : S:V = alpha(S0:V ;S0:Sp + 1 : E) ^ S:Sp = S0:Sp+ 1g

procedure Pop(varS : Stack);
fin : true
out : (S0:Sp = 0 ^ S:Sp = S0:Sp)_

(S0:Sp > 0 ^ S:Sp = S0:Sp � 1)g
functionTop(varS : Stack) : StackElt;

fin : S:Sp > 0
out : Top = S:V [S:Sp]g

functionEmpty(varS : Stack) : boolean;
fin : true
outEmpty = (S:Sp = 0)g

The verification steps are:

� Prove that any initialized concrete object is a well-formed abstract
object, that is, if any implementation object X satisfies the concrete
invariant, its corresponding abstract value (formed by applying the
representation mapping) satisfies the abstract invariant.
CI(X)) AI(R(X))

Algebraic Specifications 157

� For each operation, show that its implementation is consistent with
its in and out conditions:

in(X) ^CI(X)foperation bodygout(X) ^CI(X)

This proof is identical to those presented in Chapter 2. However, if
post(X) contains ghost variables, we may assertions to in(X) equating
input values with their respective ghost variables.

� For each operation, show its abstract precondition guarantees that
its concrete precondition is true, and that its concrete postcondition
guarantees that its abstract postcondition is true:

a: CI(X) ^ pre(R(X))) in(X)
b: CI(X) ^ pre(R(X0)) ^ out(X)) post(R(X))

Example veri�cations

1. CI(X)) AI(R(X))

0 � S:Sp �MaxDepth) 0 � length(seq(S:V; 1; S:Sp)) �MaxDepth
0 � S:Sp �MaxDepth) 0 � S:Sp �MaxDepth

2. fin(X) ^CI(X)g Push’s body fout(X) ^C(X)g

procedure Push(varS : Stack;E : StackElt);
fin :S:Sp < MaxDepth
out :S:V = alpha(S0:V ;S0:Sp + 1 : E) ^ S:Sp = S0:Sp + 1g
begin

S:Sp := S:Sp + 1;
S:V [S:Sp] := E

end

Since the post-condition contains ghost variables S0:V and S0:Sp, we
add assertions to the pre-condition equating S:V and S0:V , and S:Sp
and S0:Sp to obtain the pre-condition:

in :S:V = S0:V land S:Sp = S0:Sp ^ S:Sp < MaxDepth

First we use the array assignment axiom:

158 Software Specifications

Q
4
= f�(S:V ;S:Sp : X) = �(S0:V ;S0:Sp + 1 : X)

^S:Sp = S0:Sp + 1)gS:V [S:Sp] := E

post
4
= f(S:V = �(S0:V ;S0:Sp+ 1 : E) ^ S:Sp = S0:Sp + 1)g

Next, we use the assignment axiom:

P
4
= f�(S:V ;S:Sp+ 1 : X) = �(S0:V ;S0:Sp+ 1 : X)

^S:Sp + 1 = S0:Sp+ 1)gS:Sp := S:Sp + 1

Q
4
= f�(S:V ;S:Sp : X) = �(S0:V ;S0:Sp+ 1 : X)

^S:Sp = S0:Sp+ 1)g

By the rule of composition:

fPgS:Sp := S:Sp + 1gQ;QfS:V [S:Sp] := Efpostg

fPgS:Sp := S:Sp + 1;S:V [S:Sp] := Efpostg

Finally, we invoke the rule of consequence:

pre) P; fPgS:Sp := S:Sp + 1;S:V [S:Sp] := Efpostg

fpregS:Sp := S:Sp + 1;S:V [S:Sp] := Efpostg

3a. CI(X) ^ pre(R(X))) in(X)

0 � S:Sp �MaxDepth ^ length(seq(S:V; 1; S:Sp)) < MaxDepth)
S:Sp < MaxDepth

0 � S:Sp � MaxDepth ^ length(seq(S:V; 1; S:Sp)) < MaxDepth
) S:Sp < MaxDepth

Rewriting length by its definition yields:

0 � S:Sp �MaxDepth ^ S:Sp < MaxDepth)
S:Sp < MaxDepth

3b. CI(X) ^ pre(R(X 0)) ^ in(X)) post(R(X))

Algebraic Specifications 159

0 � S:Sp �MaxDepth ^ length(seq(S0 :V; 1; S0:Sp)) < MaxDepth^
S:V = �(S0:V ;S0:Sp+ 1 : E) ^ S:Sp = S0:Sp+ 1)

seq(S:V; 1; S:Sp) = seq(S0:V; 1; S0:Sp) � E

Rewriting length by its definition yields:

0 � S:Sp �MaxDepth ^ S0:Sp < MaxDepth^
S:V = �(S0:V ;S0:Sp + 1 : E) ^ S:Sp = S0:Sp+ 1)

seq(S:V; 1; S:Sp) = seq(S0:V; 1; S0:Sp) � E

Replacing S.V and S.Sp on the right side of the equation yields:

0 � S:Sp �MaxDepth ^ S0:Sp < MaxDepth^
S:V = �(S0:V ;S0:Sp + 1 : E) ^ S:Sp = S0:Sp+ 1)

seq(�(S0:V ;S0:Sp + 1 : E); 1; S0:Sp+ 1) = seq(S0 :V; 1; S0:Sp) � E

From the definition of sequence, seq(V; n;m) = seq(V; n;m� 1) � V [m].
Thus

seq(�(S0:V ;S0:Sp+ 1 : E); 1; S0:Sp + 1) =
seq(�(S0:V ;S0:Sp+ 1 : E); 1; S0:Sp) �

�(S0:V ;S0:Sp+ 1 : E)[S0:Sp+ 1]

By the definition of the � notation:

�(S0:V ;S0:Sp+ 1 : E)[S0:Sp+ 1] = E
seq(�(S0:V ;S0:Sp+ 1 : E); 1; S0:Sp) = seq(S0:V; 1; S0:Sp)

Thus the previous formula can be written as:

seq(�(S0:V ;S0:Sp+ 1 : E); 1; S0:Sp + 1) = seq(S0:V; 1; S0:Sp) � E

Finally, the right side of the formula reduces to true.

0 � S:Sp �MaxDepth ^ S0:Sp < MaxDepth^
S:V = �(S0:V ;S0:Sp+ 1 : E) ^ S:Sp = S0:Sp + 1)

seq(S0:V; 1; S0:Sp) � E = seq(S0:V; 1; S0:Sp) � E

160 Software Specifications

5.2. Verifying Algebraic Speci�cations

In operationally specified ADTs, the actions of operators were described
in terms of a distinct, concrete type; hence, their implementation is eas-
ily discussed in terms of only that type. In contrast, the operators of an
algebraically specified ADT are described by how they interrelate with
the other operators. There is no second (let alone concrete) type used
in this case. Therefore, to give an implementation of an algebraically
specified ADT, it is essential that we first describe the properties of a
second data type that will be used to implement the first. In keeping
with the spirit of this abstraction activity, we usually give an algebraic
specification for this second type as well.

We often refer to the type we are trying to implement as a “higher level”
data type, and to the type used in the implementation as a “lower level”
data type. However, these phrases are vague, and they only result
from the way we naturally think about the implementation process. In
fact, the lower level type might itself be an elaborate ADT with rich
semantics. It, in turn, might be implemented in terms of yet a lower-
level type, and so on. A hierarchy of data types can often result in
this manner. The goal of course is for one of these lower level types to
ultimately be directly representable and implemented in hardware (for
instance, we will shortly show how to implement the STACKs specified
earlier in terms of an algebraically specified array, and we would expect
that this array could be directly implemented in our host language on
most computers).

However, there is one glaring problem associated with this type hi-
erarchy, and that is how to check whether a lower-level data type is
faithfully implemented on a real machine. In the example we are
about to give (STACKs in terms of arrays), our specification of array
assumes that we have an unbounded array, and further, that uninitial-
ized entries in the array can be detected. These properties are rarely
true of machine implementations. Hence, our techniques are only as
reliable as is our implementation of the base types. Nonetheless, if we
do develop a specification which can be reliably implemented on a ma-
chine, then all the benefits of a verified implementation can be enjoyed.
One of the most important of these benefits is that the machine-specific
properties that must be captured are very localized, that is, develop-
ers will be free to use instances of our STACK data type, and it will
be transparent whether they are implemented using arrays (on some
hardware) or actual stacks (on a stack machine).

Algebraic Specifications 161

Once we have the specification for both the higher- and lower-level
types, we can describe how the one is to be implemented in terms of
the other. This is done through an implementation program, which,
just as with the original specification of the individual ADTs, looks like
a list of axioms. However, whereas before the axioms showed how the
operators from any one type lnterrelated, the implementation program
shows how the higher-level type behaves in terms of the lower-level
type.

In order to complete this implementation program, there is one ad-
ditional, and quite essential, function which must be provided: the
representation function. Remember that the operators from each in-
dividual type are functions that map into different ranges. It would
be absurd to make an implementation program that then equates the
range of one ADT’s operator with the range of a different ADT’s oper-
ator. The program only makes sense when there is a representation
function which shows how to map an instance of the lower-level type
into an instance of the higher-level type. Then, more precisely, we can
show how the operators of the higher-level type behave in terms of the
range of the representation function applied to operators of the lower
level type.

Another subtle requirement that is placed on us is to come up with
an equivalence interpretation. The implementation program is a list of
equations, as described above. But remember that, in general, ques-
tions of equality are very difficult to resolve. If we are to have any hope
of being able to verify properties of this program, then we must have a
reliable way to answer questions of equality in terms of the lower-level
type. The emphasis is for an important distinction: An implementation
and its associated equivalence interpretation do not resolve the prob-
lem of checking equality within just the higher level type system. They
will only allow us to check whether similar operations on instances of
the lower-level type will produce (through the representation function)
identical sentences in the language of the higher-level type.

We are now ready to summarize what it means to verify an implementa-
tion of some ADT. The most obvious requirement is that the axioms for
our type of interest are preserved through the implementation. Since
the only way we mathematically characterize our ADT is through how
they interrelate with one another, the only place we can turn to check
the reasonableness of an implementation is exactly this body of rules.
These must be checked. A less obvious proof obligation is to verify that
our equality interpretation is in fact an equivalence relation. Finally,

162 Software Specifications

we must prove a representation invariant, that is, insure that all ele-
ments of our ADT domain can in fact be represented as the image of
the representation function applied to some instances of the lower level
type.

5.3. Example: Verifying an Implementation of Stacks

Using a technique developed by Guttag, Horowitz, and Musser [25], we
now illustrate the idea of implementing one ADT in terms of another
and then verifying the correctness of that implementation by showing
how the ADT stack defined previously may be implemented in terms of
arrays. To do this, our first step must be to formulate an axiomatization
of array. Its syntax will be:

newarray : ! array
assign : array � integer � integer ! array
access : array � integer ! integer [fundefinedg

and its semantics will be simply:

access(newarray; I) = undefined
access(assign(array; I1 ; val); I2) = if I1 = I2 then val

else (access(array; I2))

Note that this is a somewhat simplistic view of what arrays are. In
particular, this is an unbounded array, which is useful only for purposes
of introduction. As we discussed in the previous section, it will be
important for us to ultimately give our implementation of STACKs in
terms of a data type which is in turn more closely implemented directly
by the underlying computer.

We choose our representation function to be:

STAK(array; integer) ! STACK

and hence we may give our implementation program:

newstack = STAK(newarray; 0)
push(STAK(arr; t); x) = STAK(assign(arr; t + 1; x); t+ 1)
pop(STAK(arr; t)) = if t = 0 then STAK(arr; 0)

else (STAK(arr; t� 1))
top(STAK(arr; t)) = access(arr; t)
empty(STAK(arr; t)) = (t = 0)

Algebraic Specifications 163

Our representation invariant can now be declared to be the predicate

P (S) = 9A 2 ARRAY; 9i 2 INTEGERS; i � 0; S = STAK(A; i)

where S is a free variable corresponding to an element of STACK.

In order to insure that the correspondence between an element of
STACK and a pair (array; i) is reasonable, we must show each of:

P (newstack)
P (S)) P (push(S; x))
P (S)) P (pop(S))

Since we have already proven a normal form lemma for stacks, we only
have to prove the first two of these assertions. So:

� Need to show P (newstack), that is:

9A 2 ARRAY; 9i 2 INTEGERS; newstack = STAK(A; i)

Based on our implementation, all we need do to show this is simply
choose A to be newarray, and i to be 0.

� Need to show P (S)) P (push(S; x)). We know S = STAK(A; i) ^
i � 0 from P (S), and need to show 9A0 and i0 such that push(S; x) =
STAK(A0; i0). But push(S; x) = STAK(assign(A; i+1; x); i+1). We can
show the desired assertion simply by choosing A0 to be assign(A; i+1; x)
and i0 to be i + 1, with i0 � 0.

Equality

Our equality interpretation is chosen as follows:

STAK(A1 ; t1) = STAK(A2 ; t2)

if and only if

(t1 = t2) ^ 8k(1 � k � t1; access(A1; k) = access(A2 ; k))

Our proof obligation here is to show that this is a “reasonable” inter-
pretation, that is, it has the properties of being an equivalence relation:

1: reflexivity : x = x
2: symmetry : x = y) y = x
3: transitivity : x = y ^ y = z) x = z

164 Software Specifications

and, so that we may manipulate expressions in our word algebra safely,
we must show that the relation preserves substitutivity, i.e.

x = y) P (x) = P (y)

where P can be any of our operators. So, in turn:

� reflexivity: We need to show that S = S for a stack S and our
equivalence interpretation. We know S is in the range of STAK, based
on our representation invariant, that is, S = STAK(A; t). But A = A
and t = t based on our usual interpretation of equality (over integers
and arrays), hence STAK(A; t) = STAK(A; t) in our desired equality
interpretation.

� symmetry: We need to show that S1 = S2 implies S2 = S1. Since
S1 = S2 under our equivalence interpretation, the arrays and integers
which map into these stacks under STAK are themselves equal. Since
the equality of integers and arrays is symmetric, then S2 = S1 is also
true in our equality interpretation.

� transitivity: Precisely the same argument as given for symmetry
will show transitivity holds.

� substitutivity: We need to show each of:

S1 = S2) push(S1; x) = push(S2; x)
S1 = S2) pop(S1) = pop(S2)
S1 = S2) top(S1) = top(S2)
S1 = S2) empty(S1) = empty(S2)

We will show this proof for the push operation, and leave the remaining
three as exercises. Note that all operators must be shown in this step
— the substitutive property must hold for all operators, even those
which map out of the type of interest, hence having proven a normal
form lemma does not relieve us of work in this step of the proof.

Let S1 = STAK(A1; i1) and S2 = STAK(A2 ; i2), and assume that S1 =
S2 to show that

push(STAK(A1 ; i1); x) = push(STAK(A2 ; i2); x)

Use the implementation of push on the right-hand side of the above
expression to obtain

STAK(assign(A1 ; i1 + 1; x); i1 + 1) = STAK(assign(A2 ; i2 + 1; x); i2 + 1)

In terms of our equality interpretation, we must show

Algebraic Specifications 165

(i1 = i2) ^ 8k(1 � k � i1; access(A1; k) = access(A2; k)))
(i1 + 1 = i2 + 1) ^ 8k(1 � k � i1 + 1;
access(assign(A1 ; i1 + 1; x); k) = access(assign(A2 ; i2 + 1; x); k)

The first clause of the consequent follows directly from the first clause
of the antecedent. The second clause of the consequent is supported by
simplifying as follows:

access(assign(A1 ; i1 + 1; x); k) = if k = i1 + 1) then x else access(A1 ; k)

due to the implementation program. Likewise,

access(assign(A2 ; i2 + 1; x); k) = if k = i2 + 1) then x else access(A2 ; k)

Hence, because i1 = i2, the clause we are examining simplifies to

8k(1 � k � i1 + 1; if k = i1 + 1 then x = x)
else (access(A1; k) = access(A2 ; k)))

For the range i � k � i1, this is implied by clause two of the antecedent.
When k = i1 + 1, we know the expression is true due to the symmetry
of “=” over integers.

Finally, we are at the point where we can verify that the axioms of our
type STACK still hold through our implementation. The expressions
which must be checked are:

1. pop(newstack) = newstack
2. pop(push(S, I)) = S
3. top(newstack) = undefined
4. top(push(S, I)) = I
5. empty(newstack) = true
6. empty(push(S, I)) = false

We will only prove two of these here, leaving the remaining as exercises.

First, we prove Item 4 above, showing

top(push(S; x)) = x

through the implementation. Using the representation invariant, as-
sume that S = STAK(A; i). Then

top(push(STAK(A; i); x)) =
top(STAK(assign(A; i + 1; x); i+ 1)) =
access(assign(A; i + 1; x); i+ 1) = x

166 Software Specifications

Thus, the left side reduces to x and we have x = x.

Next we prove Item 2 above, showing

pop(push(S; x)) = S

Again, assume S = STAK(A; i).

pop(push(STAK(A; i); x)) =
pop(STAK(assign(A; i + 1; x); i+ 1)) =
if i + 1 = 0 then STAK(assign(A; i + 1; x); 0))

else STAK(assign(A; i + 1; x); i)

Now we must use data type induction to show that P (STAK(A; i))
implies i � 0 so that we need consider only one case above.

P (newstack) = P (STAK(newarray; 0)) = 0 � 0:
P (S)) P (push(S; x))

P (STAK(A; i))) P (push(STAK(A; i); x))
i � 0) P (STAK(assign(A; i + 1; x); i+ 1))
i � 0) i + 1 � 0

Because of our normal-form lemma, we do not need to show P (S))
P (pop(S)) separately.

Since i � 0, i + 1 6= 0, so we need only consider

STAK(assign(A; i + 1; x); i) = STAK(A; i)

Using the equality interpretation:

(i = i) ^ 8k(1 � k � i; access(assign(A; i + 1; x); k) = access(A; k))

Using equality of integers and the access implementation, this simpli-
fies to

8k(1 � k � i; if i+ 1 = k then x else access(A; k) = access(A; k))

Since i+ 1 6= k; 8k(1 � k � i; access(A; k) = access(A; k)), and Item 2 is
proved.

Algebraic Specifications 167

5.4. Verifying Applications With ADTs

As stated earlier in this chapter, it is important not only that we be able
to verify implementations of abstract data types, but also that we be
able to reason about programs which themselves use ADTs. Below is a
simple use of our ADT “stack” to effect a “swap” between the variables
a and b. Note that we do not need to initialize the variable s to be
newstack. This program will perform as intended whether or not there
happen to be other items already pushed on the stack when the program
begins execution.

ftrueg
s := push(s; a)
s := push(s; b)
a := top(s)
s := pop(s)
b := top(s)

fa =
(

b ^ b =
(
ag

Let us now use Hoare-style inference techniques to verify the partial
correctness of this program. Our inference system consists of both our
existing first order predicate calculus, as enhanced to reason about as-
signment statements, plus the axioms for dealing with this new type
“stack.” As usual, we start with the postcondition and work back to-
wards the precondition, using the axiom of assignment:

fa =
(

b ^ top(s) =
(
ag b := top(s) fa =

(

b ^ b =
(
ag

fa =
(

b ^ top(pop(s)) =
(
ags := pop(s)fa =

(

b ^ top(s) =
(
ag

ftop(s) =
(

b ^ top(pop(s)) =
(
aga := top(s)fa =

(

b ^ top(pop(s)) =
(
ag

ftop(push(s; b)) =
(

b ^ top(pop(push(s; b))) =
(
ag

s := push(s; b)ftop(s) =
(

b ^ top(pop(s)) =
(
ag

ftop(push(push(s; a); b)) =
(

b ^ top(pop(push(push(s; a); b))) =
(
ag

s := push(s; a)

ftop(push(s; b)) =
(

b ^ top(pop(push(s; b))) =
(
ag

To identify that the above expression which we have derived is in fact
equal to the program’s precondition, simply apply the axioms for stack.

168 Software Specifications

f1 � n ^ 8j 3 1 � j � n; a[j] =
(
a [j]g

S := newstack; i := 1
while i � n do

S := push(S; a[i]); i := i + 1
i := 1
while i � n do

a[i] := top(S);S := pop(S); i := i + 1
f8j 3 1 � j � n; a[j] =

(
a [n� j + 1]g

Figure 5.1. Program to reverse an array, using the ADT “stack.”

5.5. Example: Reversing an Array Using a Stack

In Figure 5.1 is our old friend, the “array reversal program” imple-
mented using our abstract data type STACK. We would probably never
implement an array reversal in this way, but it is instructive to see the
same sort of example in many different contexts. The method chosen is
straightforward: All elements are pushed onto the stack in order, then,
again in order, are popped off back into the array. A verification that the
array is indeed reversed proceeds as follows: The precondition directly
implies the program initialization section, as seen in Step 1, which also
shows how our choice for the first loop invariant is supported by the
initialization. The first loop maintains its invariant, as shown in Step
2. After the first loop, the invariant and i > n, followed by execution of
i := 1, implies the expression which is our choice for the second loop’s
invariant. This is shown in Step 3. The invariant for the second loop
is maintained, as shown in Step 4. Finally, the second invariant and
i > n, after the second loop, clearly implies our postcondition, and the
proof is complete.

In order to describe the remaining details, we accept that the first loop’s
invariant will be

J
4
= S = PUSH(i � 1) ^ i � n + 1 ^ 8j 3 1 � j � n; a[j] =

(
a [j]

and the second loop’s invariant will be

I
4
=

�
8j 3 1 � j < i; a[j] =

(
a [n� j + 1]

^ S = PUSH(n� i+ 1) ^ i � n+ 1

Algebraic Specifications 169

where we define the notation

PUSH(j) :=
�

(j > 0 ! push(PUSH(j � 1);
(
a [j]))

j (j = 0 ! newstack)

Step One: Initialization

By use of our axiom of assignment we know

fS = PUSH(0) ^ 1 � n+ 1 ^ 8j 3 1 � j � n; a[j] =
(
a [j]g| {z }

Z

i := 1 fJg

as well as

ftrue^preconditiong S := newstack fZg

which can be composed for our initialization.

Step Two: First loop maintains invariant

By twice applying our axiom of assignment, we know

fS = PUSH(i) ^ i � n ^ 8j 3 1 � j � n; a[j] =
(
a [j]g| {z }

J 0

i := i+ 1 fJg

and

fpush(S; a[i]) = PUSH(i) ^ i � n ^ 8j 3 1 � j � n; a[j] =
(
a [j] g| {z }

J 00

S := push(S; a[i]) fJ 0g

After composing these, we observe that J ^ (i � n) implies clause two
of J 00 directly; it implies clause one by simple use of our notation; and
it implies clause three directly. Hence, the invariant is maintained.

170 Software Specifications

Step Three: Output of �rst loop implies input to second loop

The result of the first loop is

S = PUSH(i� 1) ^ (i � n+ 1) ^ :(i � n)
) S = PUSH(n)
) S = PUSH(n) ^ true
) S = PUSH(n) ^ 1 = 1

which can be used in a rule of consequence with the following applica-
tion of the axiom of assignment

fS = PUSH(n) ^ 1 = 1g i := 1 fS = PUSH(n) ^ i = 1g

This expression implies the first clause of I vacuously; it implies the
second clause by simple rearrangement of notation and repeated use
of our algebraic rules for the ADT; and it implies the third clause of I
directly, assuming we were clever enough to have pulled the require-
ment n � 1 down through the program so we could use it at this point.
The third clause of J allows us to substitute

(
a for our uses of a in the

expression involving S. Hence, we have established I at the start of
the second loop.

Step Four: Second loop maintains Invariant

Repeatedly using our axiom of assignment,

f8j; 1 � j < i + 1; a[j] =
(
a [n� j + 1]

^ S = PUSH(n � (i + 1) + 1) ^ i+ 1 � n+ 1g| {z }
I0

i := i + 1 fIg

f8j 3 1 � j < i+ 1; a[j] =
(
a [n� j + 1]

^ pop(S) = PUSH(n� (i + 1) + 1) ^ i � ng| {z }
I00

S := pop(S) fI 0g

f8j 3 1 � j < i + 1; �(a; i; top(S))[j] =
(
a [n� j + 1]

^ pop(S) = PUSH(n� (i + 1) + 1) ^ i � ng| {z }
I000

a[i] := top(S)fI 00g

then composing these expressions we obtain:

fI 000g body of while fIg

Algebraic Specifications 171

We claim that I ^ (i � n)) I000 hence showing that the second while
loop invariant is maintained: For j in the range 1 � j < i, clause one
of I 000 follows directly from the first clause of I. For j = i, I000 reduces as
follows:

I) top(S) = top(PUSH(n� i + 1))
= top(push(PUSH(n � i + 1 � 1);

(
a [n� i + 1])) =

(
a [n� i + 1]

The second clause of I000 is supported as follows:

I) S = PUSH(n � i + 1)) pop(S)
= pop(PUSH(n� i+ 1))
= pop(push(PUSH(n� i+ 1� 1);

(
a [n� i+ 1]))

= PUSH(n� i+ 1� 1)
= PUSH(n� (i+ 1) + 1)

The third clause of I000 is directly supported by the loop conditional
i � n.

6. INDUCTIONLESS INDUCTION

Previously we have used data type induction to prove assertions con-
cerning our algebraically specified ADTs. There is a second technique
which is useful, called inductionless induction (also called structural in-
duction). It is useful in general, but we will use it here as an essential
technique in showing that sets of axioms are consistent (as discussed
earlier in this chapter).

The technique is based upon the technique known as unification and
on the Knuth-Bendix algorithm for showing consistency among a set of
axioms. We first describe unification and then give this algorithm.

6.1. Knuth{Bendix Algorithm

The idea behind this algorithm is fairly simple. The use of rewrite rules
separates the set of valid expressions into discrete equivalence classes.
If the rules are noetherian and confluent, then applying rewrite rules

172 Software Specifications

for any equation causes the process to terminate with a unique normal-
form value. Thus for two expressions, we can determine whether they
are in the same class by computing the normal-form value for each.

Using a process called unification, described below, we can combine
two rewrite rules into a new rule showing the equivalence of two new
expressions. If these come from two distinct equivalence classes (com-
puted by forming each’s normal-form value), then we have shown that
these two classes really are the same and we can collapse them to-
gether. We call these two expressions critical pairs and can add them
as a new rewrite rule in our system.

As long as we add critical pairs, we collapse discrete sets together.
However, if we end up by collapsing the equivalence classes described
by true and false, then we have shown the inconsistency of our rewrite
rules.

Uni�cation

Unification is an algorithm that forms the basis of Logic programming
languages, theorem provers, and type checking systems in functional
languages. To unify two expressions U; V means to find substitutions
for the variables occurring in U and V so that the two expressions
become identical.

For example, unifying f(X;Y) with f(g(Y); Z) is done by binding: X to
g(Y), and Y to Z.

Unification can be seen as an algorithm for solving a system of equa-
tions. In setting up the algorithm to unify expressions U = V , a list, L,
of unifications yet-to-be-done is set up with (U = V) as its only member.
Each variable, X, occurring in U and V , is set to point to an equation,
EQ(X), of the form:

V ariable � List = Expression : Occurrences

where Occurrences keeps track of the number of times any variable on
the left-hand side occurs on the right-hand side of any other equation.
This will keep track of cyclic references.

The Knuth–Bendix algorithm is basically a search technique, where
each axiom (along with cleverly chosen transformations of that axiom)

Algebraic Specifications 173

is compared to all the remaining axioms in order to check whether an
inconsistency has arisen. There are three possible outcomes:

1. The algorithm terminates (possibly after generating new rules none
of which are inconsistent). In this case, the set of axioms is consistent.
In Section 6.2 we use this fact to give another proof technique (induc-
tionless induction) along with the already given data type induction.

2. An inconsistency is discovered. This usually presents itself by de-
riving the rule true = false from the existing set of rules.

3. The algorithm does not terminate and an infinite set of rules is
generated. In this case, the Knuth-Bendix algorithm cannot determine
the consistency of the set of rules.

Huet’s version [32] of the Knuth–Bendix algorithm is shown below. In
order to use the algorithm, we must be able to orient the equations of
the form x = y into rewrite rules x ! y. Huet and Oppen describe
a method for weighing words that permits equations to be ordered so
that rewrite rules reduce the weights of equations.

Weighing words

The weight of a word w is defined as

weight(w) = weight0 �
VX
j=1

occurs(vj; w) +
OX
j=1

weightj � occurs(fj ; w)

where weight0 is the minimum weight of a nullary operator, vj is a vari-
able, occurs(n;w) is the number of occurrences of symbol n in word w,
and weightj is the weight of operator fj . The symbolsO and V represent
the number of operators and number of variables respectively.

For example, consider natural numbers defined by the axioms:

add(0; X) = X
add(succ(X); Y) = succ(add(X;Y))

and the equation describing the associativity of addition

add(add(X,Y),Z) = add(X,add(Y,Z))

174 Software Specifications

Generally in defining operators’ weights, f is assigned a higher weight
than g if f is used to define g. Also unary operators are usually assigned
weight0. The arithmetic operators have the following weights:

add 0
succ 0
0 1

Since 0 is the only nullary operator, weight0 is 1. However, succ is not
assigned a similar weight. Some sample words and their weights are
shown below:

Word Weight
X 1 � (1) + ((0 � 0) + (0 � 0) + (1 � 0)) = 1
add(0,X) 1 � (1) + ((0 � 1) + (0 � 0) + (1 � 1)) = 2
add(succ(X),Y) 1 � (2) + ((0 � 1) + (0 � 1) + (1 � 0)) = 2
add(succ(X,Y)) 1 � (2) + ((0 � 1) + (0 � 1) + (1 � 0)) = 2
add(add(X,Y),Z) 1 � (1+1+1) + ((0 � 2) + (0 � 0) + (1 � 0)) = 3
add(X,add(Y,Z)) 1 � (1+1+1) + ((0 � 2) + (0 � 0) + (1 � 0)) = 3

Ordering equations

The relation used for ordering words a > b is defined as follows: a > b
iff either

1. weight(a) > weight(b) and 1 � i � V) occurs(vi; a) � occurs(vi; b);
or

2. weight(a) = weight(b) and 1 � i � V) occurs(vi; a) = occurs(vi; b),
and either

(a) a = f(vk) and b = vk for some operator f , or

(b) a = fj(a1; : : : ; aj) and b = fk(b1; : : : ; bk) and either j > k, or both
j = k and 1 � t � j) a1 = b1; : : : ; at�1 = bt�1; at > bt:

Several examples appear below:

Algebraic Specifications 175

Words Reasons
add(0,X) > X 2>1
add(succ(X),Y) > succ(add(X,Y)) 2=2, each has 2 variables,

first has fewer args
add(add(X,Y),Z)> add(X,add(Y,Z)) 3=3, each has 3 variables,

add(a,b) > a
add(succ(X),X) ? add(0,X) 2=2, but the number of

variables differs

In the algorithm, the following operations use the notion of order:

Operation Meaning
orderable(s= t) (s > t) or (t > s)
order(s = t) (s > t! (s = t)) j (t = s)

Here, orderable is a Boolean-valued predicate that checks whether
the two words can be compared according to the above criteria. Order
is a function which then would return the rewrite rule based on the
original equation.

Critical pairs

Critical pairs arise when (with renaming of variables) the left side
of one rewrite rule occurs as an argument in the left side of another
rule. This is an application of the unification property described earlier.
Thus equations that could be reduced by the second rule could also be
reduced by the first. After applying unification, if the normal forms for
each expression in the rewrite rule are different, then we have a critical
pair. The critical pair produced is an equation asserting the equality
of the two expressions.

Some notation must first be developed in order to discuss critical pairs
further:

Notation Meaning
t=u The subterm u of t
tuy Replace subterm u of t with y
� A substitution fu := yg applied to a term
normalize(x) Compute normal form for expression x

176 Software Specifications

Superposition algorithm

Assume rewrite rules u ! v and x ! y with the property that u and
x have no variables with common names. If z is a nonvariable oc-
currence in u such that u=z and x are unifiable with minimal uni-
fier �, then the pair of terms h�(uzy); �(v)i is potentially a critical
pair. If normalize(�(uzy)) 6= normalize(�(v)), then they are a crit-
ical pair, and they represent an additional rule (or theorem) deriv-
able from our axioms: normalize(�(uzy)) = normalize(�(v)). (Actually,
we need the terms in the correct order, or order(normalize(�(uzy))) =
order(normalize(�(v))).)

For example, the rules:

add(0;W)!W
add(add(X;Y); Z)! add(X; add(Y; Z))

with unifier:
�(X := 0; Y := W)

produce the critical pair:

hadd(W;Z); add(0; add(W;Z))i

Using this notation, the Knuth-Bendix algorithm is given in Figure 5.2.
An example of the use of this algorithm is given in the next section.

6.2. Application of Knuth Bendix to induction

The idea of inductionless induction was introduced by Musser [46] [47]
when he proved the following theorem:

Theorem: Let T be a collection of types with axiom set A and assume
that T is fully specified by (i.e., sufficiently complete with respect to) A.
If E is a set of equations, each in the language generated by T, and A [
E is consistent, then each equation in E is in the inductive theory of T.

Thus to prove an equation x = y by inductionless induction, add it
to a set of equations containing a sufficiently complete set of axioms
and execute the Knuth–Bendix algorithm. If the algorithm terminates,

Algebraic Specifications 177

R := fg;
i := 0;
done := false;
while :done do begin

done := true;
while E 6= fg do begin “Order E0s equations and put them in R:00

“Find non� joinable critical pair00

(s = t) := choseOneFrom(E);
E := E � fs = tg;
s0 := normalize(s;R); t0 := normalize(t;R)
if s0 6= t0 then begin “Order equation:00

if :orderable(s0 = t0) then return(fail);
(v! w) := order(s0 = t0);
“Normalize rewriting system:00

for each hx! y; positionXY;markXY iin R do begin
x0 := normalize(x; fv ! wg);
if x 6= x0 then begin

R := R� fhx! y; positionXY;markXY ig;
E := E [fx0 = yg
end

else begin
y0 := normalize(y;R [fv ! wg);
if y 6= y0then

R := (R� fhx! y; positionXY;markXY ig)
[fhx! y0; positionXY;markXY ig

end
end; “ : : : for each00

i := i+ 1;
R := R [fhv! w; i; unmarkedig
end“ : : : order equation:00

end; “ : : :while E 6= fg00

“Find an unmarked rule:00

for eachhx! y; positionXY;markXY iin R do
if markXY = unmarked then begin

“Compute critical pairs:00

done := false;
for eachhu! v; positionUV;markUV iin R do

if positionUV � positionXY then
E := E [criticalpairs(x! y; u! v);

R := (R� fhx! y; positionXY;markXY ig)[
fhx! y; positionXY;markedig

end;
end; “ : : :while not done:00

return(success):

Figure 5.2. Knuth–Bendix Algorithm

178 Software Specifications

then x = y is consistent with the previous axioms; if it derives true =
false, then the new rule is inconsistent with the set of axioms.

As an example (adapted from [17]) of both inductionless induction and
the use of Knuth–Bendix, we now use this method to show how the
axiom of associativity of addition is consistent with the algebraic axioms
of addition given earlier. Initially, the set of equations E contains the
following members:

add(0; U) = U
add(succ(V);W) = succ(add(V;W))
add(add(X;Y); Z) = add(X; add(Y; Z))

The while statement guarded by E 6= fg removes these equations
from E one at a time, orients them according to the weighing scheme
described above, normalizes them with respect to each other, and adds
them to R (the list of rewrite rules):

hadd(0; U)! U; 1; unmarkedi
hadd(succ(V);W)! succ(add(V;W)); 2; unmarkedi
hadd(add(X;Y); Z) ! add(X; add(Y; Z)); 3; unmarkedi

After E is empty, the for statement selects unmarked rules from R,
computes critical pairs for lower numbered members of R, adds the
critical pairs toE, and replaces the unmarked rules with marked rules.
For our example, no critical pairs are computed until the third element
of R is selected.

hadd(0; U)! U; 1;markedi
hadd(succ(V);W)! succ(add(V;W)); 2;markedi
hadd(add(X;Y); Z) ! add(X; add(Y; Z)); 3; unmarkedi

The following critical pairs are computed and added to E:

Uni�er Equation

fX := 0; Y := Ug add(U;Z) = add(0; add(U;Z))
fX := succ(V); Y := Wg add(succ(add(V;W)); Z) =

add(succ(V); add(W;Z))

Algebraic Specifications 179

The final element of R is also marked so no unmarked members of
R remain. Since done has value false the outer while statement is
executed again with E no longer empty. When one of the equations of
E is selected and normalized with respect to R, E is empty and no new
rewrite rules are added to R. Thus the algorithm terminates.

add(U;Z) = add(0; add(U;Z)):

normalize(add(U;Z)) = add(U;Z)
normalize(add(0; add(U;Z))) = add(U;Z) (by 1)

add(succ(add(V;W)); Z) = add(succ(V); add(W;Z)):

normalize(add(succ(add(V;W)); Z)) =
succ(add(add(V;W); Z)) = (by 2)
succ(add(V; add(W;Z))) = (by 3)

normalize(add(succ(V); add(W;Z)) =
succ(add(V; add(W;Z))) (by 2)

Notice that equations like the commutativity of addition “add(X,Y) =
add(Y,X)” cannot be proved using this technique because the terms
cannot be ordered by weight. However, such equations can be proved
by data type induction. (This is given as an exercise.)

6.3. Example Using Knuth{Bendix

Consider the following specification for sequences of integers. The
symbols S, S0, T , and T 0 will represent sequences, and x and x0 will
represent integers. We will define the specifications for five functions:

1. null returns the null sequence.

2. S + x appends integer x onto the end of sequence S.

3. xjS places x at the start of sequence S.

4. S cat T concatenates two sequences S and T into one sequence.

5. isnull(S) returns true if sequence S is null; false otherwise.

The signatures for these functions are:

180 Software Specifications

null ! sequence
+ sequence � integer ! sequence
j integer � sequence! sequence
cat sequence � sequence! sequence
isnull sequence! boolean

The ten axioms needed to define these sequences are:

Ax1 (S = S) = true
Ax2 (null = S + x) = false
Ax3 (S + x = null) = false
Ax4 (S + x = S0 + x0) = ((S = S0) ^ (x = x0))
Ax5 xjnull = null + x
Ax6 xj(S + x0) = (xjS) + x0

Ax7 null cat S = S
Ax8 (S + x0) cat S0 = S cat (x0jS0)
Ax9 isnull(null) = true
Ax10 isnull(S + x) = false

Example: Data type induction

Let us review the previous method of data type induction by proving
that

S cat (S0 + x0) = (S cat S0) + x0

.

Let P (S) be the predicate: 8S0(S cat (S0 + x0) = (S cat S0) + x0). We
will assume a normal form lemma, such as with stacks, that states
that the constructors for sequences are null and +. Both cat and j can
be obtained by applications of the first two functions. To use data type
induction, we need to show that:

1. P (S), and

2. P (S)) P (S + x)

(1) P (null) = 8S0(null cat (S0 + x0) = (null cat S0) + x0)

Proof:

Algebraic Specifications 181

null cat (S0 + x0) = (null cat S0) + x0 Hypothesis
(S0 + x0) = (null cat S0) + x0 Ax7
(S0 + x0) = (S0 + x0) Ax7
true Ax1
2

(2) Show P (S)) P (S + x).

Proof:

Assume P (S) = S cat (S0 + x0) =
(S cat S0) + x0

Show P (S + x) = (S + x) cat (S0 + x0) =
((S + x) cat S0) + x0

(S + x) cat (S0 + x0) = ((S + x) cat S0) + x0

S cat (xj(S0 + x0)) = ((S + x) cat S0) + x0 Ax8
S cat ((xjS0) + x0) = ((S + x) cat S0) + x0 Ax6
(S cat (xjS0)) + x0 = ((S + x) cat S0) + x0 Inductive Hypothesis
(S cat (xjS0)) + x0 = (S cat (xjS0)) + x0 Ax8
true Ax1
2

Thus we have shown P (S) for all S 2 sequences.

Using Knuth{Bendix

There are four conditions that can result from applying the Knuth–
Bendix algorithm to a set of axioms. In one case, given axiom � = �,
we are unable to define a weight function w such that w(�) > w(�).
In this case, the algorithm does not apply and we cannot use it to
determine the consistency of the axioms.

In the case where we can order the axioms, the algorithm has three
results:

1. The algorithm cannot develop any more critical pairs. In this case,
we have shown that the axioms are consistent. If an original set of
axioms is complete and we add a new axiom, then this new axiom must
be consistent with the complete set of axioms, and hence must be a
theorem provable from the original axioms.

2. The algorithm derives the critical pair true = false. This is a termi-
nation condition which shows that the original axioms are inconsistent.

182 Software Specifications

3. The algorithm generates a nonterminating set of critical pairs. In
this case, the algorithm is inconclusive as to the correctness of the set
of axioms.

The following examples all demonstrate these results.

Assume the definition of sequences given above with its ten axioms.
Add to these axioms the following:

1. S cat (S0+x0) = (S cat S0)+x0. This rule causes the Knuth–Bendix
algorithm to terminate. As was already shown above, this statement
is consistent with the given axioms.

2. S cat null = S and Rule 1 above. These two are consistent and the
algorithm terminates.

3. S cat null = S without Rule 1. In this case, as will be shown below,
the algorithm does not terminate. Without the above “associative” rule,
this second rule cannot be proven within the framework of the given ten
axioms, even though we know it is true by first proving the companion
associative rule.

4. S cat null = null. Intuitively, this should be false. As will be
shown, the algorithm demonstrates that this rule is inconsistent with
the axioms.

Nontermination example

Consider the ten axioms and the new rule S cat null = S (from [47]).
Applying Knuth–Bendix gives the following steps:

T cat null = T Substitute for new rule
(S + x0) cat S0 = S cat (x0jS0) Ax8
hS cat (x0jnull); S + x0i Possible Critical Pair

�(T := S + x0; S0 := null)
hS cat (null + x); S + x0i Normalize expressions with Ax5
S cat (null + x) = S + x Critical Pair �

New rule added

At this point, we can repeat the process. Take the final axiom (critical
pair 2, above) and repeat the same five steps using for � in critical pair
1 the sequence: S := null; S := (null+ x); S := ((null + x) + x0; : : :. This
gives the infinite sequence of critical pairs:

Algebraic Specifications 183

S cat (null + x0) = S + x0

S cat ((null + x) + x0) = (S + x) + x0

S cat (((null + x) + x0) + x00 = ((S + x) + x0) + x00

...

and the algorithm does not terminate.

Inconsistent axiom example

Consider the rule S cat null = null. We will show it is inconsistent as
follows:

T cat null = null Substitute for new rule
(S + x0) cat S0 = S cat (x0jS0) Ax8
hS cat (x0jnull); nulli Possible CriticalPair�

�(T := S + x0; S0 := null)
S cat (null + x) = null Critical Pair 1�

Normalize with Ax5
null cat T = T Substitute for Ax7
hnull + x; nulli Possible Critical Pair�

�(T := null + x; S := null)
null + x = null Critical Pair 2
isnull(S + x) = false Ax10
isnull(null) = false �(S := null)
isnull(null) = true Ax9
true = false Critical Pair

Since we have added the rule true = false, the initial rule is inconsis-
tent with our axioms.

7. EXERCISES

Problem 1. Redo the algebraic specification of a stack in Section 3 so
that the definition is modified to replace the top element of the stack
with the new element when the stack is full, rather than ignore the
new element, as is presently given.

184 Software Specifications

Problem 2. Consider the set of natural numbers with operations: 0,
succ, and add.

add(X,0) = X
add(X,succ(Y)) = succ(add(X,Y))

� Give an appropriate, complete and non-redundant definition of the
predicate even(X).

� Prove the following theorem: even(X) ^ even(Y)) even(add(X,Y))

Problem 3. Consider the type “set of integers” defined by the following
axioms.

in(emptySet,X) = false
in(insert(S,I),J) = I=J _ in(S,J)
delete(emptySet,X) = emptySet
delete(insert(S,I),J) = if I=J then delete(S,J)

else insert(delete(S,J),I)
isEmptySet(emptySet) = true
isEmptySet(insert(S,X)) = false

� Give a correct, complete, and non-redundant list of axioms for set
equality.

� Prove the theorem in(delete(S,X),X) = false.

Problem 4. Consider a data type list with operations:

append(null,X) = X
append(cons(X,Y),Z) = cons(X,append(Y,Z))

� Add axioms for the operation rev, which reverses the order of the
elements in the list.

� Show rev(rev(X)) = X.

Problem 5. Consider the following definition of type list in which the
operation add appends values to the end of a list.

Algebraic Specifications 185

front(newlist) = 0
front(add(newlist,A)) = A
front(add(add(L,A),B)) = front(add(L,A))

tail(newlist) = newlist
tail(add(newlist,A)) = newlist
tail(add(add(L,A),B)) = add(tail(add(L,A)),B)

length(newlist) = 0
length(add(L,A)) = succ(length(L))

� Give axioms to define the operations sorted and perm having the
following intuitive definitions. You may define hidden functions if nec-
essary.

– sorted: list ! boolean. sorted returns true if the list elements
appear in ascending order with the smallest value at the front.
Otherwise sorted returns false.

– perm: list � list ! boolean. perm returns true if one of its ar-
guments is a permutation of the other. Otherwise perm returns
false.

Problem 6. Consider the operations member and sinsert, defined as
follows:

member(newlist,X) = false
member(add(L,X),Y) = ((X=Y) or member(L,Y))
sinsert(newlist,A) = add(newlist,A)
sinsert(add(L,A),B) = if B >= A then add(add(L,A),B)

else add(sinsert(L,B),A))

Prove the theorem: member(sinsert(L,X),X) = true. You may assume
the existence of a normal form lemma showing that all list objects can
be constructed from the operations newlist and add.

Problem 7. Give algebraic specifications for a library of books (whose
titles are natural numbers) with the following operations:

186 Software Specifications

init: ! library open for business
donate: library � nat ! library add a volume to library
remove: library � nat ! library destroy a book & forget

it was donated
check: library � nat ! library borrow a book
return: library � nat ! library bring a book back
given: library � nat ! bool has a book been donated?
avail: library � nat ! bool is book available for checkout?
out: library � nat ! bool is book already checked out?

Using data type induction, show: given(L,B) � (avail(L,B) _ out(L,B)).

Problem 8. The low-water-mark problem is defined for a system com-
posed of processes and objects, each with its own security level. Three
security levels are linearly ordered: classified � secret � topsecret.
Processes have fixed security levels, but objects’ security levels may be
changed by operations. When a process writes a value in an object, the
security level of the object drops to that of the process. When a process
resets an object, the security level of the object becomes top secret and
its value becomes undefined. The low-water-mark idea is that the se-
curity level of an object may decrease, but not increase unless a reset
operation is executed for the object.

The Bell and LaPadula simple security and * properties (colloquially
known as “no read up, no write down”) require enforcement of the
following restrictions:

� For a process to read an object’s value, the security level of the process
must be greater than or equal to that of the object.

� For a process to write an object’s value, the security level of the process
must be less than or equal to that of the object.

Using the following operations, give an algebraic specification for the
data type state which enforces the Bell and LaPadula properties. Op-
erations attempting to “read up” should return the undefined value.
Operations attempting to “write down” should be ignored. Reset oper-
ations enforce the same security-level restrictions as write operations.

Algebraic Specifications 187

newstate: ! state
reset: process � object � state ! state
write: process � object � nat � state ! state
read: process � object � state ! nat [fundefi nedg
name: object ! id
level: object � state ! (classified, secret, topsecret)
level: process ! (classified, secret, topsecret)

Problem 9. Consider the list data type with operations:

newlist : ! list
addelt : list � nat! list
tail : list! list
head : list! nat
last : list! nat
length : list! nat

with their usual meanings. Give three different sets of axioms defining
lists in which elements are added to the right end of the list, in which
elements are added to the left end of the list, and in which elements
are added so that the list remains sorted in ascending order. To make
things a bit easier, you may define operations so that applying them to
empty lists yields 0.

Problem 10. If we added the operation join to lists in which elements
are added to the right end of the list, we might write the axioms:

Signature :
join : list � list! list

Axioms :
join1 : join(L; newlist) = L
join2 : join(L; addelt(M;X)) = addelt(join(L;M); X)

Show that join(newlist; L) = L is not an axiom, but a theorem following
from the given axioms.

Problem 11. Consider the following implementation of the data type
SetType with operations NewSet, AddElt, and Member. Give a repre-

188 Software Specifications

sentation function for the type and write comments for each operation
giving pre, post, in and out.

const
SetMax = 256;

type
EltType = integer;
SetIndex = 1..SetMax;
SetType = record

Next: 0..SetMax;
V: array [SetIndex] of EltType

end;

procedure NewSet(var S: SetType);
begin

S.Next := 0
end;

procedure AddElt(var S: SetType; E: EltType);
var i: integer;
begin

S.V[S.Next+1] := E;
i := 1;
while (i<=S.Next+1) and (S.V[i]<>E) do i := i+1;
if i = S.Next+1 then S.Next := S.Next+1

end;

function Member(var S: SetType; E: EltType): boolean;
var I: SetIndex;

B: boolean;
begin

B := false;
for I := 1 to S.Next do B := B or (E = S.V[I]);
Member := B

end;

Problem 12. A bag or multiset is a set that permits duplicate values.
Consider the following implementation of the data type “bag of inte-
gers.” A set cannot be used to represent a bag, as there is no way to
indicate the presence in a set of more than one occurrence of an ele-
ment. Two good choices would be to represent a bag as a sequence of

Algebraic Specifications 189

elements, since a sequence can contain duplicated elements, or a set
of pairs representing (element, number of occurrences). Which choice
makes the specification task easier?

const Max = ...;
type T = integer;

Bag = array [0..Max] of T;
procedure BagInit(var B: Bag);

var i: integer;
begin

for i := 0 to Max do B[i] := 0
end;

procedure BagAdd(var B: Bag; X: T);
begin

if (0 <= X) and (X <= Max) then B[X] := B[X] + 1
end;

procedure BagDel(var B: Bag; X: T);
begin

if (0 <= X) and (X <= Max) and (B[X] > 0)
then B[X] := B[X] - 1

end;
function BagMember(var B: Bag; X: T): boolean;

begin
if (0<=X) and (X<=Max) then BagMember := B[X]>0
else BagMember := false

end;

Problem 13. Give a representation function for the type and abstract
and concrete comments for data type IntSet.

type IntSet = array [1..Max] of boolean;

procedure IntSetInit(var S: IntSet);
var i: integer;
begin

for i := 1 to Max do S[i] := false
end;

procedure IntSetAdd(var S: IntSet; X: integer);
begin

if (1<=X) and (X<=Max) then S[X] := true

190 Software Specifications

end

Problem 14. The following code implements type “queue of EltType”
as a circular list with a contiguous representation.

const Max = 2;
type

EltType = 0..maxint;
QueueIndex = 0..Max;
Queue = record

M: array [QueueIndex] of EltType;
H, T: QueueIndex

end;

procedure NewQ(var Q: Queue);
begin

Q.H := 0; Q.T := 0;
end;

procedure EnQ(var Q: Queue; Elt: EltType);
var Temp: QueueIndex;
begin

Temp := (Q.T + 1) mod (Max + 1);
if Temp <> Q.H then begin

Q.T := Temp;
Q.M[Q.T] := Elt
end;

end;

procedure DeQ(var Q: Queue; var Result: EltType);
begin

if Q.H <> Q.T then begin
Q.H := (Q.H + 1) mod (Max + 1);
Result := Q.M[Q.H];
end

else Result := 0
end;

State a representation function for the type. State non-trivial con-
crete and abstract invariants for the type and show that the concrete

Algebraic Specifications 191

invariant implies the abstract invariant. Give pre, post, in, and out
comments for NewQ and demonstrate their consistency.

8. SUGGESTED READINGS

The algebraic specification techniques are well-described in the papers:

� J. V. Guttag and J. J. Horning, “The algebraic specification of abstract
data types,” Acta Informatica, Vol. 10, 1978, pp. 27-52.

� J. V. Guttag, “Notes on Type Abstraction (Version 2),” IEEE Transac-
tions on Software Engineering, Vol. 6, No. 1, 1980, pp. 13-23.

� J. V. Guttag, E. Horowitz, and D. R. Musser, “Abstract Data Types
and Software Validation ,” Communications of the ACM, Vol. 21, No.
12, 1978, pp. 1048-1064.

� J. V. Guttag, E. Horowitz, and D.R. Musser, “The Design of Data
Type Specifications ,” R.T. Yeh (Ed.), Current Trends in Programming
Methodology 4: Data Structuring, Prentice-Hall, Englewood Cliffs NJ,
1978, pp. 60-79.

A paper which summarizes the verification process for algebraically
specified data types is the following. This paper presents a straightfor-
ward technique for expressing algebraic axioms as a pair of pre- and
postconditions suitable for Hoare-style proofs.

� L. Flon and J. Misra, “A Unified Approach to the Specification and
Verification of Abstract Data Types,” Proceedings of the IEEE Con-
ference on Specifications of Reliable Software, Cambridge, MA, 1979,
pp. 162-169.

Papers which describe proof techniques for algebraic data types include
the following:

� D. R. Musser, “Abstract data type specifications in the AFFIRM sys-
tem,” IEEE Specifications of Reliable Software Conference, Cambridge
MA, 1979, pp. 47-57.

192 Software Specifications

� D. R. Musser, “On Proving Inductive Properties of Abstract Data
Types,” Proceedings of the 7th ACM Symposium on Principles of Pro-
gramming Languages, Las Vegas, NV, 1980, pp. 154-162.

� G. Huet, “Confluent Reductions: Abstract Properties and Applica-
tions to Term-Rewriting Systems,” Journal of the ACM, Vol. 27, 1980,
pp. 797-821.

� G. Huet and J.-M. Hullot, “Proofs by Induction in Equational Theories
with Constructors ,” Journal of Computer and System Science, Vol. 25,
1982, pp. 239-266.

The first two Musser papers describe the application of the Knuth–
Bendix algorithm to the problem of proving properties of ADTs – in
this case by describing the AFFIRM system, which Musser built.

Chapter 6

Denotational Semantics

Denotational semantics is a form of an operational semantic model of a
program’s execution based upon function composition. The basic model
is an outgrowth of simple type theory and the �calculus. First the
�calculus will be described, and then denotational semantics will be
explained as an extension.

Aside from its role in explaining semantic content of a program, the
�calculus is the basis for the VDM specification methodology, which
has been used to specify several very large real systems.

1. THE LAMBDA CALCULUS

The �calculus is a formal functional model used by Church to develop
a theory of numbers. It is relevant to programming language design
since it represents a typeless (hence simpler) model in the theory of
denotational semantics.

�expressions are defined recursively as:

1. If x is a variable name, then x is a �expression.

2. If M is a �-expression, then �xM is a �expression.

193

194 Software Specifications

3. If F and A are �expressions, then (FA) is a �expression. F is the
operator and A is the operand.

The following are all �expressions:

x �xx �xy
�x(xy) (�x(xx)�x(xx)) �x�yx

Variables may be bound or free. In �xM , x is the binding variable and
occurrences of x in M are bound. A variable is free if it is not bound.

Any bound variable may have its name changed. Thus the �expression
�xx is equivalent to�yy. �x�xx is equivalent to�x�yy since the variable
x is not free in the original �expression �xx.

Informally, bound variables are “parameters” to the function described
by the �expression, free variables are global. There is no concept of
local variable.

This analogy shows that the �expression is a simple approximation to
the procedure or subroutine concept in most algorithmic programming
languages like Pascal, C, Ada or Fortran. �expressions are almost
directly representable in LISP and �substitutions are a direct model of
Algol-like procedures.

�expressions have only one operation – reduction. If (FA) is a �expres-
sion, and F = �xM , then A may be substituted for all free occurrences
of x in M . This is written as: (�xMA) ! F 0.

Examples:

(�xxy) ! y
(�x(xy)y) ! (yy)
(�x(xy)�xx) ! (�xxy) ! y
(�x(xx)�x(xx)) ! (�x(xx)�x(xx)) ! : : :

Note that the above examples are all unambiguous. The first expres-
sion (�xxy) has only one interpretation. It must be of the form (F A)
or (�xM A). So A is either y or xy. But xy is not a proper �expression,
so A is just y.

Denotational Semantics 195

Also note that the third expression does not terminate. If we have
F = (�xM A), substitution of A for x in M results in F again. This is a
nonterminating reduction. This leads us to:

Church-Rosser property. If two different reductions of a �expression
terminate, then they are members of the same value class.

The �calculus was originally developed as a logical model of the com-
putational process. We can use such expressions to model our under-
standing of arithmetic. First �expressions will be used to model the
predicate calculus, and then using predicate calculus, we can model
integers.

1.1. Boolean Values as �Expressions

Objects will be modeled by functions.

True T will be defined as: �x�yx. (Of a pair, choose the first.)

False F will be defined as: �x�yy. (Of a pair, choose the second.)

We have defined these objects so the following properties are true:

((T P)Q) ! P

Proof:

((T P)Q) ! ((�x�yx P)Q) ! (�yP Q)! P

2

((F P)Q) ! Q

Proof:

((F P)Q) ! ((�x�yy P)Q)! (�yy Q)! Q

2

Given these constants T and F , we can define the boolean function:

not
4
= �x((xF)T)

196 Software Specifications

Given these definitions, we need to show that our interpretation of
them is consistent with our axioms and rules of predicate logic. In this
case, we need to show that not, when applied to T returns F , and not
when applied to F returns T .

(not T) = (�x((x F)T)T) ! ((T F)T) ! F
(not F) = (�x((x F)T)F) ! ((F F)T) ! T

Note that this is the desired behavior. Nothing is said if the argument
to not is neither T nor F .

Similarly, we can define and and or as:

and
4
= �x�y((xy)F)

or
4
= �x�y((xT)y)

1.2. Integers

From these logical functions, we can now develop the integers:

0 4
= �f�cc

1 4
= �f�c(fc)

2
4
= �f�c(f(fc))

3
4
= �f�c(f(f(fc)))

c plays the role of the “zero” element, and f is the “successor” function
(addition of +1).

From these definitions of the integers, we can extend them to include
our usual arithmetic operations.

Let N be the Nth integer. The �expression (N a) is �c(a : : : (a c) : : :).
Computing ((N a)b), we get (a : : : (a b) : : :).

Consider ((M a)((N a)b)) by applying constant ((N a)b) to �expression
(M a). The substitution of ((N a)b) for c in (M a) yields (a : : : (a b) : : :)
where there are now (M + N) as in the list. We have just developed
addition. Therefore:

Addition:

Denotational Semantics 197

[M +N]
4
= �a�b((M a)((N a)b))

+
4
= �M�N�a�b((M a)((N a)b))

Similarly,

Multiplication:
[M � N]

4
= �a(M (N a))

Exponentiation:
[MN]

4
= (N M)

While this development can continue until we have developed all of the
recursive functions of mathematics, our primary goal is to consider the
semantics of programming languages. So we will leave the �calculus
at this point and start to look at datatypes.

2. Datatypes

�expressions either reduce to constants (value) or to other �expressions.
Thus all �expressions are solutions to the functional equation:

value = constant + (value ! value)

But there exists no set solving this, since the cardinality of functions
from (value ! value) is greater than the cardinality of values.

Assume we have infinite objects with some finite approximation as a
representation. Object a approximates object b (written a ap b) if b is at
least as accurate as a.

Examples:

1. aapb if whenever a is defined, b is defined and gives the same answer.

2. Let [x1; x2] be a line interval. [x1; x2] ap [y1; y2] if x1 � y1 � y2 � x2.
That is [y1; y2] is contained in [x1; x2].

Axiom 1: A datatype is a partially ordered set according to relation ap.

198 Software Specifications

We are interested in the least upper bound of approximations. F =
ff1; : : : ; fng where f1 ap f2 ap : : : ap fn. But such limits may not
always exist. For example, lub = \i for i 2 I where I is the set of
intervals.

Since we require that such limits exist for every subset of a datatype,
we replace Axiom 1 by:

Axiom 1’: A datatype is a complete lattice under partial ordering ap.
Objects of this lattice are called domains.

What we mean by this, is for two objects a and b, aapb or bapa or a:apb.
Also, if a ap b and b ap c then a ap c.

Examples:

1. Consider the following lattice with 7 objects:

�
�

�
�

@
@
@@�

�
��

�
�
��@

@
@@

@
@

@@

@
@
@
@

�
�
�
�

c

g

f

e

d

b

a

If i ap j means that i is “lower” than j, we have:

a ap b d ap b d ap e g ap e
c ap a c ap d f ap d f ap g

2. Consider [x1; x2] and [y1; y2] on the line interval:

y2y1x2x1

For set f[x1; x2]; [y1; y2]g, there is no lub. But one must exist by Ax-
iom 1’. So we hypothesize the existence of >(pronounced “top”) and
?(pronounced “bottom”) as follows:

Denotational Semantics 199

........

.

..
..

..
..

.

. .
. .
. .
. .
. .

�
�

�
�

@
@
@@�

�
��

�
�
��@

@
@@

@
@

@@

@
@
@
@

�
�
�
�

?

>

c

g

f

e

d

b

a

3. For discrete sets, we call the following a primitive domain:

fffff

�
�
�
�
�

@
@
@
@@

@
@

@
@

@@

�
�

�
�

��

�
�
�
�
��

A
A
A
AA

J
J
J
JJ

�
�
�
��

?

>

The simplest primitive domain will consist only of > and ? and we
call this a simple domain.

2.1. Continuous Functions

Axiom 2: Mappings between domains are monotonic. That is, if f :
D ! D0, then (x ap y ! f(x) ap0 f(y)).

Consider a function f which maps some domain into the simple domain:
f : D ! S. Let:

f(x) = > if x 2 D
f(x) = ? if :x 2 D

200 Software Specifications

A set X � D is well defined iff 9p and

p : D ! S such that X = fwjw 2 D and p(w) = >g:

p is called a permissible function. Note that these are the recursively
enumerable sets. However, not all such sets are monotonic and violate
Axiom 2. To show this, consider: NOT : S ! S such that:

NOT
4
= (S x)S : (x = >! ?) j (>).

NOT is not monotonic since ? ap > but

(NOT (?) = >) ^ (NOT (>) = ?) ^ (:(NOT (?) ap NOT (>))):

This shows that NOT is not permissible. If NOT were permissible,
then

NOT (p) = (D x)S : NOT (p(x))

demonstrating

fxjw 2 D and NOT (p(x)) = >g

would be well defined. But complements of recursively enumerable sets
are not necessarily recursively enumerable. Thus we want to restrict
ourselves to monotonic functions.

2.2. Continuity

Axiom 3: Mappings under domains are continuous.

This means: f(lub(X)) = lubff(x)jx 2 Xg. Continuous functions be-
tween domains also form a domain: S ! S. We get the lattice:

Denotational Semantics 201

(S x)S : >

(S x)S : x

(S x)S : ?

Exercise: What happened to: (S x)S : NOT (x)?

2.3. Recursive Functions

Extend integers to a complete lattice:

n1 n2 n1 � n2

i1 i2 i1 � i2
? i ?
> i >
i ? ?
i > >
> > >
? ? ?
> ? >
? > >

As an example to analyze, let’s look at the factorial function. We will
define it as follows:

FACT
4
= (num k)num : (k = 0 ! 1) j (k � FACT (k � 1)):

This equation can be rewritten as: Find the function FACT that solves
the equation: FACT = F (FACT), where F is a function from (num!
num) to (num ! num), that is, given a function f from (num ! num)
as an argument, F (f) is a function from (num! num).

We can then define F as:

202 Software Specifications

F
4
= ((num! num)FACT)(num! num) :

(num k)num : (k = 0 ! 1)j(k � FACT (k � 1))

This might be made clearer (or totally obscure) by saying that the
FACT function is a solution to x = F (x) for F defined as:

F
4
= ((num! num)x)(num! num) :

(num k)num : (k = 0 ! 1)j(k � x(k � 1))

F takes argument (num ! num) (i.e., a function) and produces a
(num ! num) (i.e., another function) such that the function argu-
ment takes a num parameter and applies the transformation (k = 0 !
1)j(k� x(k� 1)). We want the function x such that x = F (x), then this
x is called a fixed point of F . Consider f : D ! D. x is a fixed point of
f iff x = f(x).

A fixed point x is a least fixed point if for all fixed points x1; x2; : : :xn,

x ap x1; x ap x2; : : : ; x ap xn:

That is, x is the “largest” fixed point that includes all the other fixed
points.

A recursive function has many fixed points. For example, let:

g
4
= (num x)num : (x = ?! ?) j (x = >! >) j (g(x))

As for solutions, define gn, for any n, as follows:

gn
4
= (num x)num : (x = ?! ?) j (x = >! >) j (n)

For any x, you get n = gn(x), so all gn are fixed points of g.

It can be shown that any continuous function on a complete lattice has
a least fixed point. Moreover, if f : D ! D is continuous, the least fixed
point x = f(x) is given by:

x
4
= lubffn(?)jn = 0; : : :kg

Denotational Semantics 203

where

fn(?) � f(f : : : f(?) : : :)
f0(?) � ?

2.4. Evaluation of FACT Function

So where are we? Consider the function FACT defined previously. The
least fixed point is derived from the previous equations to be:

F0 = ?
F1 = F (?) = (num k)num : (k = 0 ! 1) j (k � ?(k � 1))
F2 = F (F (?)) = (num k)num : (k = 0 ! 1) j (k � F (?)(k � 1))

= (num k)num : (k = 0 ! 1) j (k � F1(k � 1))
Fi = (num k)num : (k = 0 ! 1) j (k � Fi�1(k � 1))

i = 0 F0 = ? for all k
i = 1 F1 = (k = 0 ! 1) j (k � F0(k � 1))

k = ? F1(k) = ?
k = 0 F1(k) = 1
k = 1 F1(k) = 1� F0(0) = ?
k � 2 F1(k) = ?

i = 2 F2 = (k = 0 ! 1) j (k � F1(k � 1))
k = ? F2(k) = ?
k = 0 F2(k) = 1
k = 1 F2(k) = 1� F1(0) = 1
k = 2 F2(k) = 1� F1(1) = ?

...
...

So each Fi defines FACT for arguments 0 � k < i, and for all k � i, we
have Fi(k) = ?.

3. PROGRAMMING SEMANTICS

The use of domains and fixed points allows us to describe programming
language semantics. The model is a form of operational semantics,

204 Software Specifications

since we are “tracing” through the execution of each statement type in
order to determine its effect on a higher-level “interpreter.”

However, unlike traditional interpreters that you may be familiar with,
we will not consider a “machine” that symbolically executes the pro-
gram. In this case we will consider a program to be a function, much
like the functional correctness model considered earlier. Each state-
ment of the language will be a function, so like the earlier model, we
will model the execution of successive statements by determining what
the composition function of the two must be.

In the earlier model, we would compute the composition function and
give techniques to determine if this composition was the same as an
externally given specification of these same statements. In this present
chapter, we will simply determine what the composition function must
be by describing the transformations that occur to the functions them-
selves.

Consider the language we have been using in these notes. We can write
down a domain equation from each of these BNF rules:

Stmt = (Id� Exp) Domain of assignments
+(Stmt � Stmt) Domain of sequences
+(Exp� Stmt � Stmt) Domain of conditionals
+(Exp� Stmt) Domain of iterations

Since begin < stmt > end only groups statements and does not alter
the semantics of the internal < stmt >, it was ignored by the domain
equation above.

3.1. The Simple Model

As with any interpreter, we need to understand the underlying “ma-
chine.” We will assume that each identifier refers to a specific location
in memory. Aliasing and parameter passing are not allowed, and there
is no such concept as a pointer variable. We will extend this model in
the next section to include these features.

Therefore for each identifier, there is a unique location in memory
containing its value. Stated another way, we can model our concept of
memory as a function that returns for each identifier, its unique value.
We will call such a function a store.

Denotational Semantics 205

We first must identify three important domains:

1. Values of storable values. These are the results of computations
and in our example will be the results of expression evaluation. These
are the values that identifiers can take.

2. Eval of expression values. These are the results of any compu-
tations but may not necessarily be storable into an identifier. In our
example, we will assume that these can be Boolean or number. Number
will be modeled by the primitive domain num given earlier and Boolean
will be the domain bool given by:

?; false; true;>

3. Denotable values. These include objects that can be named by
identifiers (e.g., procedures, labels, arrays). We will not be using these
initially, but the next section introduces this concept.

The storage for a program is a function that maps each location (or
id) into its appropriate value. The effect of executing a statement is
to create a slightly modified storage. Thus we have a new function
(similar to the previous one) that now maps each id into a value –
possibly the same or different one. Thus we are viewing execution as
the composition of the value storage function followed by the function
that describes the execution of a particular statement.

We view a store as a mapping from identifiers to storable values, or a do-
main of type id! value, where id is the primitive domain of identifiers
in the language. We will call this the program state.

In defining the semantics for a programming language, there are three
basic functions we need to represent:1

1. We need to describe the semantics of a program. In this case, the
syntax of a program defines a program which has the effect of mapping
a number to another number. Or in other words, we are looking for a
function M with signature:

M : prog ! [num! num]

This is the same notion as the function PROGRAM : : : from Chapter
3.

1At this point, it may be useful to review the intuitive representation of these ideas in the
introduction to the functional correctness method (Chapter 3).

206 Software Specifications

2. We need to describe a statement in the language. Each statement
maps a given state to another state, or:

C : stmt ! [state! state]

This simply states that each syntactic statement (domain of C) is a
function from state to state. Therefore each unique statement will take
a program state (or mapping from identifier to value) and produce a
new mapping from identifier to value that is the result of all previous
statements, including this new statement.

3. The statement function C depends upon the value of various expres-
sions, so we need to understand the effects of expression evaluation in
our language. Each expression is a syntactic entity involving identi-
fiers and each one accesses the storage to produce a value. Thus, from
the set of syntactic expressions, a set of storable values produces an
expression value. This gives the signature for expression evaluation
as:

E : exp! [state! eval]

As a simple example, if exp is the expression a+ b, then the evaluation
function is: E(a + b) : state ! eval, and applying this function to the
state s gives us the function:

E(a+ b)(s) = a(s) + b(s)

We will usually write E(a+b) as Effa+bggby putting syntactic arguments
in set braces rather than parentheses. It should also be clear, that this
notation is the same as expr when we described functional correctness
earlier.

We can now model the domains for our programming language:

state
4
= id! value program states

id identifiers

value
4
= eval values

eval
4
= num+ bool expression values

num integers
bool booleans
exp expressions
stmt statements

To define our language, we need to define a function of type state! state
for each of the syntactic statement types. For ease in readability we
will use a �-like notation for certain constructs. The term:

Denotational Semantics 207

let x := a in body

will be used to mean
((x) : body)(a)

and has a meaning similar to the �expression:
(�x body a)

Recursive definitions will be denoted as:
f = rec F (f)

and will denote the least fixed point of F .

Some auxiliary functions we will use include:

� The conditional design function we used previously in Chapter 3 is
extended to a complete lattice: (b! v1) j (v2) as follows:

b (b! v1)j(v2)
> >
true v1
false v2
? ?

� If x is of domain type D ! D0, then the expression x[v=e] is defined
as:

x[v=e]
4
= (D d)D0 : (d = v ! e) j (x(d))

This has the intuitive meaning of changing the v component of x to e
and represents the basic model of an “assignment.”

� If y is a domain of type y = : : :+x+: : : then the functions of inspection,
projection, and injection are defined as:

Inspection:For any y the inspection of y into Y , written yEY is defined
as:2

yEY = true if y 2 Y and false otherwise

2The actual definitions are more complex than given here, but this suffices for this infor-
mal introduction to this subject.

208 Software Specifications

Projection:For any y the projection of y into Y , written yjY is defined
as:

yjX = y if y 2 X; or ? if :y 2 X

Injection:For any Y , the injection of Y into X is defined as Y � X.

Statement semantics

begin:No real semantics added by the begin : : :end sequence.

Cffbegin stmt endgg = Cffstmtgg

composition:Result is transformed by the first statement first, then
the second.

Cffstmt1 ; stmt2gg = (state s)state : Cffstmt2gg(Cffstmt1gg(s))

assignment:In this case create a new storage map resulting from the
new denotable value. Note that this is just the array assignment axiom
we already discussed in Chapter 2, Section 3.

Cffid := expgg = (state s)state : ((value v)state : s[id=v])
((Effexpgg(s)) j value)

if:This simply determines which of two functions to evaluate by first
evaluating E on the expression, applying this to the Boolean function,
which then evaluates stmt1 or stmt2 as appropriate.

Cffif exp then stmt1 else stmt2gg =
(state s)state : ((bool b)state! state :
(b! Cffstmt1gg)j(Cffstmt2gg))
((Effexpgg(s)) j bool)(s)

while:This recursive definition is similar to the functional correctness
model of Chapter 3.

Cffwhile exp do stmtgg =
rec(state s)state : ((bool b)state! state :
(b! Cffstmtgg � Cffwhile exp do stmtgg)j((state s0)state : s0))
((Effexpgg(s)) j bool)(s)

These definitions correspond to the intuitive meanings we usually as-
sociate with these statements.

Denotational Semantics 209

3.2. Pointers and Aliasing

Our initial model assumed that every identifier referenced a unique
value. However, in almost every language, the notion of a reference
exists in some form. Even if no explicit pointer exists, the notion is used
to describe mechanisms like call by reference or call by name parameter
passing to procedures. Allowing parameters also permits aliasing of
variables, or the ability to address the same memory location with more
than one identifier name. This can happen if we pass the same variable
as two different parameters, or address a parameter and the external
argument directly.

In order to handle this more explicitly, the notion of a “program store”
must be extended to the domain of denotable values. For this simple
introduction, we will use the domain loc as denotable values.

We add the concept of an environment as a mapping from identifiers to
these denotable values, or the domain: env = id! loc. The “program
state” now becomes a “machine store,” or a member of the domain:
store = loc! value.

If E is an environment, then given any identifier id, E(id) becomes
a function returning a loc. For languages without pointers, we can
assume that loc will be a constant, so we get the set of environments:
E : id! loc. However, the addition of loc allows us to define identifiers
whose location in our store changes.

We need to redefine our semantics to determine the effects of each state-
ment relative to an environment. The previous C : stmt ! [state !
state] now becomes C0 : stmt ! [env ! [store ! store]]. The expres-
sion evaluation function E now becomes E0 to interpret the meanings of
expressions relative to both an environment and a store.

The modified semantics become:

begin:Same as before:

C0ffbegin stmt endgg = C0ffstmtgg

composition:Result is transform by the first statement first, then the
second.

C0ffstmt1 ; stmt2gg =
(env e; store s)store : C0ffstmt2gg(e)(C0ffstmt1gg(e)(s))

210 Software Specifications

assignment:Create a new storage map.

C0ffid := expgg =
(env e; store s)store : ((loc a; value v)store : s[a=v])
(e(id))((E 0ffexpgg(e)(s)) j value)

if:Determine which statement to evaluate.

C0ffif exp then stmt1 else stmt2gg =
(env e; store s)store : ((bool b)store ! store :
(b! C0ffstmt1gg(e))j(C0ffstmt2gg(e)))
((E 0ffexpgg(e)(s)) j bool)(s)

while:Same recursive definition.

C0ffwhile exp do stmtgg =
rec(env e; store s)store : ((bool b)store! store :
(b! C0ffstmtgg(e) � C0ffwhile exp do stmtgg(e))
j ((store s0)store : s0))((E 0ffexpgg(e)(s)) j bool)(s)

3.3. Continuations

The one problem with the definitions in the last section is that they
are dependent on the order of evaluation. To show this, consider the
function which has the effect that for each identifier it returns 0, and
it “clears” memory. It will have the signature

clear : env ! [store! store]

and can be defined as:

clear = (env e; store s)store : (loc l) : 0

The statement sequence: stmt1; clear has meaning:

C0ffstmt1; cleargg(e)(s) =
C0ffcleargg(e)(C0ffstmt1gg(e)(s)) =
((env e; store s) : store(loc l)value : 0)(e)(C 0ffstmt1gg(e)(s))

Denotational Semantics 211

If we let C0ffstmt1gg(e)(s) be a nonterminating computation, two possible
interpretations can be given to the meaning function, depending upon
the interpretation rule. If we choose call by value, the result is also
a nonterminating computation. Call by name, however, produces the
resulting store (loc l)value : 0.

The usual method is to assume normal order of evaluation, thus using
call by name for �expressions. This is not the usually assumed seman-
tics for programming languages. Two approaches can be used to give
call by value semantics:

� If f is a member of the domain D ! D0, then we can define a function
callvalue : [D ! D0] ! [D ! D0] that effectively mimics f where it
terminates. We define it as:

callvalue(?) = ?0

callvalue(>) = >0

callvalue(f)(d) = f(d); otherwise

Then every place where call by value is required, replacement of the
function f by callvalue will produce the proper results.

� We can alter the definitions so that their interpretation is indepen-
dent of the order of evaluation. In doing so, call by name achieves our
purpose. The use of continuations allows for this.

Call a computation serious if it is possibly nonterminating. The prob-
lem we have is the application of functions to serious arguments. To
remove this possibility, extend each serious function to include an ad-
ditional argument which will be used to represent the remainder of
the computation to be performed (i.e., the continuation). If the serious
function terminates, it will apply the continuation to the result pro-
duced. Thus, a serious function f(x1; : : : ; xn) in the previous definition
will be mapped into g(x1; : : : ; xn; c) such that:

g(x1; : : : ; xn; c) = c(f(x1; : : : ; xn))

212 Software Specifications

4. EXERCISES

Problem 1. Show that the �calculus definitions for and and or agree
with our intutive definitions for these logical functions; that is and(a; b)
is true if both a and b are true and or(a; b) is true if either a or b are
true.

Problem 2. Using the �calculus definitions, show the following:

1 + 1 = 2
2 + 3 = 5
2� 3 = 6
22 = 4

Problem 3. If we allow side effects in expression evaluation, we need
to modify the definition of E to something like:

E : exp! [state! [eval � state]]

Modify the model presented here to take into account side effects.

Problem 4. Assume we add a for statement to our language with the
syntax:

< stmt >! for < id > := < expr > to < expr > do < stmt >

Show that the following is a reasonable semantic definition for this
statement:

Cfffor id := exp1 to exp2 do stmtgg =
(state s)state :
let iterate = rec(num n1; num n2; state s0)state :
if n1 > n2 then s

0 else iterate(n1 + 1; n2)(Cffstmtgg(s0[id=n1]))
in

(num v1; num v2)state! state : if v1 = ? then ?
else if v2 = ? then ? else if v1 = > then >
else if v2 = > then > else iterate(v1; v2))
((Effexp1gg(s)) j num; (Effexp2gg(s) j num)) (s)

Denotational Semantics 213

Problem 5. Modify the model of Section 3.2 to allow for dynamic en-
vironments with the addition of a pointer-assignment statement. That
is, add the statement id1 >> id2 which means that any reference to id1
after the assignment will be to the same location as the current value of
id2. Redo all other semantic equations to conform to this new addition.

5. SUGGESTED READINGS

The lambda expression is a simple predecessor to denotational seman-
tics. The Wegner reference is a good summary of that.

� D. A. Schmidt, Denotational Semantics, Allyn and Bacon, New York,
1986.

� P. Wegner, Programming Languages, Information Structures and Ma-
chine organization, McGraw Hill, New York, 1968, pp. 180-196.

� R. D. Tennent, “The denotational semantics of programming lan-
guages,” Communications of the ACM, Vol. 19, No. 8, 1976, pp. 437-
453.

214 Software Specifications

Chapter 7

Specification Models

Previous chapters have described various notations for verifying that a
program meets its specifications. However, most notations are hard to
adapt to realistic programs. Here we look at approaches that attempt
to model real programming issues, based upon the formal methods we
already discussed.

We will first describe VDM, a notation that uses many of the techniques
we have already explained. We complete this chapter with a summary
of some recent results on risk analysis and evaluation of software spec-
ifications.

1. VIENNA DEVELOPMENT METHOD

The IBM Vienna Laboratory developed a notation called the Vienna
Development Method (or VDM1). As we shall see, VDM adds very little
new technology to what has already been described, except, perhaps,
for an arcane notation. What VDM does do, however, is to pick and
choose from among the techniques we have studied, and to develop
a formalism and presentation that lends itself to realistic problems.
VDM has a much wider following in Europe today, and is being used
for many difficult programming tasks.

1VDM is not to be confused with the Vienna Definition Language, or VDL, which was
briefly described earlier.

215

216 Software Specifications

While VDM was initially developed within IBM, the IBM group moved
on to other topics and major development of the current model was
by Dines Bjorner of Lyngby, Denmark, who was concerned about sys-
tems software specifications and by Cliff Jones in Manchester, UK, who
was concerned about VDM proof obligations and algorithm and data
structure refinement.

VDM contains the following features:

� The basic concept is to define a specification of a program, define a
solution to that specification, and prove that the program meets the
specification.

� It is based upon denotational semantics and Mills’ functional correct-
ness models in that it develops functions of the underlying program,
and is concerned about transformations between program states.

� It permits formal proofs of program properties using a set of inference
rules, similar to the Hoare rules we studied earlier.

1.1. Overview of VDM

We present this short overview of VDM by describing the four basic
features in the method:

1. the underlying mathematical logic,

2. the definition of functions,

3. the definition of specifications, and

4. the method for verifying a function with its specification.

Underlying mathematical logic

VDM uses the predicate calculus for proving properties of specifica-
tions. That means the mathematical theory presented earlier in Chap-
ter 1, Section 5.4 forms the basis of the proof methodology. The same
set of rules of inference apply to this method as well as to the previously
defined methods. VDM proofs look very similar to the Hoare axiomatic
proofs we studied in Chapter 2.

Specification Models 217

One major difference between the model we are building here and tra-
ditional mathematics is that traditionally, functions are usually con-
sidered to be total – that is, defined for all members of the domain.
However, programs rarely are total. They are usually defined to give
an appropriate answer for specific input data (i.e., only data that meets
a program’s precondition). The implication of this, is that given pred-
icate E, we can state in classical mathematics that E _ :E = true.
However, for a programming logic, we cannot assume this.

In order to handle this problem, the operator � will be defined. �(E)
means that E is defined (to be true or false). More importantly, in this
context, this also implies that E must be a terminating computation.

For example, the inference rule:

E1 ` E2
E1) E2

now becomes

E1 ` E2; �(E1)

E1) E2

The need for � occurs in the axioms for the if and while statements.
The VDM axioms for these two statements are given as follows:

fpre ^Bgstmt1fpostg; fpre ^ :Bgstmt2fpostg; pre) �(B)

fpregif B then stmt1 else stmt2fpostg

fI ^BgstmtfIg; I) �(B)

fIgwhile B do stmtfI ^ :Bg

De�nition of functions

A function is defined as:

FunctionName : signature

FunctionName(parameters)
4
= expression

218 Software Specifications

where FunctionName is the name of the function, signature is the sig-
nature of the function, parameters are the parameters, and expression
is the definition of that function.

In order to specify parameters, we need to give the data type of each
such specified object. Several predefined data types are defined:

Token:single objects.

Enumeration:the enumerated type.

B:truth values.

N :the natural numbers.

Z:the integers, and.

R:the reals.

VDM supports six classes of data objects: sets, sequences, maps, com-
posite objects, Cartesian products, and unions. For example, sets of
object X are given as X � �set. Thus a set of integers would be given
as Z� � set.

For example, a function to multiply two natural numbers could be given
as:

multiply : N �N ! N

multiply(x; y)
4
= x� y

De�nition of speci�cations

A specification consists of four basic components:

1. name

2. external data

3. precondition

4. postcondition

The structure of each of these components is as follows:

Specification Models 219

1. name: Name gives the name of the function to be defined and its
signature. It uses a notation similar to a Pascal function declaration.
For example, to create a function multiply that takes two parameters
x and y and produces an integer result z, the specification would be:

multiply : (x : Z; y : Z) : z : Z;

In this case, z = multiply(x; y).

2. external data: The external data segment of a specification is op-
tional. When present it specifies the name of the variables used by the
specification, but defined elsewhere. The syntax is:

ext names : mode type

where names is a list of identifiers used by the specification and mode
determines how each variable is used. A mode of wr means that the
variables are “read–write” and can be altered by the specification, while
a mode of rd means that the variables are “read-only” and cannot be
altered.

For example, if integers a and b are accessed by a specification and c is
altered, the external declaration could be given as:

ext a; b : rd Z;
ext c : wr Z;

3. precondition: The precondition is specified as:

pre expression

where expression is any Boolean expression involving the variables of
the specification.

For the multiply example given above, if we let pre � �multiply be a
predicate describing the precondition, we can refer to this precondition
in formulae as pre�multiply(x; y), which in this case would just be the
predicate true.

4. postcondition: The postcondition is specified as:

post expression

where expression is any boolean expression involving the variables of
the specification. The postcondition generally specifies the functional-
ity that is desired by the specification.

220 Software Specifications

Often it is necessary to specify the output of a program as a function of
the initial input values. In VDM the symbol (means an initial value.
Thus if A is a parameter to a specification, then

(

A means the value A
had when the function was initially invoked.

For the multiply example given above, the postcondition is denoted as:

post ��multiply(x; y; z) =
post ��multiply(x; y;multiply(x; y))

This can be clarified further as:

post� �multiply(x; y;
(
x �

(
y)

This was an example of an operational abstraction for a specification.
VDM also permits applicative statements to specify functions and im-
perative statements to specify operations.

1.2. Example: Multiplication One Last Time

In presenting a brief overview of VDM, let us revisit our multiplication
program MULT that we developed earlier in Chapter 2, Section 1.3.
Using VDM, we can give the specification to this program as follows:

MULT : (A : N ; B : N) y : N
ext a; b : wr N ;
pre B � 0
post y =

(

A �
(

B

This states that MULT is a function with two arguments (A and B) of
type N (natural number) that computes a result of type N . It accesses
state variables (i.e., global storage) a and b and writes to them.

This function has as a precondition b � 0 and as a postcondition y =
(

A
(

B,
where

(
x is the original value of x on entry to the function.

Any program that meets this specification must satisfy the following
predicate:

Specification Models 221

8(i; j) 2 N � N j pre ��MULT (i; j))
MULT (i; j) 2 N ^ post ��MULT (i; j;MULT (i; j)) �

8(i; j) 2 N � N j j � 0)
MULT (i; j) 2 N ^ MULT (i; j) =

(
{
(
|

We will first specify two functions INIT and LOOP whose composition
gives us the above result. Their specification is as follows:

INIT : (A : N ; B : N) y : N
ext a; b : wr N ;
pre B � 0
post a =

(

A ^ b =
(

B ^ y = 0
^b � 0

LOOP : y : N
ext a; b : wr N ;
pre b � 0 ^ y = 0
post y =

(
a
(

b

We now show that our previous solution meets this specification.

INIT function

We will define our candidate solution for INIT using the same three
initialization statements as before:

INIT
4
= a := A; b := B; y := 0

Our rules of inference are very similar to the Hoare axioms discussed
previously. However, we want to make sure that each function ter-
minates as part of the rule. For assignment, this is not a problem;
potential problems only occur during loop statements.

The two rules of inference for assignment that we need are:

asgn1 : asgn2 : x does not occur in E

ftruegx := efx =
(
e g fEgx := efEg

We can prove pre�INIT) post�INIT via a proof similar to a Hoare-
type axiomatic proof:

222 Software Specifications

fB � 0ga := AfB � 0g asgn2

ftruega := Afa =
(
Ag asgn1

fB � 0ga := AfB � 0 ^ a =
(

Ag Consequence

fB � 0 ^ a =
(
agb := BfB � 0 ^ a =

(
a ^ b =

(

Bg asgn1 & asgn2

fB � 0ga := A; b := BfB � 0 ^ a =
(
a ^ b =

(

Bg composition

fB � 0ga := A; b := B; y := 0fB � 0 ^ a =
(
a^ asgn1 & asgn2 &

b =
(

B ^ y = 0g composition

fB � 0ga := A; b := B; y := 0fb � 0 ^ a =
(

A^ consequence

b =
(

B ^ y = 0g

LOOP function

We will define the same while statement to solve this LOOP specifica-
tion:

LOOP
4
= while b > 0 do begin b := b� 1; y := y + a end

We need the following inference rule. If I is the invariant, T is the
predicate on the while statement, and S is the loop body:

fI ^ Tg S fIg; I) �(T)

fIgwhile � � � fI ^ :Tg

where �(T) states that T is well founded, that is, the predicate eventu-
ally becomes false and the loop terminates.2

Using steps similar to the axiomatic proof in Chapter 2, Section 1.3, we
are able to complete the proof in a similar manner.

1.3. Summary of VDM

This example by no means describes all of the features of VDM. How-
ever, the simple exercise should indicate the essential characteristics
of a VDM development:

� It is better than most methods at separating the specification from
implementation issues.

2Formally, we must show that there is no function f such that f(i) LOOP f(i+ 1) is a
relation, meaning that we eventually have to find some value of f outside of the domain
of the test, and the test must then fail.

Specification Models 223

� It can be completely formal, but can also be used informally.

� It can be used at several levels – proving a design meets a specifica-
tion, or proving that a source program meets the specs.

� While practical, the process is still not easy.

2. TEMPORAL LOGIC

As we have discussed the issue of program correctness in this book,
we have been concerned about the effects of certain programming lan-
guage structures on the results of executing that program. Thus, we
have been mostly addressing the question “If I execute a program under
certain input constraints, will I get the desired result?” No mention
is ever made of when one can expect such results. Most correctness
models simply deal with the issue of whether the desired results even-
tually will or will not occur. We have ignored the passage of time in
this discussion.

We can, however, include time within our logical system, and we call
such models temporal logics. In this section, we briefly describe such
logics and outline their major properties.

2.1. Properties of Temporal Logics

When we considered axiomatic correctness (via Hoare axioms of Chap-
ter 2 or predicate transforms of Chapter 4) we were mostly concerned
with the question: “If predicate P is true and program S is executed,
will predicate Q be true whenever S terminates?” When we consider
the question of when program S terminates, we can ask additional ques-
tions. The following list is indicative of the kinds of issues temporal
logic addresses:

� Safety property: Can something bad ever happen?

� Liveness property: Does something good eventually happen?

� Deadlock property: Does the program ever enter a state where no
further progress is possible?

� Mutual exclusion: Can we ever have two different processes in the
same critical state at the same time?

224 Software Specifications

We can also represent our traditional programming logic as a temporal
question: If the precondition is initially true, then is it possible for the
program to terminate with the postcondition false?

For programs that execute sequentially, such as those usually written
in Pascal, FORTRAN, or even C, the techniques given earlier in this
book should suffice. However, when we consider simultaneous exe-
cution of sets of these programs, such as the concurrent execution of
a set of processes within an operating system, the results are not so
clear, and it is necessary to resort to techniques, like temporal logic, to
determine the correct behavior of the system.

Primitive temporal operators

Predicate calculus provides for the evaluation of expressions of Boolean
variables. In order to discuss time, we need to add two operators to our
predicate calculus (of Chapter 2, Section 5):

� 2: Now and forever

� !: Now or sometime in the future

Thus 2p means that p is true now and remains true forever. The
expression ! p means that p is either true now or will eventually
become true.

The differences between these operations can be given by the following
examples:

� x > 0 The expression is now true, and may be true or
false in the future.

� 2(x > 0) The expression is now true and will remain true
forever.

� ! (x > 0) The expression will sometime be true (either
now or later).

We will call our expressions of temporal logic assertions. Any assertion
which does not contain any of the temporal operators will be called a
predicate and is obviously equivalent to the predicate calculus predi-
cates we studied before.

Specification Models 225

Non-primitive operators

For convenience, we will introduce the following two nonprimitive op-
erators: 3 and ;.

This 3 is defined as the dual to 2. That is:

3p
4
= :2:p

Since 2:p states that it is always true that p is never true (i.e., that
p is always false), 3p states that it is not never true that p is always
false. So does this mean that 3p is sometimes true and 3p �! p? The
answer is an unqualified “maybe.”

To understand this statement, consider that developing temporal as-
sertions is further complicated by the realization that we have at least
two definitions of time. In one case, we view time as a linear sequence
of events, while in the other we view time as all possible events that
may occur in the future, much like the distinction between nonde-
terministic and deterministic state machines when discussing formal
computational models. We call the former linear-time and the latter
branching-time temporal logic.

With linear-time logic, there is a single time line of future events de-
termining what will happen. There is only one possible future, so “not
never” does indeed mean sometime, and we do have the equivalence:
3p �! p.

However, with branching time logic, at each instance there may be
alternative applicable choices, thus forming a tree of future actions. p
may become true on some path that depends upon a future decision.
Since p may become true since that path may be traversed, we can say
that 3p is true. However, we cannot say that ! p is true since we do
not yet know if that path that makes p true must be traversed.

Obviously, a single future to deal with is simpler than branching-time
logic, and we will restrict the discussion in this chapter to linear time
logic where 3p �! p.

A second nonprimitive operator is leadsto, the “leads to” operator, which
is defined to be:

P ; Q
4
= 2(P) 3Q)

226 Software Specifications

That is, P ; Q means that it is always true that if P is ever true, then
eventually (i.e., sometimes) Q will be true. We will see this operator
again when we discuss verification conditions for concurrent programs.

States

Much like other programming language models described earlier, we
can describe temporal assertions by their effects upon system states.
However, since we need to consider concurrent execution where several
program statements may execute next, we need to include a “next state”
component to our model. In the sequential model, we could have simply
modeled the next state function as a mapping from location counter to
statement number. However, here there may be more than one next
state ready for execution.

We define a state s as the pair: (1) a function from names to values,
and (2) a set ready giving the set of statements available for execution.
We let S be the set of all such states.

In discussing the issues of safety, liveness, and other such properties,
we are usually concerned about the sequence of states that a program
passes through. We write such a sequence as s = s0; s1; s2; : : : where
each si is in S.

If s is a sequence of states, the tail of that sequence (i.e., the sequence
with the first element deleted) is given by s+, that is: (s+)i = si+1.

We define the semantics of a program as all valid execution sequences
that a program may have. For traditional programming languages,
there will be a single execution sequence describing the behavior of a
program; however, as we add parallel processing and distributed com-
puting primitives, a program may have more than one valid execution
sequence. (We saw some of this with the guarded commands of Dijkstra
earlier.)

Immediate assertions

We combine our notion of predicates with concurrent states via imme-
diate assertions and the operator j=. We write s j= P to state that P
has value true in state s. That is, if s =< f; ready >, then values of f
applied to P result in P being true.

Specification Models 227

We can combine the previously defined temporal operators 2 and 3
with our notion of states, as follows:

s j= (P ^Q) if and only if s j= P and s j= Q.
s j= (P _Q) if and only if s j= P or s j= Q.
s j= :P if and only if it is not the case that s j= P .

For sequences, we can state: s j= 2P if and only if 8i; si j= P
s j= 3P if and only if 9i; si j= P

Formal properties of temporal logic

With the above definitions, we can now formally define several prop-
erties that we wish to investigate with concurrent programs. In what
follows, P) Q means that if there is some sequence s for which s j= P ,
then s j= Q. For sequence s with s j= P we will assume that state s0
satisfies s0 j= P :

1. P) 2Q. This is the basic safety property we would like to prove.
That is, if P is true now, then Q will always remain true.

2. 2(I) 2I). If I ever becomes true, then I will remain true. This
states that I is an invariant.

3. 2(P) 3Q). This states that if P becomes true then eventually Q
will be true. This is the essential liveness property.

4. The following are all theorems that can be proven:

2(P) Q)) (P ; Q)
2(P ^Q) � 2P ^2Q
3(P _Q) � 3P _3Q)

Duality of the second theorem, however, does not follow, since the fol-
lowing is not a theorem:

2(P _Q) � 2P _2Q

However, the following is a theorem:

2P _2Q) 2(P _Q)

228 Software Specifications

2.2. Programming Assertion

Consider a programming language consisting of if, while, and assign-
ment statements. We need to extend such a language with two con-
structs to handle concurrency: (a) concurrent execution and (b) atom-
icity.

� Concurrent execution is modeled with the cobegin statement:

cobegin s1[]s2[] : : : coend

meaning that each si can execute concurrently. Execution does not
continue until all components of the cobegin terminate.

� Atomicity is modeled by the operator < : : : >. This means that once
execution of this component of the program begins, it proceeds to the
end. For sequential programs, this is not a problem, but with concur-
rent execution, we need such a rule in order to determine the outcome
of many computations.

For example, consider the following program:

x := 1;
cobegin

x := 2[]
y :=< x+ x >

coend

If we did not have atomicity, the computation of y could result in any
one of the following: 1+1, 2+2, or even 1+2 depending upon the order
that the first or second cobegin statements were executed in. Because
of concurrency, we could also have two different values of x in the same
expression, depending upon evaluation order. Atomicity forces a result
of 1+1 or 2+2 only. We can be sure that the value of x does not change
within the computation of that single expression.

We define three immediate assertions on such a programming language
as follows:

1. at: at P refers to states where execution is about to execute state-
ment P . s j= at P if and only if:

� If P is l : x := expr, then l 2 ready(s).

Specification Models 229

� If P is l : while B do Q, then l 2 ready(s).

� If P is cobegin s1[]s2[] : : :coend, then (s j= at s1) and (s j= at s2).

� If P is Q;R then s j= at Q.

2. in: We state that we are in P if we are executing some component
making up P . We can define it as: s j= in P if and only if either s j= at P
or there is some component of Q of P such that s j= at Q.

3. after: We state that after P is true if we are finished with the
execution of P or any component of P .

Let Q be the statement that contains P . s j= after P if and only if:

� If P is the entire program, then ready(s) = ;.

� If Q is l : while B do P , then s j= at Q

� If Q is cobegin s1[]P [] : : :coend, then (s j= after Q) or ((s j= in Q)
and not (s j= in P)).

� If Q is P ;R, then s j= at R.

� If Q is R;P , then s j= after Q.

Inference rules

With the in, at, and after assertion rules, we are now in a position to
define a set of inference rules for concurrent programs, much like the
earlier axiomatic inference rules.

� Atomic assignment:

< S >

at S ; after S

� Single exit:

true

in S) (2in S _3after S)

� While axioms: Fairness is given as:

230 Software Specifications

w : while < b > do S

at w; (at S _ after w)

While execution is given by:

w : while < b > do S

at w; ((at S ^ b) _ (after w ^ :b))

While termination is given by:

w : while < b > do S

(at w ^2(at w) b)); at S; (at w ^2(at w) :b)); after w

� Concatenation rules:

S;T; at S ; after S; at T ; after T
at S ; after T

� Cobegin rule:

c : cobegin S[]T coend; at S ; after S; at T ; after T

at c; after c

� Atomic statement:

fPg < S > fQg; 2(at < S >) P)

at < S >; (after < S > ^Q)

� General statement:

fPgSfQg; 2(in S) P); in S ; after S

in S ; (after S ^Q)

This only scratches the surface on temporal logics. See the paper by
Owicki and Lamport[48] for more details.

Specification Models 231

3. RISK ANALYSIS

While there are many other attributes which can affect a specification,
their enumeration is beyond the scope of this book. Suffice it to say
that resource estimation and safety analysis are representative of the
others.

Assume we have a set of such attributes which define a specification
to a program. How does one choose an appropriate design that meets
that specification? We know that a complete specification needs to
address many attributes, including functionality, resource usage, se-
curity, safety, and other concerns. Most designs will meet certain re-
quirements well and probably not meet others.

How do we know what project to build? How do we assess the risk
for each decision? Will prototyping reduce this risk? All of these are
important considerations, and have only recently been applied to the
specification problem.

We now describe one such evaluation strategy. It consists of two compo-
nents. In one, the designer knows all relevant details (decision under
certainty). In the second case, there is some variability (and risk)
associated with all potential choices. We call this decision under un-
certainty.

3.1. Decisions under Certainty

We consider correct functionality to be just one of several attributes for
a solution, with multiple designs implementing the same functionality.
Let us first assume that our needed functionality is specified by a func-
tion (from state to state) and also the candidate programs are specified
by functions from state to state. Let X be the functionality of program
x. We extend this model to include other attributes as well. Since these
other attributes are often concerned with nonfunctional characteristics
such as resource usage, schedules, and performance, we will use the
term viable for any solution satisfying a specification rather that the
more specific term correctness.

Now assume that our specifications (for both our needed software and
the candidate programs) are vectors of attributes, including the func-
tionality as one of the elements of the vectors. For example, X and Y
are vectors of attributes that specify alternative solutions to a specifi-

232 Software Specifications

cation B. Let S be a vector of objective functions with domain being
the set of specification attributes and range [0::1]. We call Si a scaling
function and it is the degree to which a given attribute meets its goal.
We state that X solvesS Y if 8i; Si(Xi) � Si(Yi). We extend our previ-
ous definition of correctness to the following: design x is viable (i.e., is
correct) with respect to specification B and scaling function vector S if
and only if P solvesS B. We can show that the previous definition of
correctness is simply a one-dimensional example of this more general
definition of viability.

Each attribute may not have the same importance. Assume a vector of
weights W called constraints such that each wi 2 [0::1] and

P
wi = 1:

Our evaluation measure, the performance level, merges multiple scaled
attributes and their constraints. Given specification vector X, scal-
ing function S and constraints W , the performance level is given by:
PL(X;S;W) =

P
i(wi � Si(Xi)).

We use the performance level as our objective function: Given a specifi-
cation vector B, scaling vector S, constraints W , and potential solutions
x and y, X improves Y with respect to hB; S;W i if and only if:

1. X solvesS B and Y solvesS B

2. PL(X;S;W) > PL(Y; S;W).

We use here a very simple weighted sum to compute the performance
level. Our definition of improves depends only upon an appropriate
definition of performance level for comparing two solutions, not on the
details of how the two vectors are compared.

It should be noted that the model presented in this section depends
upon the solution triple hB; S;W i, which is a quantitative evaluation
of how well each attribute of the proposed solution meets or exceeds
the minimal specification B. We rarely know this in practice and this
book only assumes an ordinal ranking of the attributes – that is, one
attribute value is better than another.

3.2. Decisions under Uncertainty

We have so far assumed that the relative importance of each attribute
is known a priori. However, we rarely know this with certainty. We

Specification Models 233

therefore consider the following model, based upon aspects from eco-
nomic decision theory.

The performance level assumes that the relative importance of each
attribute is a known constant, so the weight factors and scaling can
be defined. However, this is not generally true. For example, in a
program that includes a sort of a list of records, the importance of the
sort algorithm itself depends upon how often it gets called and how
long unsorted lists get. That is, if the list of items always remains
short, then any sort algorithm will suffice, since sorting will take a
negligible part of the execution overhead. In this case, any attribute
value (i.e., specification) describing the sort function will have minimal
effect upon the resulting program and have a very low weight. Our
problem is then to modify the previous model to account for unknowns
in the importance for these attribute values.

Using terminology from decision theory, the potential solutions to a
specification are called alternatives, and the various possibilities that
will determine the importance for the attribute values are states of
nature. Each state of nature is associated with a fixed set of weights
giving the relative importance of each system attribute.

We can now represent the performance level as a matrix PL where
PLi;j is the performance level for solution i under state of nature j. As
before, the performance levels give a measure of how good a system is.
We can approximate this by defining the entries PLi;j of performance
level matrix PL as the payoff (e.g., monetary value) for solution i under
state j. For example, assume we have two potential solutions X1 and
X2, and assume we have three potential states of nature st1, st2 and
st3 which are represented as the 6 possible payoffs in the matrix:

PL =

�
100 500 0
300 200 200

�
(7.1)

In this example, if we knew for sure that st2 would be the resulting
state of nature, then we would implement alternative X1 (with payoff
500), and if we knew that either states st1 or st3 were the resultant
states, then alternative X2 would be most desirable. However, we may
not know this beforehand.

When the probability for each state of nature can be estimated, we can
use expected values to achieve an estimated performance level. Given
probability distribution vector P , where pi is the probability that state

234 Software Specifications

of nature sti is true, the expected payoff for alternative Xi is given by:

vi =
X
j

pli;j pj

Use the decision rule: Choose Xi which maximizes vi or:

max
i

(
X
j

pli;j pj)

For example, if we know that the probability distribution for each state
of nature in our example is: P = (0.3, 0.5, 0.2), we can calculate the
expected payoffs as follows:

v1 = 100 � 0:3 + 500 � 0:5 + 0� 0:2
= 280

v2 = 300 � 0:3 + 200 � 0:5 + 200� 0:2
= 230

We would then choose X1 over X2 since 280 > 230.

3.3. Risk Aversion

Risk aversion plays an important role in decision making. This implies
subjective behavior on the part of the software manager. We assume
that the following reasonable behavior rule (i.e., equilibrium probabil-
ity) is true:

� Decomposition: Given three payoffs a � b � c, there exists a prob-
ability � such that the decision maker is indifferent to the choice of
a guarantee of b, and the choice of getting c with probability � and
getting a with probability 1 � �. We shall refer to this probability as
decomp(a; b; c).

For example, assume there are two techniques to solve a problem. One
is fully tested, giving a guaranteed payoff of $5,000 and a second new
and more efficient technique promises a potentially larger payoff of
$10,000 (but not completely tested) with a chance to give a payoff of
only $2,000. If a software manager considers using the new technique
only if the chances of getting the payoff of $10,000 are larger than 80%,
the probability � is larger than 0.8. In this case, the expected payoff
will be 10,000 � 0.8 + 2,000 � 0.2 = 8,400, so the given manager is
somewhat risk-averse and conservative.

Specification Models 235

Let pl0 be the minimal value in our payoffPL and let pl� be the maximal
value. In our example PL matrix (Section 3.1), we would choose pl� =
500 and pl0 = 0. We decompose each pli;j as ei;j = decomp(pl0; pli;j; pl�;).
This decomposition creates an equivalent pair of payoffs fpl0, pl�g, with
probability ei;j of getting the more desirable pl�. We call the matrix
formed by these elements ei;j ’s the equilibrium matrix E.

Any element ei;j will satisfy the following inequality:

pl0 � (1� ei;j) + pl� � ei;j � pli;j

The difference between the two sides of this equation reflects the man-
ager’s degree of risk averseness. If the two sides are equal, risk analysis
reduces to the expected value.

3.4. Value of Prototyping

Given the various unknowns in the states of nature, the software man-
ager may choose to get more information with a prototype so that a
better final decision can be made. However, before undertaking the
procedure to extract more information, one should be sure that the gain
due to the information will outweigh the cost of obtaining it. Here, we
try to establish an absolute boundary: What is the value of perfect
information?

The best we can expect is that the results of the experiment will indicate
for sure which state of nature will hold. Under this case, we can choose
the alternative that gives the highest performance level under the given
state of nature:

=
X
j

pj �max
i

pli;j

In our example, we would chooseX1 under st2 and chooseX2 otherwise,
resulting in performance level :

= 0:3� 300 + 0:5� 500 + 0:2� 200
= 380

What is the value of this perfect information? Since the expected value
of our performance level was computed previously as 280, the value of
this information is an improvement in performance level of 380�280 =
100. This is the most that we can expect our prototype to achieve and
still be cost effective.

236 Software Specifications

Assume we build a prototype to test which state of nature will be
true. While we would like an exact answer, since a prototype is only
an approximation to the real system, the results from prototyping are
probabilistic. Let result1, result2, ... resultk be the possible results
of the prototype. This information will be presented in a conditional
probability matrix C where ci;j represents the conditional probability
of result resulti given state of nature Sj .

Given the probabilities for each state (vector P) and the conditional
probability matrix C, the marginal probability distribution (vector Q)
for obtaining resulti is given by:

qi =
X
j

ci;j � pj

We can compute the a posteriori distribution matrix P0. P 0 has as many
rows as results from the prototype which are updated values of vector
P . Row i gives the probabilities of the states of nature given that the
result of the prototype is resulti:

p0i;j =
ci;j � pj

qi

Following our example, assume that a prototype of alternative X2 is
planned. The planned prototype can give the following results:

1. result1: We are satisfied with the system as presented by prototype.

2. result2: We are not satisfied.

Assume that the conditional probabilities are estimated beforehand.
For example, we estimate that if the state of nature is st2, we have
probabilities 0.3 and 0.7 to obtain results result1 and result2 respec-
tively from the prototype. The conditional probabilities appear in the
matrix C having a column for each state and a row for each result of
the prototype:

C =

�
0:9 0:3 0:4
0:1 0:7 0:6

�

From this we can calculate the probability qi for each result i of the pro-
totype, giving Q = (0:5; 0:5), and the a posteriori distribution matrix:

P 0 =

�
0:54 0:30 0:16
0:06 0:70 0:24

�

Specification Models 237

If, for example, we get result1 from the prototyping study, the new
expected values for alternatives X1 and X2 are:

v1 = 100� 0:54 + 500 � 0:3 + 0� 0:16
= 204

v2 = 300� 0:54 + 200 � 0:3 + 200� 0:16
= 254

In this case, alternative X2 should be chosen, since it gives the higher
performance level.

Similarly, if we should get result2 from the prototyping study, the new
performance levels for alternatives X1 and X2 are:

v1 = 100� 0:06 + 500 � 0:7 + 0� 0:16
= 356

v2 = 300� 0:06 + 200 � 0:7 + 200� 0:24
= 206

In this case, alternative X1 is the preferred choice.

Given that our expected performance level with no information was
280 (Section 3.2), we should only prototype if we gain from prototyping:

vP = 0:5� 356 + 0:5� 254� 280
= 25

Since there is a positive gain vP = 25, prototyping should be carried
out as long as the cost to construct the prototyping study is less than
this. Otherwise, an immediate decision should be made.

4. SUGGESTED READINGS

The Woodcock and Loomes paper describes a notation similar to Z.

� J. Woodcock and M. Loomes, Software Engineering Mathematics,
Addison-Wesley, Reading, MA, 1988.

� C. B. Jones, Systematic Software Development using VDM, Prentice-
Hall, Englewood Cliffs, NJ, 1990.

238 Software Specifications

� M. I. Jackson, “Developing Ada programs using the Vienna Develop-
ment Method (VDM),” Software Practice and Experience, Vol. 15, No.
3, 1985, pp. 305-318.

� A. Hall, “Seven myths of formal methods,” IEEE Software, Vol. 7, No.
5, 1990, pp. 11-19.

� J. Wing, “A specifier’s introduction to formal methods,” IEEE Com-
puter, vol. 23, No. 9, 1990, pp. 8-24.

Temporal logic is covered in greater detail in:

� L. Lamport, “‘Sometime’ is sometimes ‘not never,:’ On the temporal
logic of programs,” Proceedings of the 7th ACM Principles of Program-
ming Language Conference, Las Vegas, NV, 1980, pp. 174-185.

� S. Owicki and L. Lamport, “Proving liveness properties of concur-
rent programs,” ACM Transactions on Programming Languages and
Systems Vol. 4, No. 3, 1982, pp. 455-495.

The section on risk analysis is described in:

� S. Cárdenas and M. V. Zelkowitz, “Evaluation criteria for functional
specifications,” Proceedings of the ACM/IEEE 12th International Con-
ference on Software Engineering, Nice, France, March 1990, pp. 26-33.

� S. Cárdenas, and M. V. Zelkowitz, “A management tool for evaluation
of software designs,” IEEE Transactions on Software Engineering, Vol.
17, No. 9, , 1991.

Bibliography

[1]A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques
and Tools, Addison-Wesley, Reading, MA, 1986.

[2]S. K. Basu and R. T. Yeh, “Strong Verification of Programs,” IEEE
Transactions on Software Engineering, Vol. 1, No. 3, 1975, pp. 339-
346.

[3]J. Bentley, Programming Pearls, Addison-Wesley, Reading, MA,
1986.

[4]R. S. Boyer and J. S. Moore, “Proving Theorems about LISP Func-
tions,” Journal of the ACM, Vol. 22, 1975, pp. 129-144.

[5]R. Burstall, “Proving Properties of Program by Structural Induc-
tion,” Computer Journal, Vol. 12, 1969, pp. 41-48.

[6]S. Cárdenas and M. V. Zelkowitz, “Evaluation criteria for functional
specifications,” Proceedings of the ACM/IEEE 12th International
Conference on Software Engeering, Nice, France, 1990, pp. 26-33.

[7]S. Cárdenas and M. V. Zelkowitz, “A management tool for evalu-
ation of software designs,” IEEE Transactions on Software Engi-
neering, Vol. 17, No. 9, 1991.

[8]S. A. Cook, “Soundness and Completeness of an Axiom System for
Program Verification,” SIAM Journal of Computing, Vol. 7, 1978,
pp. 70-90.

[9]D. Craigen (Ed.), Formal methods for trustworthy computer systems
(FM89), Springer Verlag, New York, 1990.

[10]E. W. Dijkstra, “Guarded commands, nondeterminacy and formal
derivation of programs,” Communications of the ACM, Vol. 18, No.
8, 1975, pp. 453-458.

239

240 Software Specifications

[11]E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, Engle-
wood Cliffs, NJ, 1976.

[12]D. D. Dunlop and V.R. Basili, “A Comparative Analysis of Func-
tional Correctness,” ACM Computing Surveys, Vol. 14, No. 2, 1982,
pp. 229-244.

[13]D. D. Dunlop and V.R. Basili, “A Heuristic for Deriving Loop Func-
tions,” IEEE Transactions on Software Engineering, Vol. 10, 1984,
pp. 275-285.

[14]C. N. Fischer and R. J. LeBlanc, Crafting a compiler, Benjamin
Cummings, Menlo Park, CA, 1988.

[15]L. Flon and J. Misra, “A Unified Approach to the Specification
and Verification of Abstract Data Types,” Proceedings of the IEEE
Conference on Specifications of Reliable Software, Cambridge, MA,,
1979, pp. 162-169.

[16]R. W. Floyd, “Assigning Meanings to Programs,” Symposium in
Applied Mathematics, 19, 1967, pp. 19-32.

[17]R. Forgaard and J. V. Guttag, “REVE: A term rewriting system
generator with failure resistant Knuth-Bendix,” Workshop on the
Rewrite Rule Laboratory, National Science Foundation, 1984, pp.5-
31.

[18]J. D. Gannon, R. B. Hamlet, and H. D. Mills, “Theory of Modules,”
Transactions on Software Engineering, Vol. 13, No. 7, 1987, pp.
820-829.

[19]S. Gerhart, “An Overview on AFFIRM: a Specification and Verifi-
cation System,” in Information Processing, Vol. 80 (S.H. Lavington
(Ed)), North Holland, 1980, pp. 343-387.

[20]J. A. Goguen, J.W. Thatcher, and E.G. Wagner, “An Initial Algebra
Approach to the Specification, Correctness, and Implementation of
Abstract Data Types,” in Current Trends in Programming Method-
ology, Vol. 4, (R. T. Yeh (Ed)), Prentice-Hall, Englewood Cliff, NJ,
1978, pp. 80-149.

[21]J. A. Goguen, “How to Prove Algebraic Inductive Hypotheses with-
out Induction,” LNSC, Vol. 87, Springer-Verlag, New York, 1980,
pp 356-373.

[22]D. Gries and G. Levin, “Assignment and Procedure Call Proof
Rules,” Transactions on Programming Languages and Systems, Vol.
2, No. 4, 1980, pp. 564-579.

Bibliography 241

[23]D. Gries, The Science of Programming, Springer-Verlag, New York,
1981.

[24]J. V. Guttag and J.J. Horning, “The Algebraic Specification of Ab-
stract Data Types,” Acta Informatica, Vol. 10, 1978, pp. 27-52.

[25]J. V. Guttag, E. Horowitz, and D. Musser, “Abstract Data Types and
Software Validation,” Communications of the ACM, Vol. 21, 1978,
pp. 1048-1064.

[26]J. V. Guttag, E. Horowitz, and D. R. Musser, “The Design of Data
Type Specifications,” in Current Trends in Programming Methodol-
ogy 4: Data Structuring, (R. T. Yeh (Ed)) Prentice-Hall, Englerwood
Cliffs, NJ, 1978, pp. 60-79.

[27]J. V. Guttag, “Notes on Type Abstraction (Version 2),” IEEE Trans-
actions on Software Engineering, Vol. 6, No. 1, 1980, pp. 13-23.

[28]A. Hall. “Seven myths of formal methods,” IEEE Software Vol. 7,
No. 5, 1990, pp. 11-19.

[29]C. A. R. Hoare, “An Axiomatic Basic for Computer Programming,”
Communications of the ACM, Vol. 12, No. 10, 1969, pp. 576-580,
583.

[30]C. A. R. Hoare, “Procedures and Parameters, An Axiomatic Ap-
proach,” Symposium on the Semantics of Algorithmic Languages,
Springer-Verlag, New York, 1971, pp. 102-116.

[31]C. A. R. Hoare, and N. Wirth, “An Axiomatic Definition of the
Programming Language PASCAL,” Acta Informatica, Vol. 2, 1973,
pp. 335-355.

[32]G. Huet, “Confluent Reductions: Abstract Properties and Appli-
cations to Term-Rewriting Systems,” Journal of the ACM, Vol. 27,
1980, pp. 797-821.

[33]G. Huet and J.-M. Hullot, “Proofs by Induction in Equational Theo-
ries with Constructors,” Journal of Computer and System Science,
Vol. 25, 1982, pp. 239-266.

[34]J-M. Hullot, “Canonical Forms and Unification,” LNSC, Vol. 87,
Springer-Verlag, New York, 1980, pp. 318-334.

[35]C. B. Jones, Systematic Software Development using VDM,
Prentice-Hall, Englewood Cliffs, NJ, 1990.

242 Software Specifications

[36]M. I. Jackson, “Developing Ada programs using the Vienna Devel-
opment Method (VDM),” Software Practice and Experience, vo. 15,
No. 3, 1985, pp. 305-318.

[37]S. Kamin, “The Expressive Theory of Stacks,” Acta Informatica,
Vol. 24, 1987, pp. 695-709.

[38]D. E. Knuth and P.B. Bendix, “Simple Word Problems in Univer-
sal Algebras,” in Computational Problems in Abstract Algebras, J.
Leech (ed)), Pergamon Press, New York, 1970, pp. 263-297.

[39]L. Lamport, “‘Sometime’ is sometimes ‘not never,:’ On the temporal
logic of programs,” Proceedings of the 7th ACM Prin. of Program-
ming Languages Conference, Las Vegas, NV, 1980, pp. 174-185.

[40]L. Lamport and F. B. Schneider, “The ‘Hoare Logic’ of CSP, and All
That,” Transactions on Programming Languages and Systems, Vol.
6, No. 2, 1984, pp. 281-296.

[41]R. C. Linger, H. D. Mills, and B. I. Witt, Structured Programming:
Theory and Practice, Addison-Wesley, Reading, MA, 1979.

[42]B. Liskov and J. Guttag, Abstraction and Specification in Program
Development, MIT Press, McGraw-Hill, New York, NY, 1986.

[43]D. C. Luckham and N. Suzuki. “Verification of Array, Record, and
Pointer Operations in Pascal,” Trans on Programming Languages
and Systems, Vol. 1, No. 2, 1979, pp. 226-244.

[44]H. D. Mills, “The New Math of Computer Programming,” Commu-
nications of the ACM, Vol. 18, No. 1, 1975, pp. 43-48.

[45]H. D. Mills, V. R. Basili, J. D. Gannon and R. G. Hamlet. Principles
of Computer Programming: A Mathematical Approach, William C.
Brown, Dubuque, IA, 1987.

[46]D. R. Musser, “Abstract data type specifications in the AFFIRM
system,” IEEE Specifications of Reliable Software Conference, Cam-
bridge MA, 1979, pp. 47-57.

[47]D. R. Musser, “On Proving Inductive Properties of Abstract Data
Types,” Proceedings of the 7th ACM Symposium on Principles of
Programming Languages, 1980, pp. 154-162.

[48]S. Owicki and L. Lamport, “Proving liveness properties of concur-
rent programs,” ACM Transactions on Programming Languages
and Systems, Vol. 4, No. 3, 1982, pp. 455-495.

Bibliography 243

[49]G. L. Peterson and M.E. Stickel, “Complete Sets of Reductions for
Some Equational Theories,” Journal of the ACM, Vol. 28, 1981, pp.
233-264.

[50]N. C. K. Phillips, “Safe Data Type Specification,” IEEE Software,
Vol. 10, 1984, pp. 285-289.

[51]T. W. Pratt, Programming Languages: Design and Implementation,
Prentice-Hall, Englewood Cliffs, NJ, 1984.

[52]J. H. Remmers, “A Technique for Developing Loop Invariants,” In-
formation Processing Letters, Vol. 18, 1984, pp. 137-139.

[53]J. C. Reynolds, The Craft of Computer Programming, Prentice Hall,
Englewood Cliffs, NJ, 1981.

[54]R. Sethi, Programming Languages: Concepts and Constructs,
Addison-Wesley, reading, MA, 1989.

[55]J. Spitzen and B. Wegbreit, “The Verification and Synthesis of Data
Structures,” Acta Informatica, Vol. 4, 1975, pp. 127-144.

[56]D. A. Schmidt, Denotational Semantics, Allyn and Bacon. New
York, 1986.

[57]R. D. Tennent, “The denotational semantics of programming lan-
guages,” Communications of the ACM, Vol. 19, No. 8, 1976, pp.
437-453.

[58]P. Wegner, Programming Languages, Information Structures and
Machine organization, McGraw Hill, New York, 1968, pp. 180-196.

[59]J. Wing, “A specifier’s introduction to formal methods,” IEEE Com-
puter, Vol. 23, No. 9, 1990.

[60]J. Woodcock and M. Loomes, Software Engineering Mathematics,
Addison-Wesley, Reading, MA, 1988.

[61]W. Wulf, M. Shaw, L. Flon, and P. Hilfinger, Fundamental structures
of Computer Science, Addison-Wesley, Reading, MA, 1980.

[62]W. Wulf, R. L. London and M. Shaw. “An introduction to the con-
struction and verification of Alphard programs,” IEEE Transactions
on Software Engineering, Vol. 2, No. 4, 1976, pp. 253-265.

[63]M. V. Zelkowitz, “A functional correctness model of program verifi-
cation,” IEEE Computer, Vol. 23, No. 11, 1990, pp. 30-39.

244 Software Specifications

[64]M. V.Zelkowitz, “The role of verification in the software specifica-
tion process,” in Advances in Computer, Vol. 36 (M. Yovits (ed)),
Academic Press, Orlando, FL, 1993.

Author Index

Aho A., 28

Backus J., 5
Basili V., 117
Basu S. K., 134
Bendix P., 169
Bentley J., 28
Bjorner D., 214

Càrdenas S., 236
Church A., 191
Craigen D., 29

Dijkstra E. W., 6, 9, 10, 119, 134
Dunlop D., 117

Fischer C., 28
Flon L., 189
Floyd R., 7, 9, 84

Gannon J. D., 117
Gries D., 10, 28, 84, 134
Guttag J., 10, 189

Hall A., 16, 29, 235
Hamlet R., 117
Hoare C. A. R., 9, 33, 37, 84
Hopper G., 5
Horning J., 152, 189
Horowitz E., 189
Huet G., 171, 190
Hullot J., 190

Jackson M., 235
Jones C., 214, 235

Knuth D., 169

Lamport L., 84, 228, 235
LeBlanc R., 28
Levin G., 84
Linger R., 117
Loomis M., 29, 235
Luckham D., 84

McCarthy J., 90
Mills H. D., 13, 14, 117
Misra J., 189
Musser D., 174, 189

Naur P., 5

Oppen D., 171
Owicki S., 228, 235

Pratt T., 29

Remmers J., 84
Reynolds J., 84

Schmidt D., 211
Schneider F., 84
Scott D., 14
Sethi R., 28, 29
Strachey C., 14
Straub P., 145
Suzuki N., 84

Tennent R., 211

Ullman J., 28

245

246 Software Specifications

Wegner P., 211
Wing J., 29, 235
Wirth N., 84
Witt B. I., 117
Woodcock J., 29, 235

Yeh R., 134, 189

Zelkowitz M. V., 1, 117, 236

Index

Ada
Data storage, 11
Package, 108

Adaptation, 62, 71
Existential quantifiers, 64
Quantification, 63

ADT (Abstract data type), see
Algebraic specifications

Algebraic specifications, 10, 135,
139

Axioms, 140
Consistency, 149
Constructors, 139, 145
Data type, 136
Data type induction, 150
Developing axioms, 142
Equality, 150
Hints for writing axioms, 145
Rewrite rules, 141
Signatures, 145
Verification, 158
Verifying implementations,

154
Applicative languages

Data storage, 12
Array assignment, 48
Atomicity, 226
Attribute grammars, 7
Axiomatic verification, 7, 9

Adaptation, 62, 71
Array assignment, 48
Axioms, 31
Composition axiom, 31
Conditional, 33

Consequence axiom, 31
If, 33
Invariant, 34
Postcondition, 8
Precondition, 8
Procedure call substitution,

59
Procedure calls, 57
Procedure invocation, 58
Recursion, 72
Termination, 38, 41
While, 33

Bottom, 196
Box notation, 13, 85
Bug, see Software error

C
Class, 108
Data storage, 11

Completeness, 20
Composition axiom, 31
Concurrent assignment, 90
Concurrent execution, 225
Conditional axiom, 33
Conditional functions, 22
Conditional probability, 233
Consequence axiom, 31
Continuations, 208
Continuity, 198
Continuous functions, 197
Correctness, 2

Weakest precondition, 122
Critical pairs, 173

247

248 Software Specifications

Data abstraction, 107
Data abstractions, 135

Encapsulation, 135
Data storage models, 11
Data type induction, 150

Inductionless induction, 169
Datatypes, 195

Axioms, 195
Deadlock, 221
Decidable, 19
Decisions

Certainty, 229
Uncertainty, 230

Denotational semantics, 14, 191
Aliasing, 207
Assignment statement, 206,

208
Begin statement, 206, 207
Bottom, 196
Composition, 206, 207
Continuity, 198
Continuous functions, 197
Datatypes, 195
Denotable values, 203
Environment, 207
Expressions, 204
Factorial function, 199
Fixed point, 200
If statement, 206, 208
Injection, 206
Inspection, 205
Pointers, 207
Program semantics, 201
Program statement, 203
Projection, 206
Recursive functions, 199
Serious computation, 209
State, 14
Top, 196
While statement, 206, 208

Domains, 196
Simple, 197

Encapsulation, 135
Equilibrium probability, 232
Example

Array reversal, 166
Data type induction, 153,

178
Fast multiplication, 42
Finite integers, 147
Functional design, 103
Functional verification, 98
Inference system, 26
Integer division, 34, 128
Knuth–Bendix, 177
Multiplication, 38, 104, 129,

218
Reversing an array, 53
Shifting an array, 50
Simple recusion, 73
Simple sums, 66
Stack verification, 160

Fixed point, 200
Formal methods

Limitations, 16
FORTRAN

Data storage, 11
Functional correctness, 13, 15,

85
Assignment statement, 90,

93
Begin statement, 93
Box notation, 13, 85
Concurrent assignment, 90
Conditional statement, 91
Correctness theorem, 85
Design rules, 90
If statement, 94
Semantics, 86
State, 86
Statement execution, 87
Statements, 87
Symbolic execution, 88
Termination, 97

Index 249

Trace table, 89
Verification conditions, 92
While loop design, 96
While statement, 94

Guarded commands, 10, 119
If statement, 120
Repetitive statement, 120

Hoare axioms, see Axiomatic ver-
ification

If axiom, 33
Imperative languages

Data storage, 11
Inductionless induction, 169
Inference rules, 19

Modus ponens, 21
Substitution, 21

Initial value ((), 22
Injection, 206
Inspection, 205
Invariant, 34

Chossing, 47
Iteration theorem, 125

Knuth–Bendix algorithm, 169,
175

Critical pairs, 173

Lambda calculus, 191
Boolean values, 193
Church–Rosser, 193
Integers, 194

Lattice, 196
LISP

Data storage, 12
Liveness, 221

Mills correctness, see Functional
correctness

Modus ponens, 21
Mutual exclusion, 221

Notation
Array access �, 49
Bottom ?, 196
Box function , 13
Concurrent assignment :=,

90
Conditional assignment (!

); (!)91

Defines
4
= , 21

Denotational expressions ffgg,
204

Eventually !, 222
Guard [], 10
Lambda expression �, 191
Leads to ;, 223
Not never 3, 223
Now and forever 2, 222
Original value (, 22
Pre-Postconditions fgSfg, 9
Top >, 196
Weakest precondition wp(),

10

Operational semantics, 13, 137
Operational specifications

Verification, 154
Ordering equations, see Knuth–

Bendix algorithm

Pascal
Data storage, 11

Payoff matrix, 232
Performance level, 229
Postcondition, 8
Precondition, 8
Predicate calculus, 17, 22

Completeness, 20
Decidable, 19
Inference rules, 19
Interpretation, 18, 24
Quantifiers, 25
Satisfiable, 19
Substitution, 25

250 Software Specifications

Truth assignment, 18
Truth table, 19
Valid, 19
Well-formed formula, 23

Predicate transformers, 10, 119
Composition axiom, 122
Do statement axiom, 125
Guarded commands, 10, 119
If statement axiom, 122
Iteration theorem, 125

Preedicate transformers
Assignment axiom, 122

Procedure call inference rules,
57

Procedure call invocation, 58
Procedure call substitution, 59
Projection, 206
Propositional calculus, see Pred-

icate calculus
Prototyping, 232

Quantifiers, 25

Recursion, 72
Representation functions, 108
Rewrite rules, 141
Risk analysis, 228

Alternatives, 231
Conditional probability, 233
Payoff matrix, 232

Risk aversion, 232

Safety, 221
Satisfiable, 19
Scott–Strachey semantics, see De-

notational semantics
Semantics, 15
Serious computation, 209
Software error, 5
Software failures, 1
Specifications, 2
Substitution, 21, 25
Symbolic execution, 88

Syntax, 5

Temporal logic, 221
Assignment, 227
Atomic statement, 228
Atomicity, 226
Branching time, 223
Cobegin, 228
Concatenation, 228
Concurrent execution, 225
Deadlock, 221
Exit, 227
Formal properties, 225
General statement, 228
Immediate assertions, 224
Inference rules, 227
Linear time, 223
Liveness, 221
Mutual exclusion, 221
Non–primitive operators, 223
Primitive operators, 222
Safety, 221
States, 224
While, 227

Termination, 38, 41
Testing, 6
Top, 196
Trace table, 89
Truth table, 19

Unification, 170

Valid, 19
VDL, 13
VDM, see Vienna Development

Method
Verification, 7, 15
Vienna Definition Language, 13
Vienna Development Method, 213

Data, 216
Functions, 215
Logic, 214
Postcondition, 217

Index 251

Precondition, 217
Specifications, 216

Weakest precondition, see Pred-
icate transformers

Weakest preconditions, 122
Axioms, 122
Correctness, 122

Weighing words, see Knuth–Bendix
algorithm

Well-formed formula, 23
While axiom, 33

