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This article explores the combined application of inductive learning algorithms and causal

inference techniques to the problem of discovering causal rules among the attributes of a

relational database. Given some relational data, each field can be considered as a random

variable, and a hybrid graph can be built by detecting conditional independencies among

variables. The induced graph represents genuine and potential causal relations, as well as

spurious associations. When the variables are discrete or have been discretized to test condi-

tional independencies, supervised induction algorithms can be used to learn causal rules, that

is, conditional statements in which causes appear as antecedents and effects as consequences.

The approach is illustrated by means of some experiments conducted on different data sets.

As the amount of data stored in databases grows exponentially, the scientific

community feels a greater need of sophisticated tools for analyzing and summarizing

data. Since every data summarization carries the potential for generalization, which

is a widely investigated topic in the area of machine learning, it is not surprising that

a variety of learning algorithms have been embedded into systems for knowledge

discovery in databases (Cercone & Tsuchiya, 1993; Piatetsky-Shapiro & Frawley,

1991). Such algorithms can find different types of patterns in the data, such as

concept descriptions, taxonomies, and qualitative and quantitative laws (Matheus et

al., 1993). However, the problem of finding data dependencies and, more specific-

ally, causal dependencies has received greater attention in statistics (Asher, 1983;

Glymour et al., 1987) than in the machine learning community.

Several approaches to probabilistic causal inference have been proposed in the

literature (see Spirtes et al. (1993) for a large collection of algorithms). All of them

work on attributional representations and find a graph whose nodes are the consid-

ered attributes or variables, while its edges represent causal dependencies among

the variables. Henceforth, such a dag will be called causal structure  or causal model.

Any causal model is actually a syntactic object from which it is possible to derive

some equations, or constraints, which are said to be implied by the model itself. The

idea that is common to the best known approaches is that of searching for the causal

structure that implies a set of constraints that best fits the set of constraints that hold

in the data set (Esposito et al., 1994). Originally, Glymour et al. (1987) considered

two types of constraints on correlations, namely, partial and tetrad equations, which
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involve triplets and foursomes of correlation coefficients, respectively. Tetrad

equations proved to be very useful for the study of the causal structure governing

the set of latent, or unmeasured, variables that might affect those that are measured.

A few years later, Spirtes et al. (1990) and Verma and Pearl (1990) showed how

constraints defined by conditional independencies can be profitably exploited to

infer causal structures. The advantage of conditional independencies over partial or

tetrad equations is that there are several statistical tests for conditional independence

of two variables of any scale (nominal, ordinal, interval, and real), while correlations

can be computed only for continuous variables. Moreover, tetrad equations apply only

to linear models, that is, causal structures where each effect can be defined as a linear

combination of its direct causes. For this reason, where the causal discovery problem

concerns real-world databases with mixed-mode data (continuous and discrete), con-

straints defined by conditional independencies appear to be more suitable.

In this article we describe how CAUDISCO (CAUsal DISCOvery), a system

inspired by Pearl and Verma’ s (1991) theory of inductive causation, discovers causal

rules in relational databases. Given a set of nominal or continuous variables, the

system first finds significant independencies in the data and then looks for the best

causal model explaining them. The output is a partially oriented inducing path graph

(or hybrid graph), that is, a directed acyclic graph (dag) whose edges can be of four

distinct types: nondirected ( ¾ ), directed ( Þ ), partially directed ( ® ), and bi-directed

( « ). The last three types of edges represent different causal relations, namely,

genuine and potential causal relations and spurious associations between two

variables. In a spurious association the existence of a latent variable that affects the

two variables is hypothesized, but nothing is postulated about the causal relations

among latent variables.

The causal structure inferred by CAUDISCO explains dependencies among

observed variables but provides no information on how causes can influence their

effects. In this article we also cope with the problem of learning causal rules, that

is, conditional statements in which causes appear as antecedents and effects as

consequences. In particular, given a causal structure, we define one or more

inductive learning problems and we apply a well-known learning system to produce

the causal rules. Some experimental results on artificial data and a database available

in the University of California, Irvine (UCI) machine learning repository are

reported in a later section.

USING C ONDITIONAL INDEPENDENC IES FOR INFERRING
CAUSAL STRUC TURES

Let x, y, z1, z2, . . ., zn be n + 2 distinct variables taken from a set O  of random

variables with a joint probability distribution P. Then x and y are said to be

conditionally independent in the context z1, z2, . . ., zn if
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P(x, y|z1, z2, . . ., zn = P(x|z1, z2, . . ., zn) P(y |z1, z2, . . ., zn)

Henceforth, we will write I(x, y|z1, z2, . . ., zn) when x and y are conditionally

independent in the context {z1, z2, . . ., zn} of size n, and Ø I(x, y| z1, z2, . . ., zn) when

they are not.

For our purposes, the random variables in O  are fields of one or more relations

in a database. Since their value is known, they are called observed or measured in

order to distinguish them from the latent variables, which represent some external

factors that may affect the observed variables but are not included in O.  Here we are

deliberately neglecting the problem of missing values that strongly affect real

databases.

Under Markov and faithfulness  conditions (Spirtes et al., 1993), there exists a

perfect correspondence between conditional independencies that hold for a proba-

bility distribution P over O  and the independence relations determined by a dag over

O. More precisely, given a dag, the set of all conditional independencies implied by

the Markov condition over the dag can be characterized by a graphical criterion,

called d-separation  (Geiger & Pearl, 1989). Conversely, given a probability distri-

bution P over O, for which the faithfulness condition holds, independence relations

implied by the Markov condition are the only conditional independence relations

true in P. When both conditions are satisfied, the dag is said to be a perfect I-map  of

a dependency model (Pearl, 1988). Consequently, a set of conditional independen-

cies uniquely determines a dag G,  whose edges may have a causal interpretation as

reported below.

Pearl and Verma (1991) distinguish three types of causal relations on the grounds

of conditional independencies: potential causal influence, genuine causal influence,

and spurious association.

Definition 1: Potential C ausal Influence

A variable x has a potential causal influence on another variable y if

1. x and y are dependent in every context [for each context S: Ø I(x, y|S)], and

2. there exists a variable z and a context S such that

  a. x and z are independent given S [I(x, z|S)]

  b. z and y are dependent given S [ Ø I(z, y|S)].

Henceforth, a potential causal influence of x on y will be indicated by a partially

directed edge, that is, x ®  y. If there are no latent variables, then the only two

situations that can occur are those reported in Figure 1, where the double arrow ( « )

denotes a spurious association (see definition 3). Indeed, if y caused x, then x and z

would be dependent in contrast with condition a. However, what guarantee is there

that x and y have no latent common cause? If we were sure that all the variables
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involved in the phenomenon under study had been taken into account, then condition

1 would be sufficient to avoid this eventuality. Nevertheless, since we do not have

this certainty, we can only postulate a potential cause of x on y, which does not

exclude the possibility of a spurious association.

Definition 2: Genuine C ausal Influence

A variable x has a genuine causal influence on another variable y if another variable

z exists such that

1. either x and y are dependent in every context and there is a context S such that

  a. z has a potential causal influence on x

  b. z and y are dependent given S [ Ø I(z, y|S)]

  c. z and y are independent given S È  {x} [I(z, y|S È  {x})]

2. or x and y are in the transitive closure of rule 1.

The genuine causal association is represented by a directed edge, that is, x Þ  y.

Figure 2 shows the only two cases satisfying condition 1 when there are only three

measured variables. Note that there is no way of inverting the direction of the edge

from x to y without violating any of the conditions b and c. Condition 2 covers those

cases in which there is a path from x to y whose edges represent genuine causal

relationships oriented in the direction from x to y.

Definition 3: Spurious Association

Two variables x and y have a spurious association if they are dependent in some

context S [ Ø I(x, y|S)] and two variables z1 and z2 exist such that

Figure 1. Two cases of potential causal influence.

Figure 2. Two cases of genuine causal influence.
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1. z1 and x are dependent in S [ Ø  I(z1, x|S)]

2. z1 and y are independent in S [I(z1, y |S)]

3. z2 and x are independent in S [I(z2, x |S)]

4. z2 and y are dependent in S [ Ø  I(z2, y|S)].

The spurious association between x and y is represented by a bi-directed edge,

that is, x « y. If there are no latent variables, and x, y, z1,and z2 are the only observed

variables, then the causal model in Figure 3 represents the only possible situation

that can occur. In this model, conditions 1 and 2 prevent x from causing y, while

conditions 3 and 4 prevent y from causing x. Thus the dependence between x and y

can only be explained by the presence of a latent variable affecting both x and y. In

this example the context S is the empty set.

It is interesting to note that in these definitions, a nontemporal semantics of

causation is given. This is not a limit but an advantage for those systems that aim to

discover knowledge in archival data (Zytkow & Baker, 1991), since in most cases,

information on the time in which a variable is measured is not available. In fact,

although some database management systems put time stamps on data, they gener-

ally record the time at which data are entered into the database and not the time at

which the measurement is performed.

Given a set of conditional independencies I(O) found for each pair of observed

variables, CAUDISCO operates as follows.

1. Variables that are dependent in any context are connected by an edge ( ¾ ).

2. The definition of potential causal influence is applied to connected edges.

3. The transitive property of potential causal influence is applied.

4. The definition of genuine causal influence is used in order to mark some

directed edges properly.

The output produced by CAUDISCO is able to explain the effect of a latent

variable on a pair of observed variables, that is, the system is appropriate for those

phenomena in which the set of observed variables O  is not causally sufficient in a

population (Spirtes et al., 1993). CAUDISCO is based on Pearl and Verma’ s (1991)

IC-algorithm, but in addition, it can manage an initial causal model as well as the

background knowledge on either the temporal order of variables or the maximum

Figure 3. A case of spurious association. A latent variable affects both x and y.
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size of contexts. As a matter of fact, the background knowledge is very useful to

reduce the computational complexity of the algorithm, since the number of tests to

be performed is at worst exponential.

Independence tests performed by CAUDISCO depend on the type of variable. For

continuous variables, x1, x2, xj, xj + 1, . . ., xn, the Pearson partial correlation coefficient r 1,

2.j, . . ., n is computed and a test on the hypothesis r 1,2. j, . . ., n = 0 is performed. Indeed, under

the assumption of normality for the distribution of variables x1, x2, xj, xj + 1, . . ., xn, it can

be proven that the condition r 1, 2.j, . . ., n = 0 implies I(x1, x2,|xj, xj + 1,..., xn) (Anderson, 1984).

The partial correlation coefficient can be estimated by r1, 2.j, . . ., n, which is recursively

defined as follows:

r1, 2. j, . . ., n = 
r1, 2.  j + 1, . . ., n -  r1, j. j + 1, . . .,  n ´  r2, j. j + 1, . . ., n

Ö ` ` ` ` ` ` ` ` ` ` ` `1 -  r1, j. j + 1, . . .,  n
2

 Ö ` ` ` ` ` ` ` ` ` ` ` `1 -  r2, j. j + 1, . . .,  n
2

The base of the recursion is given by r1, 2, which is the unbiased estimate of the

correlation coefficient r 1, 2. Anderson provides a parametric test for the hypothesis

r1, 2. j, . . ., n = 0. Indeed, Fisher’ s z statistics,

z = 
1

2
 log 

1 + r1, 2. j, . . ., n

1 -  r1, 2. j, . . ., n

has an approximate normal distribution for sample size greater than 25.

In contrast to TETRAD II (Spirtes et al., 1993), the independence test for

categorical variables is based on the c
2
 test (Hogg & Tanis, 1977). More precisely,

a contingency table is built for each n-tuple of values of the variables in the context,

and a c
2
 test is performed for each table. If the tests are positive for all tables, then

a conditional independence is found. This approach has the disadvantage that a large

sample is necessary in order to obtain significant results. However, there is no

universally accepted distribution-free test for conditional independence of any

context size involving categorical variables.

Finally, the same c
2
 test is also performed for integer-valued variables, after

their domains have been discretized, according to an entropic criterion (Wong &

Chiu, 1987). W hen the test involves variables of mixed-mode (continuous and

categorical/integer), the system discretizes the continuous variables as well, and

applies the c
2
 test. In the future, we plan to extend such tests to nonparametric

association measures specifically designed for ordinal variables, such as Kendall’ s

t  and Spearman’ s r  (Gibbons, 1993).

EXPERIMENTAL RESULTS

As observed in the previous section, the discovery of causal knowledge in a

database strongly depends on the number of cases available. In order to test the effect
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of the sample size on the causal structure discovered by the system, we organized

an experiment as follows. A database is generated from the causal model in Figure 4,

in which all variables are observed, continuous and normally distributed. Further-

more, the type of dependence is linear; thus the joint probability distributions of all

variables are still normal. These are ideal conditions that help us to understand which

is the minimal sample size required by CAUDISCO in order to recover the whole

causal structure. The significance level fixed for each test is a  = 0.05.

In Table 1, some statistics on the different trials are reported, namely, sample

size, maximum size of the context, time needed for the learning phase on a Sparc

Station 2, number of edges found, number of exact edges found, number of genuine

causal influences detected by the algorithm, number of potential causes found,

number of spurious association edges, number of edges left undirected, and number

of tests performed. Each trial is identified by a number.

It is interesting to note that with 500 samples (trial 3), the causal structure is

almost completely recovered. Indeed, CAUDISCO outputs two spurious asso-

ciations, namely, x3 «  x4 and x3 «  x6, since it fails to detect the independence

I(x3, x6| Æ ). However, with 1000 samples, the system is already able to recover the

complete structure without mistakes. In trials 6±9, we perturbed the condition of

normality by introducing two exponentially distributed variables. For trials 6 and 7,

in which the perturbed variables have mean and standard deviation equal to 1/ l  = 1 ¤ 4,

we observe a worsening with respect to the other two trials with l  = 2. Indeed, in

trials 8 and 9 the system is still able to recover the complete graph, while in trial 6

it does not detect any dependence between x6 and x7, and in trial 7 it fails to find that

I(x1, x7|{x4}).

In the previous experiment, we considered the case of a linear causal model,

where all variables are numeric. However, as pointed out in the introduction, most

of the real-world applications present mixed-mode data. In the second experiment,

we consider the problem of recovering the causal structure underlying mixed-mode

synthetic data, generated from the model in Figure 5a.

Figure 4. Causal model for trials 1± 9.
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The problem concerns the estimation of reliability of an insured driver, given

the following six variables:

· Age (A): integer values are uniformly distributed in the range [18, 80].

· Years elapsed since attainment of driver’ s license (Ta): distributed in the range

[0, A±18] as follows:

P(Ta) = n + mx   0 £  x £  Tmax

P(Ta) = 0  otherwise         

where Tmax  = A±18, n =1/5Tmax , and m  =8/5 Tmax

 2
.

· Type of (Italian) driver’ s license (T): four nominal values, B, C, D, E, distributed

as follows: P(B) = 0.57, P(C) = 0.285, P(D) = P(E) = 0.143.

· Time elapsed since renewal of the driver’ s license (Tr): values are uniformly

distributed in the range [0, 4] for drivers over 60 or drivers with license E. In all

other cases, the license is renewed every 10 years.

Table 1.  Experimental results of trials 1±9

Trial number

1 2 3 4 5 6 7 8 9

Sample size 50 100 500 1000 10000 1000 10000 1000 10000

Context size  5   5   5    5     5    5     5    5     5

Search time (s)  1   2   4    5    37    4    37    5    37

Edges found  2   4   7    6     6    5     7    6     6

Exact edges  1   2   4    6     6    5     6    6     6

Genuine causes  0   0   1    1     1    1     1    1     1

Potential causes  1   2   3    5     5    4     5    5     5

Spurious associations  0   1   2    0     0    0     0    0     0

Undirected edges  0   0   0    0     0    0     0    0     0

Tests 90 204 247  234   230  188   244  243   216

Figure 5. (a) Causal structure defined for the insurance domain. (b) Inferred causal structure.

(a) (b)
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· Number of accidents over the last 5 years (N a): integer values are uniformly

distributed in [0, 10].

· Number of infractions of road regulations in the last 5 years (N i): integer values

are uniformly distributed in the range [0, 20].

The reliability of the insured driver (R) can take seven distinct values: very high

(0±12), high (13±20), medium-high (21±28), medium-low (29±36), low (36±44),

very low (45±52), and unacceptable (>53). Values reported in parentheses are scores

associated to each reliability level. Scores are computed as the weighted sum of the

previous six variables.

From a sample of ten thousand cases, CAUDISCO is able to recover the causal

structure in Figure 5b. Time needed depends on the maximum context size consid-

ered, and ranges from 27 s for size zero to 117 s for size five. The variables A, Ta,

Tr, N a, and N i have been discretized in order to perform the independence tests.

Obviously, the dag reported in Figure 5b can only explain which variable causes

which, but it provides no information on how some variables affect the reliability,

or how age and type of license may affect the time elapsed since the last license

renewal. As shown by Malerba et al. (1994), it is possible to define multiple learning

problems from a causal model. In this case, there are two problems:

1. Find R given A, T r, Na, T, and N i.

2. Find T r given A, Ta, and T.

We used a decision tree induction system, namely, C4.5 (Quinlan, 1993), in order

to generate causal rules for both learning problems. Such rules explain how some

causes and effects are related to each other. For the first learning problem, 324 rules

were generated, with the number of conditions in the body ranging from two to four.

The maximum percentage of covered examples (support) for such rules is 3.12%,

while the lowest predictive accuracy (confidence) is 31.4%. Some of the most

interesting rules are reported below:

where the semantics of the right arrow ( ® ) is that of causal implication.

From the second learning problem, we obtained 33 rules, with the number of

conditions in the body ranging from one to two. This time the maximum support is

10.47%, but the rules are generally less predictive because of the discretization made

on the target attribute Tr. An instance of a rule produced by C4.5 for the second

problem is the following:

Support Confidence Rule

1.63% 73.7% [8 £  Na £  9] Ù  [9 £  N i £  12] ®  [R  = very_low]

0.24% 94.4% [4 £  Na £  6] Ù  [12 £  N i £  14] Ù  [5 £  Tr £  7] ®  [R = low]

3.12% 72.0% [4 £  Na £  6] Ù  [0 £  N i £  2] ®  [R = medium_high]

0.35% 47.0% [0 £  Na £  1] Ù  [0 £  N i £  2] Ù  [Tr = 0] ®  [R = very_high]
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All these rules can be stored in a rule base, so that the knowledge discovery

system can readily answer possible intelligent queries m ade by the final user,

such as

Find all rules with support x and confidence y, such that the type of driving license

is causally related to the reliability of the driver

or

Find all rules with support x and confidence y that explain why the driver has a

high reliability.

The experiment on insurance helped to illustrate the methodology as well as its potential

applications to the field of knowledge discovery in databases. However, our conclusions

were necessarily limited because of the laboratory-sized experiment.

More interesting and meaningful results have been obtained from the data set

Pima Indian Diabetes available in the UCI machine learning repository. In this case,

768 female patients were taken into consideration, some of whom showed signs of

diabetes according to World Health Organization criteria. The nine variables in-

volved in this study were all numeric; thus we tested conditional independence by

means of Pearson’ s correlation coefficient. We aimed to discover whether and to

what extent age, diastolic blood pressure, and other measurable factors are causally

related to the presence of diabetes.

By looking at the causal model found by the system (see Figure 6), it becomes

evident that two of the nine variables, namely, diastolic blood pressure and diabetes

pedigree function, are not considered causally relevant for the classification prob-

lem. The plasma glucose concentration after 2 hours in an oral glucose tolerance test

is spuriously associated with the class, while age, body mass index, and number of

Support Confidence Rule

5.97% 43.7% [6 £  Ta £  11] Ù  [T = B] ®  [7 £  Tr £  9]

Figure 6. Causal structure found for the UCI data Pima Indian Diabetes.
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pregnancies are three potential causes of diabetes. These results are coherent with

well-known causal models studied in epidemiology for some forms of diabetes.

Once the causal structure has been recovered, it is possible to induce the rules

for predicting the attribute class, given those attributes that are causally relevant,

namely, age, plasma concentration, body mass index, and number of pregnancies.

The 33 rules produced by C4.5 are quite simple and accurate. In the following, some

of them are reported:

Such rules provide detailed information on the causal relations between these

five variables and can be useful in abductive reasoning in intelligent systems. It is

interesting to note that, by running C4.5 alone on the whole data set, we obtained

30 rules, 5 of which involved the attributes discarded by the causal analysis, namely,

diastolic blood pressure and diabetes pedigree function. Moreover, the following

rule was generated:

[30.5 £  SerumInsulin £  81.5] ®  [Class = neg]

which is equally odd, since statistical tests failed to detect any direct dependence

between SerumInsulin and diabetes.

CONC LUSIONS

In this article a system for the discovery of causal rules in relational databases

has been presented. The discovery process is two-phased: initially, a causal structure

is inferred from the data, then a set of inductive learning problems is generated in

order to learn the causal rules.

The first phase is based on the study of conditional independencies observed in

the data. Conditional independencies define a set of constraints that must be satisfied

by the induced causal structure. Such constraints can easily be established for both

categorical and continuous variables, since they simply require a c
2
 test or a normal

test for Fisher’ s z statistics, respectively. Currently, we are also investigating the

application of some distribution free independence tests for ordinal variables, as

well.

In the second phase we used the system C4.5 to generate a set of rules for each

relevant causal dependence. This approach opens new perspectives in the area of

inductive learning, since the rules we induce have a causal semantics, while rules

generally produced by machine learning systems are based on the simpler semantics

of logical entailment. When a causal explanation of a phenomenon is needed, it is

Support  Confidence Rule

12.6% 90.3% [0 £  PlasmaConcentr £  88] ®  [Class = neg]

0.4% 67.5% [29 £  Age £  34] Ù  [6 £  NumberOfTimesPregn £  8] ®  [Class = pos]
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possible to use causal inference systems as preprocessors, which select causally

relevant variables for a given target attribute. This view can be extended to the

problem of learning multiple dependent concepts, in which case the causal graph

can be used to define the order in which target concepts must be learned (Malerba

et al., 1996).

In the future, CAUDISCO will be embedded in a prototypical system for intelligent

queries, which concern possible dependencies among attributes of one or more relations

of a database. In contrast to ordinary queries whose answers are a set of tuples, the result

returned to an intelligent query is a rule induced from data. Therefore intelligent queries

activate inductive learning processes working on data generated by different views of

the database. Such views are automatically generated in order to take into account

different ways to explain dependencies among attributes in the query.

Finally, experiments described in this article present two limitations that we plan

to overcome in the future. First, the learning system we used is appropriate only for

classification problems, while in several cases, we have regression problems. For

instance, the second learning problem generated in the insurance domain required

the induction of a regression tree for T r, as the time elapsed since the renewal of the

driver’ s license is a numerical variable. We partially solved the problem by consid-

ering the same discretization of Tr produced by CAUDISCO, but we plan to use a

regression tree induction system in future studies. Furthermore, when variables are

spuriously associated, the direction of causal dependencies is not uniquely deter-

mined; thus any choice we make while defining a classification problem is arbitrary.

Actually, in this case it would be plausible to apply unsupervised learning techniques

to the discovery of latent classes for spuriously associated variables.

REFERENC ES

Anderson, T. W. 1984. An introduction to multivariate statistical analysis. New York: John Wiley.

Asher, H. B. 1983. Causal modelling. Newbury Park, Calif.: Sage Publications.

Cercone, N., and M. Tsuchiya (eds.). 1993. Special issue on ª Learning and discovery in knowledge-based

databases.º  IEEE Transactions on Knowledge and Data Engineering 5(6).

Esposito, F., D. Malerba, and G. Semeraro. 1994. Discovering probabilistic causal relationships: A comparison

between two methods. In P. Cheeseman and R. W. Oldford (eds.), Selecting models from data. Lecture Notes

in Statistics 89, 233±242. Berlin, Germany: Springer-Verlag.

Geiger, D., and J. Pearl. 1989. Logical and algorithmic properties of conditional independence and qualitative

independence. Technical Report CSD 870056, R-97-IL. Cognitive Systems Laboratory, University of

California, Los Angeles.

Gibbons, J. D. 1993. Nonparametric measures of association. Newbury Park, Calif.: Sage Publications.

Glym our, C., R. Scheines, P. Spirtes, and K. Kelly. 1987. Discovering causal structure. Orlando, Fla.: Academic.

Hogg, R. V., and E. A. Tanis. 1977. Probability and statistical inference. New York: Macmillan.

Malerba, D., G. Semeraro, and F. Esposito. 1994. An analytic and empirical comparison of two methods for

discovering probabilistic causal relationships. In F. Bergadano and L. De Raedt (eds.), Machine learning:

ECML-94. Lecture Notes in Artificial Intelligence 784, pp. 198±216. Berlin, Germany: Springer-Verlag.

Malerba, D., G. Semeraro, and F. Esposito. 1996. A multistrategy approach to learning multiple dependent concepts.

In C. Taylor and R. Nakhaeizadeh (eds.), Statistics and machine learning: The interface. 87±106.London,

England: Wiley. 

82  F. Esposito et al.



Matheus, J. C., P. K. Chan, and G. Piatetsky-Shapiro. 1993. Systems for knowledge discovery in databases. IEEE

Transactions on Knowledge and Data Engineering 5(6):903±913.

Pearl, J. 1988. Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Mateo, Calif.:

Morgan Kaufmann.

Pearl, J., and T. S. Verma. 1991. A theory of inferred causation. In J. A. Allen, R. Fikes, and E. Sandewall (eds.),

Principles of knowledge representation and reasoning: Proceedings of the second international conference,

pp. 441±452. San Mateo, Calif.: Morgan Kaufmann.

Piatetsky-Shapiro, G., and W. J. Frawley (eds.). 1991. Knowledge discovery in databases. Cambridge, Mass.:

AAAI/MIT.

Quinlan, J. R. 1993. C4.5: Programs for machine learning. San Mateo, Calif.: Morgan Kaufmann.

Spirtes, P., C. Glymour, and R. Scheines. 1990. Causality from probability. In Proceedings of the international

conference on advanced computing for the social sciences, Williamsburg, Va.

Spirtes, P., C. Glymour, and R. Scheines. 1993. Causation, prediction and search. Lecture Notes in Statistics 81.

Berlin, Germany: Springer-Verlag.

Verma, T. S., and J. Pearl. 1990. Equivalence and synthesis of causal models. In J. A. Allen, R. Fikes, E. Sandewall

(eds.), Proceedings of the sixth international conference on uncertainty in artificial intelligence, pp. 220±227.

Mountain View, Calif.: Association for Uncertainty in AI, Inc.

Wong, A. K. C., and D. K. Y. Chiu. 1987. Synthesizing statistical knowledge from incomplete mixed-mode data.

IEEE Transactions on Pattern Analysis and Machine Intelligence 9(6):796±805.

Zytkow, J. M., and J. Baker. 1991. Interactive mining of regularities in databases. In G. Piatetsky-Shapiro and

W. J. Frawley (eds.), Knowledge discovery in databases,  pp. 31±53. Cambridge, Mass.: AAAI/M IT.

Causal Rules in Relational Databases  83



PAGE 84 BLANK


