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The design of a user interface integrating instruments for visual and textual representation

and image interpretation is a relevant problem when developing an advisory system for en-

vironmental planning. Indeed, the user of the system needs a support to the interpretation of

maps, that is, a tool that segments maps and automatically associates geometric regions on a

map with those semantic labels useful for applying hints and advices suggested by the environ-

mental planning system. In the article, we present the application of symbolic machine learn-

ing techniques to the interpretation of maps. Two inductive learning systems, namely,

INDUBI/CSL and ATRE, have been used to complete the knowledge base of an expert system

for environmental planning. The application described concerns the recognition of four en-

vironmental concepts that are relevant for environmental protection. The positive results ob-

tained in two different experiments prove the strength of the adopted approach for the

interpretation task.

A relevant problem when developing an advisory system for environmental

planning is the design of a user interface integrating instruments for visual and

textual representation. In this case, it is difficult to separate the ª interfaceº  and the

ª application,º  and the interface must be considered in terms of integrative perspec-

tives (Kuutti & Bannon, 1993). From the user’ s point of view, the interface is the

system, that is, the way the user’ s work is supported by the system. At the conceptual

level the interface is that part of the system that allows the user to utilize the system

meaningfully for some purpose in a definite situation. In this kind of system, where

massive techniques of visualization and interpretation are required, the majority of

the application belongs to the interface. It is necessary to develop a tool for image

interpretation, aiming at a content-based retrieval of maps.
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The application should not only display maps but, for example, should enable

the user to identify morphological elements characterizing a certain landscape, to

individuate some human artifacts as sources of changes in the environment, and to

concentrate on the most suitable areas for the application of the planning rules.

Indeed, the use of the decision support facilities (notices, laws, methods, and models

for urban and environmental planning) is through the semantic indexing of the maps

stored in a digital video library. This means to automatically associate geometric

regions on a map with those semantic labels useful for applying hints and advices

suggested by the environmental planning system. So, the maps must be segmented,

indexed, searched, manipulated, and presented according to their contents, that is,

they must be interpreted. Any attached textual inform ation, for example, from

the thematic charts, must also be treated because it is useful for improving the

query capabilities, for quickly filtering video and locating potential areas of

interest.

We are aware of the application of a similar approach to the design of human-

machine interfaces for map conversion systems, which aim at acquiring paper-based

maps and transforming them into vector representations (Quek & Petro, 1993). In

our application the maps, already digitized, must be processed and interpreted in

order to be handled by an expert system for environmental planning (Esposito &

Lanza, 1996).

Symbolic machine learning techniques have been widely applied to automat-

ically acquire the knowledge bases of expert systems (Kodratoff et al., 1994). In the

article, these techniques are used to generalize the classification rules for recogniz-

ing and selecting environmental morphologies from digital maps. The process is

organized into acquisition, learning, and recognition phases. First, map-digitized

data are converted into elementary units or cells whose dimension and shape can

vary, depending on the specific classification aims; then spatial and structural

features are extracted and expressed in a symbolic form . Before starting the

learning process, the trainer has to supply a number of instances of the concepts

he/she wants to recognize in the maps. The learning process is perform ed by a

learning system  able to induce dependent concepts expressed as definite clauses.

The interpretation task is performed thanks to the inferred rules that allow the

recognition of the morphological patterns. The performance of the whole process

is evaluated in terms of both classification rate and semantic content of the

acquired concepts.

The advantages of the proposed approach are manifold:

· The use of symbolic descriptions directly generated from maps by a preprocessing

unit allows for the integration of the visual information with textual information

from different sources.

· The recognition rules can be automatically learned from positive and negative

examples and updated.
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· The possibility of learning dependent concepts allows the realization of the shift

of the language, which is useful in order to overcome problems like zooming and

windowing when trying to interpret the same images at different scaling levels.

· The description language adopted for the rules is very comprehensible for experts,

so they can control the significance of the acquired concepts for environmental

planning tasks.

· The inferred rules are useful not only for classification and prediction tasks, but

also for context-based information retrieval, since the concepts allow for the

semantic indexing of the map element.

Preliminary results obtained by applying two different inductive learning sys-

tems developed at the University of Bari, namely INDUBI/CSL and ATRE, to the

problem of map interpretation are discussed below. They confirm the appropriate-

ness of learning techniques for image understanding in order to enhance the

characteristics of man-machine interfaces.

INDUBI/C SL

INDUBI/CSL is an empirical learning system of the family of INDUBI systems

(Esposito et al., 1994a). It has been developed in C language.

The representation language adopted by INDUBI/CSL is an evolution of the

logic language VL 21 (Michalski, 1980). Indeed, both examples and hypotheses are

expressed as VL 21 generally Horn clauses (Grant & Subrahmanian, 1995).

We assume the reader to be familiar with the notions of substitution, positive

and negative literal, fact, and Horn clause (Lloyd, 1987). A clause C = l1 Ú  l2 Ú  ... Ú
ln is considered as the set of its literals, that is, C = {l1, l2, ..., ln }. Here head(C) and

body(C)  denote the set of positive literals in C  and the set of negative literals in

C, respectively. Furthermore, we will denote with vars(C), consts(C),  and

terms(C)  the set of the variables, of the constants, and of the terms occurring in

C, respectively.

Any two clauses will always be assumed to be variable disjoint. This does not

limit the expressiveness of the adopted language, since any two nonvariable disjoint

clauses can always be standardized apart.

Specifically, in INDUBI/CSL each example is represented by exactly one

ground-linked range-restricted definite clause. The definitions of definite clause and

range-restricted clause are given by De Raedt (1992). A definition of linked clause

(Helft, 1987) follows.

Definition 1 (linked clause)

A definite clause is linked if all of its literals are linked. A literal is linked if at

least one of its arguments is linked. An argument of a literal is linked if either the

literal is the head of the clause or another argument in the same literal is linked.
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An instance of a linked clause is C = P(x) ¬ Q(x, y), Q(y, z). C is linked, since

all its literals are linked. Conversely, the clause D  = P(x) ¬ Q(y, z) is not linked.

Indeed, the literal Q(y, z) is not linked in D.

In INDUBI/CSL each hypothesis is a set of VL 21 linked range-restricted definite

clauses with the same head. The main difference between VL 21 clauses and first-

order predicate logic (FOPL) clauses lies in the definition of an atomic formula.

Indeed, in VL 21 the equivalent to the FOPL atom is the notion of selector, which is

written as

[L = R]

where L, the referee, is a function symbol with its arguments, that is, it is in the form

f(t1, t2, ..., tn), and R, the reference, is a set of values in the referee’ s domain.

The semantics of a selector is the following: It is true if L takes one of the values

in R. Function symbols of referees are called descriptors. They are n-ary typed

functions (n ³  1), mapping onto one of three different kinds of domains: nominal,

linear, and tree-structured. A nominal, or categorical, domain is a domain in which

no relation is imposed on its values. A linear domain is one in which a total order is

imposed on its values. Finally, a tree-structured domain is a partially ordered set,

whose elements can be represented as nodes of a tree.

In VL 21, monadic functions are called attributes, while n-adic functions, with n

> 1, are called relations. Moreover, a predicate is considered to be a particular

function whose nominal domain is {false, true}.

A set of hypotheses, one for each learned concept, forms a logical theory, which

is constrained to be expressed as a hierarchical program, that is, as a logic program

for which it is possible to find a level mapping (Lloyd, 1987) such that in every VL 21

clause [f(t1, t2, ..., tn) = l ] ¬  L 1, L2, ..., Lm, the level of every descriptor occurring in

the body of the clause is less than the level of the descriptor f.

An example E  is positive for a hypothesis H  if its head has the same descriptor

and sign as the head of the clauses in H. An example E is negative for H  if its head

has the same descriptor but opposite sign (the head of a negative example is a negated

VL 21 selector).

Another characteristic of INDUBI/CSL is that it adopts the quasi-ordering

induced upon the set of the VL 21 definite clauses by the notion of q OI-subsumption

under object identity or q OI-subsumption.

In the following, we point out the difference between the notions of q -subsump-

tion  and q -subsumption ordering, as given by different authors (Chang & Lee, 1973;

Muggleton & Feng, 1992; Plotkin, 1970), and those of q OI-subsumption and q OI-sub-

sumption ordering, respectively.

As known in the literature, q -subsumption induces a quasi-ordering upon the

set of clauses, henceforth called q -subsumption ordering and denoted by £ q , that is,

£ q  is reflexive and transitive, but not antisymmetric. Here, ~ q  denotes the equivalence
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relation induced by £ q . It should be noted that it does not coincide with set equality.

Indeed, two equivalent clauses under ~ q  cannot only be alphabetic variants, but can

also have a different number of literals, as for {P(x), P(f(y))} and {P f (z))}. Thus, as

Plotkin (1970) pointed out, there is a reduced member of any equivalence class under

~ q  and this member is unique up to an alphabetic variant. Unfortunately, learning

systems cannot easily identify such a reduced member during the search for an

effective definition of a concept. As a consequence, the adoption of q -subsumption

as a generalization model may cause nontermination of the learning process (Es-

posito et al., 1994b). These remarks led us to adopt a different generalization model

in INDUBI/CSL, based on the notion of q OI-subsumption. In turn, the definition of

q OI-subsumption ( q -subsumption under object identity) is based on the notion of

object identity.

Definition 2 (object identity)

Within a clause, terms denoted with different symbols must be distinct. This

notion is the basis for the definition of both an equational theory for clauses and a

quasi-ordering upon them.

In FOPL the adoption of the object identity assumption can be viewed as a

method for building an equational theory into the ordering, as well as into the

inference rules of the calculus (resolution, factorization, and paramodulation) (Plot-

kin, 1972).

Such equational theory is very simple, since it consists of the following axiom

schema, in addition to the set of the axioms of Clark’ s equality theory (CET) (Lloyd,

1987):

t ¹  s Î  body(C)  for each clause C and for all pairs

            t, s of distinct terms that occur in C (OI)

The (OI) axiom can be viewed as an extension of both Reiter’ s unique-names

assumption (Reiter, 1980) and CET’ s axioms (7), (8), and (9) to the variables of the

language.

Under the object identity assumption, the clause

C  = P(x):-Q(x, x), Q(y, a)

is an abbreviation for the following clause:

COI = P(x) :- Q(x, x),Q(y, a) || [x ¹  y], [x ¹  a], [y ¹  a]

where P, Q  denote predicate letters, x, y are variables, a is a constant, and the

inequations attached to the clause can be seen as constraints on its terms. These

constraints are generated in a systematic way by the (OI) axiom. In addition, they
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can be dealt with in the same way as the other literals in the clause. Therefore, under

object identity, any clause C generates a new clause COI consisting of two com-

ponents, called core(COI) and constraints(COI), where core(COI) = C  and con-

straints(COI) is the set of the inequalities generated by the (OI) axiom, that is,

constraints(COI) = { t ¹  s | t, s Î  terms(C), t, s distinct}

Formally, when the object identity assumption is made, any clause

C  = head(C) :- body(C)

takes the form

COI = head(C) :- body(C) || I

where I is the set of inequations generated by the (OI) axiom.

Now we can introduce the ordering relation defined by the notion of q -subsump-

tion under object identity, namely, q OI-subsumption.

Definition 3 ( q OI-subsumption)

A clause C  q -subsumes a clause D  under object identity (C q OI-subsumes D) if

and only if (iff) there is a substitution s  such that (s.t.) COI s  Í  DOI.

Thus a clause C is more general than or equal to a clause D  under q OI-subsump-

tion (or D  is more specific than or equal to C), and we write D  £ OI C iff C

q OI-subsumes D, that is,

D  £ OI C  iff $  s : COI s  Í  DOI

In such a case, we say that C is a generalization of D  and D  is a specialization

of C  under q OI-subsumption. We write D  <OI C  when D  £ OI C and not(C £ OID), and

we say that C  is more general than D  (C is a proper generalization of D), or D  is

more specific than C (D  is a proper specialization of C) under q OI-subsumption, or

C  properly q OI-subsumes D. We write C ~OI D  when C  £ OI D  and D  £ OI C, and we

say that C  is equivalent to D  under q OI-subsumption.

Like q -subsumption, q OI-subsumption induces a quasi-ordering upon the space

of the clauses. A thorough analysis of q OI-subsumption as a generalization model

can be found in the work by Semeraro et al. (1996).

When performing the search in the space of the VL 21 linked range-restricted definite

clauses ordered by q OI-subsumption, INDUBI/CSL implements a separate-and-conquer

search strategy, while at the low level, it adopts a beam search strategy. A thorough

description of the algorithms can be found in the work by Malerba et al. (1997). Figure 1

shows the Pascal-like procedure that implements this search strategy.
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More precisely, INDUBI/CSL starts with a positive example E
+
 (designated as

the seed  of the search) and generates a set MQ of at least m  distinct maximally

general generalizations under q OI-subsumption, expressed as VL 21-linked range-

restricted definite clauses, which are consistent with respect to all the negative

examples in the training set and q OI-subsumes E
+
.

The best generalization is selected from MQ according to a lexicographic

evaluation functional (LEF) (Michalski, 1980), which takes into account several

criteria.

Then, positive examples covered by the best generalizations are removed from

the set of positive examples, and a new clause, with the same head as the previous

one, is generated if the set of remaining positive examples is not empty.

At the low level, INDUBI/CSL proceeds top-down, specializing the unit clause

[f(t1, t2, ..., tn) = l ]¬  by adding one of the selectors in the positive example E
+
, after

turning the constants that occur as arguments of the descriptor into variables. It has

been recently proved that this downward refinement operator satisfies the properties

of local finiteness, properness, and completeness (ideality) when applied in the space

of clauses ordered by q OI-subsumption rather than by q -subsumption (Esposito et

al., 1996a).

Only a subset of n selectors among all selectors in the example E
+
 is considered.

Such selectors are chosen according to the cost assigned to each descriptor in the

selector and according to the arity of the descriptors (descriptors with greater arity

are preferred to those with lower arity). Selectors that violate the constraint of

linkedness are not taken into account at all. All the clauses resulting from this step

q OI-subsume E
+
 (and as many other positive examples as possible).

The best p clauses are selected among them, according to another user-defined

LEF and stored in the set PS. The consistent ones are removed from PS and stored

in MQ after a process of extension-against (Michalski, 1980).

Figure 2 expresses in a Pascal-like language the procedure that implements the

low-level beam search strategy.

Figure 1. High-level strategy for learning a set of VL21 generalization rules.
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Another characteristic of INDUBI/CSL is that it is a multiple predicate learner,

that is, it can learn several concepts, even though they depend on each other (Malerba

et al., 1997). Specifically, differently from most learning systems, INDUBI/CSL

does not make the assumption that concepts to be learned are independent of one

another. Nonetheless, in order to deal with concept dependencies, it requires the user

to be able to specify a dependency hierarchy, which takes the form of a directed

acyclic graph (dag), whose nodes represent concepts to be learned. The order in

which concepts are learned by INDUBI/CSL is completely defined by the depend-

ency hierarchy. In particular, the concepts at the lowest level of a dependency

hierarchy have to be learned first, since their definition does not depend on other

concepts (minimally dependent concepts).

ATRE

The second learning system used in our experiments is ATRE, which has been

implemented in PROLOG.

Similar to INDUBI/CSL, ATRE induces complete, consistent hypotheses from

a set of training examples. More precisely, the learning problem solved by ATRE

can be formulated as follows:

Given

· a set of concepts C 1, C2, ..., C r to be learned

· a set of observations O  described in a language of observations LO

· a background knowledge BK described in a language LB

· a language of hypotheses LHi for each concept C i

Figure 2. Low-level beam search strategy for learning a single VL21 clause.
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· a preference criterion PC

· a generalization model G  over the space of hypotheses

Find

a theory T, which includes possibly dependent hypotheses H1, H2, ..., H r for the

concepts C1, C 2, ..., C r, respectively. The hypotheses, described in their correspond-

ing language LHi, are complete and consistent with respect to the set of observations

and satisfy the preference criterion PC.

The main differences between INDUBI/CSL and ATRE are the languages LO,

LB, LHi, the interpretation of the preference criterion, the generalization model

adopted over the space of the hypotheses, and the way in which the set of hypotheses

is searched for. Here, only some of them will be discussed because of space

constraints.

First, literals used by ATRE have three distinct forms:

1. f(t1, ..., tn) = Value (simple literal)

2. f(t1, ..., tn) Î  Range (set literal)

3. f(t1, ..., tn) # g(s1, ..., sm) (relational literal)

where f and g are function symbols called descriptors, ti and s i are terms, Range is a

set of possible values taken by f, and # is a relational operator (<, £ , ³ , >). Some

examples of literals are the following:

color(x1)=red, height(x 1) Î  [1.1 .. 1.2], and ontop(x1, x2)= true.

The last example points out the lack of predicate symbols in the representation

language adopted by ATRE. Thus the first-order literals P(x1, x2) and Ø P(x1, x2) will

be represented as fP(x1, x2)= true and fP(x1, x2)= false, respectively, where fP is the

function symbol associated to the predicate P. Therefore ATRE can deal with

classical negation ( Ø ) but not with negation by failure, not (Lloyd, 1987). This is

the main difference with respect to other well-known systems of inductive logic

programming (ILP) that express negative information exclusively by means of

negation as failure (Bergadano et al., 1996). In this way, ILP systems are in line with

the traditional semantics of logic program ming that applies the closed-world

assumption  to all predicates. Each ground atom that cannot be derived from a

logic program  is assumed to be false. Thus a ground query has only two possible

answers, yes or no, because it is not possible to deal directly with incomplete

inform ation. On the contrary, the answer to a ground query Q, given a logic

program with classical negation, can be yes, no, unknown, or inconsistent (De

Raedt, 1992).
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Literals can be combined to form definite clauses, which can be written as L0 :-

L1, L2, ..., Lm, where the simple literal L0 is called head of the clause, while the

conjunction of simple or set literals L1, L2, ..., Lm is called the body. It is important

to point out that a definite clause should be interpreted as an inference rule, rather

than a conditional. Indeed the following classical implications,

P(x) Ü  R(x, y), Ø Q(y)  Q(y) Ü  R(x, y), Ø P(x)

are identical, while their corresponding representations in ATRE have different

meanings. Henceforth, for the sake of simplicity, we will adopt the usual notation

P(x, y) and Ø P(x, y) instead of fP(x, y)= true  and fP(x, y)= false, respectively.

In ATRE the concept of definite clause has been generalized to multiple-head

clause. A multiple-head clause is a clause with a conjunction of simple literals in the

head. In the special case of only one literal in the head, a multiple-head clause is

reduced to a definite clause. An example of a multiple-head clause that may be used

to describe morphological elements in a map is reported below:

class(a)=system_of_cliffs Ù  class(b)= fluvial_landscape :-

     next(a,b), contain(a,c), contain(b,d), brown(c), blue(d)

which is semantically equivalent to the definite program

class(a)=system_of_cliffs :- next(a,b), contain(a,c), contain(b,d),

     brown(c), blue(d)

class(b)=fluvial_landscape :- next(a,b), contain(a,c), contain(b,d),

     brown(c), blue(d)

but is not equivalent to the disjunctive clause

class(a)=system_of_cliffs, class(b)= fluvial_landscape :-

     next(a,b),contain(a,c), contain(b,d), brown(c), blue(d)

whose comma in the head is interpreted as a disjunction and not a conjunction.

In ATRE, training examples are represented by means of objects, that is, ground

multiple-head clauses with only simple literals. The two main advantages offered

by this object-centered representation are higher comprehensibility and efficiency.

The former is basically due to the fact that multiple-head clauses provide us with a

compact description of multiple properties to be predicted in a structured object. The

second advantage derives from the possibility of representing the known properties

of an object only once.

682  F. Esposito et al.



The language of hypotheses adopted by ATRE is that of linked range-restricted

definite clauses with only simple and set literals in the body. Contrary to IN-

DUBI/CSL, ATRE can learn simple recursive theories (Malerba, 1996). In such

theories, it is possible to express both dependencies among concepts and recursive

clauses (Idestam-Almquist, 1993), but there is no way to express mutual recursion.

The language of the background knowledge has the same constraints as the

language of hypotheses, the only difference being that relational literals are allowed

in the body of definite clauses.

Regardless of the representation language adopted, a key part of the induction

process is the search through a space of hypotheses. A generalization model provides

a basis for organizing this search space, since it establishes when a hypothesis covers

a positive/negative example and when an inductive hypothesis is more general/

specific than another. As already pointed out, the generalization model G  used by

INDUBI/CSL is q OI-subsumption, which is strictly weaker than q -subsumption.

Unfortunately, neither is appropriate for organizing the space of recursive theories.

The generalization model adopted in ATRE is a variant of relative implication,

which is based on the following definition of resolution closure of a theory T, R*(T):

R*(T) = R
0
(T) È  R

1
(T) È  R

2
(T) È  ...

where

R
0
(T) := T

R
n
(T) := R

n±1
(T) È  {C  | C 1, C2 Î  R

n±1
(T), C  is the resolvent of C1 and C2}

Definition 4  (relative implication)

Let C  and D  be the following two nontautological clauses:

C: C0 ¬  C 1, C2, ..., C n

D: D 0 ¬  D 1, D 2, ..., Dm

where the variables in C and D  are distinct. Then clause C implies (or is more general

than) clause D  with respect to T, C  £  T, Þ D , if a substitution s  exists such that C 0 s  =

D 0 and C ¢  exists in R*(T È {C}) such that C ¢  £ q D.

According to this definition, the following clause

C:odd(s(x)) ¬  even(x)

implies

D: odd(s(s(s(0)))) ¬  zero(0)
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with respect to

C1:even(s(x)) ¬ odd(x)

C2:even(x) ¬ zero(x)

Thus the theory T reported in the previous example explains the logical conse-

quence D.

The main procedure of ATRE is shown in Figure 3. The input to the procedure

is actually the input to the system, that is, the set of objects, the background

knowledge (BK), the set of concepts to be learned (grouped into levels of the

dependency hierarchy provided by the user), and the set of parameters that guide

the heuristic search in the space of possible hypotheses.

The function implemented by the procedure update_object_description  is the

saturation of a set of examples given a set of clauses. The first step toward the

generation of inductive hypotheses is the saturation of all examples with respect to

the given BK (Rouveirol, 1994). In this way, information that was implicit in the

example, given the background knowledge, is now made explicit.

Initially, the set of learned concepts is empty. The depth of the dependency graph

is d; thus there are d disjoint sets of concepts to be learned. All concepts at the same

level can be learned independently, by invoking the procedure separate_and_con-

quer. When all concepts at the same level have been learned, it is necessary to

perform the appropriate shift of language before moving to the next level. The shift

of language is actually obtained by saturating all training objects with the rules just

learned.

ATRE implements a separate-and-conquer search strategy at the high level in

order to generate the hypothesis H i for a concept C i (see Figure 4).

The generation of recursive theories is possible only after the first nonrecursive

clause of a concept definition has been found. This approach is based on the principle

that a correct recursive definition of a function should always start from the

Figure 3. Main procedure for learning multiple dependent concepts.
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axiomatic level. Indeed, as soon as a nonrecursive clause for a concept f(x1, x2, ...,

xn)= l  has been learned, the procedure update_example_description is called in order

to include the positive literals f(x1, x2, ..., xn)= l  in the body of all objects. This shift

of language of hypotheses allows ATRE to extend the search to recursive clauses as

well. The procedure stratify in Algorithm 4 checks that the best consistent clause

selected according to one of the LEF of the preference criterion (BestLEF) does not

cause inconsistency of clauses already learned. W hen this happens, a further change

of language is performed by introducing completely new predicates. This operation,

called stratification, has the effect of recovering the consistency of previously

generated recursive clauses, without throwing away the best clause selected in the

last iteration.

Finally, ATRE is able to deal with both numeric and symbolic descriptions. More

precisely, given an n-ary function symbol, f(x1, x2, ..., xn), taking values in a numerical

domain, ATRE is able to produce hypotheses with range literals f(x1, x2, ..., xn) Î  [a

..b], where [a.. b] is a numerical interval computed according to an information

theoretic criterion.

APPLIC ATION

In order to automatically process the maps, a grid is superimposed that divides

the represented region into regular elements of observation. The corresponding real

dimensions of the grid elements depend on the scale factor and are related to the

definition of a suitable level of details in the formal representation language in which

the relevant morphological elements will be described (grain size). The system

simulates the behavior of a human expert when forced to observe through a narrow

Figure 4. High-level separate-and-conquer search strategy for learning a single concept.
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window a well-defined zone on the map, coinciding with the grid element. Then the

window is enlarged, allowing him/her to observe a wider area and to search for a

context. Studying the behavior of 15 geomorphologists and experts in territory

planning, it was observed that the human expert uses a widening exploratory model

in the map interpretation process: he/she moves the narrow observation window

over the map so as to individuate and better categorize the morphological elements

to be traced. Indeed, the entire interpretation process is carried out within frames

that are related to the context, both in a spatial sense (the region’ s lithological

structure, the nature of surrounding territory, the density of human settlements, the

presence in the neighborhood of railways or highways, etc.) and in a temporal sense

(the historical process of territorial transformation).

In the following, an application is described concerning the automatic acquisi-

tion of rules for the recognition of some concepts relevant for studying the environ-

mental change and the planning strategies in a wide region characterized by the

presence of a river. After a training phase, the grid elements of the maps are

automatically labeled with their corresponding concepts, and this facilitates a quick

indexing of the areas in which it is possible to apply the planning rules suggested

by the expert system. Moreover, both the labeling process and the planning inter-

vention could be controlled by the final user. The former provides justifications of

classifications expressed in a comprehensible language of descriptors recognizable

in the map, while the latter is expressed in a sequence of production rules defining

the set of actions to be performed.

Preprocessing Phase

During the preprocessing phase, a symbolic description, extracted directly from

the digital map, is automatically generated. First, the input map, which is in

vectorized form, is segmented into regular cells, each of which constitutes an

example used for the learning phase or an elementary unit to be classified. Some-

times it is necessary to convert cells that are not spatially contiguous on the same

map and to use more maps. The preprocessing module allows the conversion of an

entire map or the conversion of selected cells specified by means of their

localization. M ap interpretation requires a higher level of information than that

contained in a vectorized m ap. The attributes of the cartographic objects and the

geometric relationships among them, which have been used in this study, are

listed in Table 1.

Particular attention has been paid to the definition of general descriptors, so that

they are appropriate for describing maps even when there is a change in the

representation scale of the concepts to be learned.

The transformation of the map from numeric to symbolic form is achieved by

means of algorithms that have been specifically developed for this task (Esposito et

al., 1995).
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For example, the generation of the descriptor shape is based on the following

method. First, the attribute shape is meaningful only for contour slopes, that is, when

the cartographic object belongs to the orographic features of the map and it has a

linear geometry; this information is derived by analyzing the header of the map file

and the geometric label of the object. Two different values are considered for the

descriptor shape, namely, cuspidal and normal.

Let a contour slope Y be defined through n points. The angles w i are determined

as

w i = arctg 
xi + 1 -  xi

yi + 1 -  yi

  i = 1, 2, . . . , n ± 1

The differences dw i are calculated as

Table 1. Map descriptors

Descriptor Meaning

Type 

domain Values Cost

color(y) Denotes the color of the object y Nominal {blue, brown, black}  6

contain(cell,y) The observed cell contains the object y Boolean {false, true}  8

density(y) Denotes the part of cell covered by the

object y, where y is vegetation or

buildings

Linear {low, medium, high}  8

distance(y,z) Represents the distance between the

object y and the object z

Linear {1..150} 10

geographic_direction

(cell,y)

Denotes the geographic direction of the

object y in the cell

Nominal {north, north_west, north_east,

south_east, south_west,

south, east, west}

 8

inside(y,z,k ) Denotes the presence of the object k

between the objects y and z

Boolean {false, true} 10

orientation(cell) Defines if the cell orientation is

homogeneous or heterogeneous

Nominal {homogeneous, heterogeneous} 10

outside(y,z,k) Denotes the presence of the object k

outside the objects y and z

Boolean {false, true} 10

relation(y,z) Denotes the relation between the objects

y and z

Nominal {almost perpendicular, almost

parallel}

10

shape(y) Defines the form of the contour slope y Nominal {cuspidal, normal}  8

trend(y) Represents the trend of the object y in

the cell

Nominal {curvilinear, straight}  8

type_of(y) Defines the type of the object y Nominal {river_line, farm_road,

interfarm_road, main_road,

primary_road, contour_slope,

railway, vineyard,

arboreal_vegetation, slope,

affluent, partition_wall,

building, fluvial_isle,

deep_embankment,

regular_embankment}

 6
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dw i = w i+1 ± w i  i = 1, 2, ..., n ± 1

A cuspidal value is associated to the shape of Y if there exists a difference dw j

whose value exceeds a threshold t , which depends on the examined territory. For

contour slopes similar to that represented in Figure 5, this algorithm provides the

value cuspidal, while it associates the value normal to contour slopes like that shown

in Figure 6.

A cost is associated to each descriptor. The cost of a descriptor represents the

amount of human and machine resources required for its generation; that is, when

the algorithm for the extraction of a certain descriptor is more complex or requires

more processing time than for generating another descriptor, a greater cost is

attributed to it.

In fact, a low cost has been associated to the descriptor color, since it entirely

depends on the type of the object.

The benefit deriving from the specification of a cost for each descriptor is

relevant during the learning phase, when the preference criteria are adopted. In fact,

when varying the set of costs associated to the descriptors, different rules can be

obtained. An example of a symbolic description produced by the preprocessing

module is shown in Figure 7.

Experimentation

The territory used for this study is in the Apulian region around the Ofanto River,

from the zone of Canosa to its mouth. The same territory is represented by one map

Figure 5. Cuspidal-shaped contour slope.
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Figure 6. Normal-shaped contour slope.

Figure 7. Example of a symbolic description.
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at a scale of 1:50000 and five maps at 1:25000, which have been produced by the

Italian Military Geographic Institute (IGM).

The experimentation concerns four environmental concepts that are relevant for

environmental protection: regular grid system of farms, fluvial landscape, system of

cliffs, and royal cattle track. The regular grid system of farms consists of partitions

of farms arranged in a rectilinear manner. The fluvial landscape is individuated by

the presence of waterways, fluvial islands, and embankments. The system of cliffs

is related to the emergence of limestone as a single block. Finally, the royal cattle

track, exclusively present in southern Italy, is a road for transhumance. It is

particularly interesting because it is characterized by the presence of an uncultivated,

quite regular trace, about 80±100 m wide, with a defined orientation, testifying to

ancient paths of flocks and herds, which have now partially disappeared and been

incorporated into the road network.

In Figure 8 the following data are shown:

· the name of the topographic chart and the information for its localization,

· the examined area for each map, expressed in square kilometers, and

· some details concerning the use for the training or the testing process.

Experiment A concerns maps at 1:25000 scale, while Experiment B concerns

smaller-scale maps. The examined area covers 246 km
2
. In order to have a fair

comparison of results, most of the territory considered in Experiment B is also

considered in Experiment A.

Figure 8. Examined territory.
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The experiments have been conducted using both INDUBI/CSL and ATRE.

Experimental setting data are described in Table 2.

Experiment A

Each training/test example is a 1 km
2
 cell on the map. The selection of the shape

and size of the examples coincides with the gridding system superimposed over IGM

geographic charts at 1:25000 scale. All the training examples (45) are taken from

the map of Canosa. In addition to the four classes, another classÐ otherÐ containing

only counterexamples, has been used. For the testing phase, 86 instances from

adjacent zones (Canne della Battaglia, Montegrosso, Barletta, and Foce dell’ Ofanto)

have been chosen. They represent nearly 65% of the total experimental data set.

The preference criteria used for the selection of hypotheses are (1) preference

for the most complex generalized descriptions, i.e., those expressed by the maximum

number of literals, and (2) minimizing the cost of a generalization. The first criterion

is intended to attain the agreement of the experts. Generally, when human planners

are required to judge multiple equivalent solutions produced by the systems, they

prefer the more articulated generalizations. The second criterion aims at satisfying

an efficiency principle, that is, the most favored solution has the minimum cost,

which corresponds to the sum of the costs associated to each descriptor appearing

in the generalization.

Here we report some generalizations produced by INDUBI/CSL.

[class(x1)=ROYAL_CATTLE_TRACK]:-

     [inside(x2,x3,x4)=true], [outside(x2,x3,x5)=true], [density(x5)=high],

     [density(x4)=low], [geographic_direction(x1,x2)=north_west],

     [geographic_direction(x1,x3)=north_west], [distance(x2,x3)=95],

     [relation(x2,x3)=almost_parallel], [contain(x1,x2)=true],

     [contain(x1,x3)=true], [contain(x1,x4)=true]

which can be automatically translated into the following natural language sentence:

ª if there are two almost parallel objects 95 m apart, directed toward northwest, and

Table 2. Sizes of the example sets in the experimentations

Class

Experiment A Experiment B

Training Testing Training Testing

System of cliffs 12 20 10 13

Royal cattle track  5  4  1  0

Fluvial landscape 13 18 13 23

Regular grid system of farms 11 27 21 21

Other  4 17  8  5

Total no. of instances 45 86 53 62
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between them there is low-density vegetation, while outside them there is high-

density vegetation, then the cell contains a royal cattle track.º

[class(x1) = FLUVIAL_LANDSCAPE]:-

      [geographic_direction(x1,x3)=north_east], [trend(x3)=curvilinear],

      [geographic_direction(x1,x2)=north_east], [trend(x2)=curvilinear],

      [distance(x2,x3)=35],[relation(x2,x3)=almost_parallel],[color(x2)=blue],

      [color(x3)=blue], [type_ of(x3)=river_line], [type_of(x2)=river_line],

      [contain(x1,x3)=true], [contain(x1,x2)=true] 

which states that, ª if there are two blue curvilinear stretches that are almost parallel,

35 m apart, and both directed toward northeast, then the cell contains a fluvial

landscape.º

The rules generated by ATRE for the same concepts are

class(x1)=ROYAL_CATTLE_TRACK:-

     contain(x1,x2), distance(x3,x2) in [90.0 .. 130.0],

     type_of(x2)=interfarm_road.

class(x1)=FLUVIAL_LANDSCAPE:-

     contain(x1,x2), type_of(x2)=river_line, color(x2)=blue.

The meaning of these rules can be easily grasped. In the testing phase, the

reserved cells have been correctly recognized by the induced rules. More precisely,

the predictive accuracy was over 95% for both systems, neither of which made any

commission errors. Only INDUBI/CSL made some omission errors concerning the

class fluvial landscape. The errors were caused by the inability of INDUBI/CSL to

apply the extension-against rule to relational numeric descriptors, such as the

descriptor distance. No rejection occurred when using the generalizations induced

by ATRE.

Experiment B

The representation scale of the map used in this experiment is 1:50000. The

classes are the same as for Experiment A, and as can be seen from Table 2, about

46% of the instances were used for the training phase, while the remaining 54%

were used for testing. The same preference criteria specified for Experiment A were

adopted for both systems. The generalizations produced by the two systems differed,

but only slightly, from those obtained in Experiment A, because the training set was

different.

At this scale factor the most important concept is the fluvial_landscape, which

constitutes the major morphological pattern appearing in the entire observed region.

In particular, INDUBI/CSL generates a new rule for this class:
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[class(x1)=FLUVIAL_LANDSCAPE]:-

      [outside(x3,x4,x5)=true], [geographic_direction(x1,x4)=north],

      [geographic_direction(x1,x3)=north], [distance(x3,x4)=50],

      [relation(x2,x3)=almost_parallel], [color(x3)=blue], [color(x4)=blue],

      [contain(x1,x5)=true, [contain(x1,x2)=true], [contain(x1,x3)=true]

      [contain(x1,x4)=true]

For the concept fluvial_landscape, ATRE generated a rule identical to that

already reported in Experiment A. The recognition of the 62 km
2
 of the territory used

for the testing phase was totally correct. In fact, also for this experiment there was

no misclassification in either system.

DISC USSION OF RESULTS

The positive results reported above for both experiments prove the strength of

the adopted approach for interpretation tasks. Some factors that may have influenced

the results are the high dimensionality of the learning database and the homogeneity

of the testing territories with respect to the zones selected for the training set.

The cells containing the river, which were rejected in Experiment A on the basis

of the rules produced by INDUBI/CSL, are localized near the mouth, and so the

rejections are explained by the increased distance between the two banks of the

Ofanto. On the contrary, the possibility given by ATRE of dealing properly with

numerical descriptions led to the generation of more accurate rules.

However, the predictive accuracy is not the only criterion to be adopted in the

evaluation of the system performance. Since the main task of the interface is the

classification of morphological elements with the aim of a semantic indexing, the

classification rules must be self-explanatory and measured in terms of comprehen-

sibility, as well.

It is well known that, at the moment, rigorous methods allowing an objective

evaluation do not exist (Bratko et al., 1996). We set up a simple empirical procedure

for measuring the comprehensibility of the learned rules. It consisted in interviewing

the 15 experts who were involved in the study, asking them first to grade the

intelligibility of the rules obtained by the two systems, specifying one of the five

permitted values (very poor, poor, sufficient, good, very good), and then to briefly

comment on the rules. In order to avoid influencing their judgment, when this

investigation was carried out, the experts were not yet aware of the results of the

testing phase.

Generally, they judged the rules generated by both systems to be fairly good.

Nevertheless, they manifested their preference for those produced by INDUBI/CSL

because they found them more meaningful and similar to their own classification rules.

This confirms that, although the rules produced by ATRE gave the best results

in terms of predictive accuracy, experts preferred less synthetic rules. Therefore the
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first preference criterion adopted in this study is suitable for attaining the agreement

of the experts.

In the course of our study, the possibility of reading the evolution of the

landscapes emerged as a very interesting result; in fact, the relevance of some signs

is not static but varies with time. For example, by analyzing the training zones for

the two experiments, a discrepancy emerged as to the number of the instances of the

royal_cattle_track class present on the same area. More precisely, in the zone of

Canosa, five examples of this class occur when considering the map at a scale

1:25000 (Experiment A), while only one example of such a class is found when the

map at scale 1:50000 is used in Experiment B. At first glance, such a difference

would be ascribed to the diverging classification made by the experts involved in

the two experiments. However, the main reason is due to the difference of the periods

of time in which the two maps were drawn up and to the different viewpoints of the

map designer. Indeed, the map at scale 1:50000 was drawn out in 1976 by deriving

it, with a suitable updating, from the same maps at scale 1:25000 that were traced

out in 1957. Thus the presence of the royal cattle track has been simply ª over-

shadowedº  by a new main road, Highway 98, which was built in the 1970s, following

the same course of the royal cattle track.

When automatically acquiring the knowledge base of an expert system, the

system’s capability of updating the rules in the knowledge base emerged as the main

requirement (Tecuci, 1992). Indeed, when the nature of the concepts evolves

dynamically or when the area of interest for the planning actions changes, the rules

available in the knowledge base of the advisory system turn out to be no longer

appropriate for the task.

As a matter of fact, environmental planning is a task affected by a striking

evolution of the objects involved. This requires that the knowledge base of an

advisory system for this domain must be updated regularly. Sometimes the volumes

of knowledge to be updated can be significant, and eventually, this can lead to giving

up on using the advisory system itself.

Once again, machine learning techniques provide an efficient and practically

useful solution to this problem. They contribute to improve the flexibility of the

advisory system, since it can be customized quickly and easily according to the

specific areas of territory the end user is interested in.

In this article, the experimentation conducted using two batch learning systems,

namely, INDUBI/CSL and ATRE, is described. These systems start from an empty

logical theory and stop the learning process when the current set of hypotheses is

able to explain all the available examples. When new evidence contradicts the

learned theory, the whole learning process must be repeated, taking no advantage

of the previous version of the hypotheses. Such a drawback can be overcome by

means of incremental learning systems. These systems are able to revise and refine

a theory in an incremental way; thus the previously generated hypotheses are not
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completely rejected, but they are taken as the starting point of a search process whose

goal consists of a new theory that explains both old and new observations.

Currently, we are carrying out a new experiment in which we use the incremental

learning systems INCR/H (Semeraro et al., 1995) and INTHELEX (Esposito et al.,

1996b), the former written in C language and the latter in PROLOG, which are the

systems that revise the theories produced by INDUBI/CSL and ATRE, respectively.

CONC LUSIONS AND FUTURE WORK

Using learning algorithms on images to interface machines and humans offers

an exciting new application domain for machine learning. In fact, the possibility of

applying symbolic high-level representations allows us to fill the gap between the

visual data and more abstract representations, and to view the problem of image

interpretation as a representation change problem.

For the future, we are planning to study how to integrate information from

different sources: descriptions extracted from thematic charts and normative texts

of the same territory, with the aim of a more accurate semantic interpretation. This

should allow us to represent different layers of the same reality and improve both

the efficiency and the quality of the interpretation process, thus improving the

content-based indexing of the spatial elements on a map.
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