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8

Dissimilarity and matching

Floriana Esposito, Donato Malerba and Annalisa Appice

8.1 Introduction

The aim of symbolic data analysis (SDA) is to investigate new theoretically sound techniques
by generalizing some standard statistical data mining methods to the case of second-order
objects, that is, generalizations of groups of individuals or classes, rather than single indi-
viduals (first-order objects).

In SDA, generalizations are typically represented by means of set-valued and modal
variables (Bock and Diday, 2000). A variable Y is termed set-valued with domain � if it
takes its values in P��� = �U �U ⊆ ��, that is, the power set of � . When X�k� is finite
for each k, then Y is called multi-valued, while when an order relation ≺ is defined on �,
then the value returned by a set-valued variable is expressed by an interval [�, �] and Y
is termed an interval variable. A modal variable Y is a multi-valued variable with weights,
such that Y�k� describes both multi-valued data U�k� and associated weights ��k�.

Generalizations of different groups of individuals from the same population are described
by the same set of symbolic variables. This leads to data tables, named symbolic data tables,
which are more complex than those typically used in classical statistics. Indeed, the columns
of a symbolic data table are called symbolic variables, while the rows correspond to distinct
generalizations (or symbolic descriptions) describing a class of individuals that are in turn
the partial or complete extent of a given concept.

Starting with a symbolic description, a symbolic object (SO) models the underlying
concepts and provides a way to find at least the individuals of this class. In Bock and Diday
(2000) and Diday and Esposito (2003), an SO is formally defined as a triple s = �a	R	d�,
where R is a relation between descriptions (e.g., R ∈ �=	≡	≤	⊆� or R is an implication,
a kind of matching), d is a description and a is a membership function defined by a set of

Symbolic Data Analysis and the SODAS Software Edited by E. Diday and M. Noirhomme-Fraiture
© 2008 John Wiley & Sons, Ltd
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individuals 
 in a set L (e.g., L = �true	 false� or L = �0	 1�), such that a depends on R
and d.

Many techniques for both the construction of SOs from records of individuals and the
analysis of SOs are actually implemented in the ASSO Workbench. They deal with special
classes of SOs, called assertions, where R is defined as �d′Rd�=∧j=1	    	p�d

′
jRjdj�, with ∧

as the standard logical conjunction operator and a is defined as a�w� = �y�w� R d�, with
y�w� = y1�w�	    	 yp�w� being the vector of variables describing w.

Dissimilarity and matching constitute one of the methods available in the ASSO Work-
bench. Several dissimilarity measures (DISS module) and matching functions (MATCH
module) are implemented, enabling the user to compare symbolic data in a symbolic data
table.

The DISS module implements the dissimilarity measures presented in Malerba et al.
(2001, 2002). Henceforth, the dissimilarity measure d on a set of individuals E refers to
a real-valued function on E × E, such that d∗

a = d�a	a� ≤ d�a	b� = d�b	a� < � for all a,
b ∈ E. In contrast, a similarity measure s on a set of objects E is a real-valued function
on E × E such that s∗

a = s�a	a� ≥ s�a	 b� = s�b	a� ≥ 0 for all a, b ∈ E. Generally, d∗
a = d∗

and s∗
a = s∗ for each object a in E, and more specifically, d∗ = 1 when s∗ = 0 (Batagelj and

Bren, 1995).
Since the similarity comparison can be derived by transforming a dissimilarity measure

into a similarity one1, only dissimilarity measures are actually implemented in the DISS
module.

The MATCH module performs a directional (or asymmetric) comparison between the
SOs underlying symbolic descriptions stored in a symbolic data table, in order to discover
their linkedness or differences. Notice that, while the dissimilarity measures are defined
for symbolic descriptions and do not consider how the extent of corresponding SOs is
effectively computed according to R, the matching comparison is performed at the level of
SOs by interpreting R as a matching operator.

This matching comparison has a referent and a subject (Patterson, 1990). The former
represents either a prototype or a description of a class of individuals, while the latter is
either a variant of the prototype or an instance (individual) of a class of objects. In its
simplest form, matching compares referent and subject only for equality, returning false
when they fail in at least one aspect, and true otherwise. In more complex cases, the matching
process performs the comparison between the description of a class C (subject of matching)
and the description of some unit u (referent of matching) in order to establish whether the
individual can be considered an instance of the class (inclusion requirement). However,
this requirement of equality (canonical matching), even in terms of inclusion requirement,
is restrictive in real-world problems because of the presence of noise, the imprecision of
measuring instruments or the variability of the phenomenon described by the referent of
matching. This makes it necessary to rely on a relaxed definition of matching that aims to
compare two SOs in order to identify their similarities rather than to establish whether they
are equal. The result is a flexible matching function with a range in the interval [0,1] that
indicates the probability of precisely matching the subject with the referent, provided that
some change is possibly made in the description of the referent. It is interesting to note

1 This transformation is made possible by preserving properties defined with the induced quasi-ordering and
imposing d �=��s� and s �=��d�, respectively, where ��·� and ��·� are strictly decreasing functions with boundary
conditions (e.g. ��0� = 1 and ��1� = 0, or ��0� = 1 and ���� = 0).
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that even flexible matching is not a dissimilarity measure, due to the non-symmetry of the
matching function.

Both DISS and MATCH input a symbolic data table stored in an ASSO file and output
a new ASSO file that includes the same input data, in addition to the matrix of the results
of dissimilarity (or matching) computation.

More precisely, the dissimilarity (or matching) value computed between the ith symbolic
description (SO) and the jth symbolic description (SO) taken from the input symbolic data
table is written in the (i, j)th cell (entry) of the output dissimilarity (matching) matrix. The
main difference is that the dissimilarity matrix is stored as a lower triangular matrix, since the
upper values (i<j) can be derived from the symmetry property of dissimilarity. Conversely,
the matching matrix is stored as a sparse square matrix, due to the non-symmetry of the
matching function.

Finally, the ASSO Workbench supports users in choosing the list of symbolic variables
forming the symbolic descriptions (SOs) to be compared, the dissimilarity measure or
matching function to be computed as well as some related parameters.

In this chapter, the use of DISS for the computation of dissimilarity measures is illustrated
together with the VDISS module for the visualization of the dissimilarities by means of
two-dimensional scatterplots and line graphs. The explanation of the outputs and the results
of MATCH for the computation of the matching functions are given at the end of the
chapter.

8.2 Input data

The main input of the dissimilarity and matching method is an ASSO file describing a
symbolic data table, whose columns correspond to either set-valued or probabilistic symbolic
variables. Each row represents the symbolic description d of an individual of E. The ASSO
Workbench allows users to select one or more symbolic variables associated with the
columns of the symbolic data table stored in the input ASSO file.

Statistical metadata concerning the source agencies of symbolic data, collection infor-
mation, statistical populations, original variables and standards, symbolic descriptions and
symbolic variables, logistical metadata and symbolic analysis previously performed on the
data may be available in the metadata file, meta<ASSO file name>.xml, stored in the
same directory as the input ASSO file. Notice that metadata information is not manipulated
by the dissimilarity and matching method, but it is simply updated by recording the last
dissimilarity measure or matching function computed on such data and the list of symbolic
variables involved in the comparison.

8.3 Dissimilarity measures

Several methods have been reported in the literature for computing the dissimilarity between
two symbolic descriptions da and db (Malerba et al., 2001, 2002). In the following, we
briefly describe the dissimilarity measures implemented in the DISS module for two kinds
of symbolic descriptions, named boolean and probabilistic. The former are described by set-
valued variables, while the latter are described by probabilistic variables, that is, modal vari-
ables describing frequency distributions. SOs underlying boolean and probabilistic symbolic
descriptions are referred to as boolean symbolic objects (BSOs) and probabilistic symbolic
objects (PSOs), respectively.
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Mixed symbolic descriptions, that is, symbolic descriptions described by both set-
valued and probabilistic variables, are treated by first separating the boolean part from
the probabilistic part and then computing dissimilarity values separately for these parts.
Dissimilarity values obtained by comparing the boolean and probabilistic parts respectively
are then combined by sum or product.

8.3.1 Dissimilarity measures for boolean symbolic descriptions

Let da and db be two symbolic descriptions described by m set-valued variables Yi with
domain Yi. Let Ai�Bi� be the set of values (subset of Yi) taken from Yi in da (db). A class
of dissimilarity measures between da and db is defined by aggregating dissimilarity values
computed independently at the level of single variables Yi (componentwise dissimilarities).
A classical aggregation function is the Minkowski metric (or Lq distance) defined on R

m.
Another class of dissimilarity measures is based on the notion of description potential
��da� of a symbolic description da, which corresponds to the volume of the Cartesian
product A1 ×A2 ×    ×Ap. For this class of measures no componentwise decomposition is
necessary, so that no function is required to aggregate dissimilarities computed independently
for each variable.

Dissimilarity measures implemented in DISS are reported in Table 8.1 together with
their short identifier used in the ASSO Workbench. They are:

• Gowda and Diday’s dissimilarity measure (U_1: Gowda and Diday, 1991);

• Ichino and Yaguchi’s first formulation of a dissimilarity measure (U_2: Ichino and
Yaguchi, 1994);

• Ichino and Yaguchi’s normalized dissimilarity measure (U_3: Ichino and Yaguchi,
1994);

• Ichino and Yaguchi’s normalized and weighted dissimilarity measure (U_4: Ichino
and Yaguchi, 1994);

• de Carvalho’s normalized dissimilarity measure for constrained2 Boolean descriptions
(C_1: de Carvalho, 1998);

• de Carvalho’s dissimilarity measure (SO_1: de Carvalho, 1994);

• de Carvalho’s extension of Ichino and Yaguchi’s dissimilarity (SO_2: de Carvalho,
1994);

• de Carvalho’s first dissimilarity measure based on description potential (SO_3: de
Carvalho, 1998);

• de Carvalho’s second dissimilarity measure based on description potential (SO_4: de
Carvalho, 1998);

2 The term constrained Boolean descriptions refers to the fact that some dependencies are defined between two
symbolic variables Xi and Xj , namely hierarchical dependencies which establish conditions for some variables
which are not measurable (not-applicable values), or logical dependencies which establish the set of possible
values for a variable Xi conditioned by the set of values taken by the variable Xj . An investigation of the effect of
constraints on the computation of dissimilarity measures is outside the scope of this paper, nevertheless it is always
possible to apply the measures defined for constrained boolean descriptions to unconstrained boolean descriptions.
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• de Carvalho’s normalized dissimilarity measure based on description potential (SO_5:
de Carvalho, 1998);

• a dissimilarity measure based on flexible matching between BSOs (SO_6).

The last measure (SO_6) differs from the others, since its definition is based on the notion
of flexible matching (Esposito et al., 2000), which is an asymmetric comparison. The
dissimilarity measure is obtained by means of a symmetrization method that is common to
measures defined for probabilistic symbolic descriptions.

The list of dissimilarity measures actually implemented in DISS cannot be consid-
ered complete. For instance, some clustering modules of the ASSO Workbench (e.g.,
NBCLUST and SCLUST; see Chapter 14) estimate the dissimilarity value between two
boolean symbolic descriptions da and db as follows:

d�da	db� =
(

m∑
i=1

�2
i �Ai	Bi�

)1/2

	

where �i denotes a dissimilarity index computed on each pair (Ai, Bi). In particular, if Yi

is an interval variable, we have that Ai = �ai	inf	 ai	sup� and Bi = �bi	inf	 bi	sup�. In this case,
�i�Ai	Bi� is computed in terms of:

• the Hausdorff distance defined by

�i��ai	inf	 ai	sup�	 �bi	inf	 bi	sup�� = max��ai	inf − bi	inf �	 �ai	sup − bi	sup���
• the L1 distance defined by:

�i��ai	inf	 ai	sup�	 �bi	inf	 bi	sup�� = �ai	inf − bi	inf � + �ai	sup − bi	sup��
• the L2 distance defined by:

�i��ai	inf	 ai	sup�	 �bi	inf	 bi	sup�� = �ai	inf − bi	inf�
2 + �ai	sup − bi	sup�

2�

On the other hand, if Yi is a multi-valued variable that takes its values in the power set
of Yi (i.e., P��i� = �U �U ⊆ �i�), the dissimilarity index �i is computed by estimating the
difference in the frequencies of each category value taken by Yi .

Denoting by pi the number of categories in Yi (pi = �Ui�, with Ui the range of Yi), the
frequency value qi	Ui

�cs� associated with the category value cs (s =1,    , pi) of the variable
Yi = Ui�cs ∈ Ui� is given by

qi	Ui
�cs� =

{ 1
�Ui� 	 if cs ∈ Ui	

0	 otherwise�

Therefore, the symbolic descriptions da and db can be transformed as follows:

da = ��q1	A1
�c1�	    	 q1	A1

�cp1
��	    	 �qm	Am

�c1�	    	 qm	Am
�cpm

���	

db = ��q1	B1
�c1�	    	 q1	B1

�cp1
��	    	 �qm	Bm

�c1�	    	 qm	Bm
�cpm

���	
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such that
∑mi

j=1 qi	Ai
�cj�= 1 and

∑mi

j=1 qi	Bi
�cj�= 1, for all i ∈ �1	    	m�. Hence the dissim-

ilarity index �i�Ai	Bi� is computed in terms of:

• the L1 distance defined by

�i�Ai	Bi� =
�Yi�∑
j=1

�qi	Ai
�cj� − qi	Bi

�cj���

• the L2 distance defined by

�i�Ai	Bi� =
�Yi�∑
j=1

�qi	Ai
�cj� − qi	Bi

�cj��
2�

• the de Carvalho distance defined by

�i�Ai	Bi� =
�Yi�∑
j=1

��qi	Ai
�cj� + �′qi	Bi

�cj��
2	

where

� =
{

1	 if cj ∈ Ai ∧ cj � Bi	
0	 otherwise	

�′ =
{

1	 if cj � Ai ∧ cj ∈ Bi	
0	 otherwise�

These dissimilarity measures will be implemented in an extended version of the DISS
module.

8.3.2 Dissimilarity measures for probabilistic symbolic descriptions

Let da and db be two probabilistic symbolic descriptions and Y a multi-valued modal
variable describing them. The sets of probabilistically weighted values taken by Y in da

and db define two discrete probability distributions P and Q	 whose comparison allows
us to assess the dissimilarity between da and db on the basis of Y only. For instance,
we may have: P = (red:0�3̄, white:0�3̄, black:0�3̄) and Q = (red:0.1, white:0.2, black:0.7)
when the domain of � is = {red, white, black}. Therefore, the dissimilarity between two
probabilistic symbolic descriptions described by p symbolic probabilistic variables can be
obtained by aggregating the dissimilarities defined on as many pairs of discrete probability
distributions (componentwise dissimilarities). Before explaining how to aggregate them,
some comparison functions m(P	Q) for probability distributions are introduced.

Most of the comparison functions for probability distributions belong to the large family
of ‘convex likelihood-ratio expectations’ introduced by both Csiszár (1967) and Ali and
Silvey (1996). Some well-known members of this family are as follows:
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• The Kullback–Leibler (KL) divergence, which is a measure of the difference between
two probability distributions (Kullback and Leibler, 1951). This is defined as
mKL�P	Q� �= �x∈Xq�x� log�q�x�/p�x�� and measures to what extent the distribution
P is an approximation of the distribution Q. It is asymmetric, that is, mKL�P	Q� �=
mKL�Q	P� in general, and it is not defined when p�x� = 0. The KL divergence is
generally greater than zero, and it is zero only when the two probability distributions
are equal.

• The �2 divergence, defined as m�2�P	Q� �=�x∈X�p�x�− q�x��2/p�x�, is strictly topo-
logically stronger than the KL divergence, since the inequality mKL�P	Q�≤m�2�P	Q�
holds, i.e. the convergence in �2 divergence implies convergence in the KL divergence,
but the converse is not true (Beirlant et al., 2001). Similarly to the KL divergence, it
is asymmetric and is not defined when p�x� = 0.

• The Hellinger coefficient is a similarity-like measure given by

m�s��P	Q� �= �x∈Xqs�x��p1−s�x�	

where s is a positive exponent with 0 < s < 1. From this similarity-like measure
Chernoff’s distance of order s is derived as follows:

m
�s�
C �P	Q� �= − log m�s��P	Q��

This distance diverges only when the two distributions have zero overlap, that is, the
intersection of their support is empty (Kang and Sompolinsky, 2001).

• Rényi’s divergence (or information gain) of order s between two probability distribu-
tions P and Q is given by mR

�s��P	Q� �= − log m�s��P	Q�/�s − 1�. It is noteworthy
that, as s → 1, Rényi’s divergence approaches the KL divergence (Rached et al.,
2001).

• The variation distance, given by m1�P	Q� �=�x∈X�p�x�− q�x��, is also known as the
Manhattan distance for the probability functions p�x� and q�x� and coincides with
the Hamming distance when all features are binary. Similarly, it is possible to use
Minkowski’s L2 (or Euclidean) distance given by m2�P	Q� �=�x∈X�p�x�−q�x��2 and,
more generally, the Minkowski’s Lp distance with p ∈ �1	 2	 3	    �. All measures
mp�P	Q� satisfy the metric properties and in particular the symmetry property. The
main difference between m1 and mp, p > 1, is that the former does not amplify the
effect of single large differences (outliers). This property can be important when the
distributions P and Q are estimated from noisy data.

• The Kullback divergence is given by mK�P	Q� �= �x∈Xq�x� log�q�x�/�1/2p�x� +
1/2q�x��� (Lin, 1991), which is an asymmetric measure. It has been proved that the
Kullback divergence is upper bounded by the variation distance m1�P	Q� �mK�P	Q�≤
m1�P	Q� ≤ 2.

Some of the divergence coefficients defined above do not obey all the fundamental
axioms that dissimilarities must satisfy. For instance, the KL divergence does not satisfy
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the symmetric property. Nevertheless, a symmetrized version, termed the J -coefficient (or
J -divergence), can be defined as follows:

J�P	Q� �= mKL�P	Q� + mKL�Q	P��

Alternatively, many authors have defined the J -divergence as the average rather than
the sum J�P	Q� �= �mKL�P	Q� + mKL�Q	P��/2. Generally speaking, for any (possible)
non-symmetric divergence coefficient m there exists a symmetrized version m�P	Q� =
m�Q	P�+m�P	Q� which fulfils all axioms for a dissimilarity measure, but typically not the
triangle inequality. Obviously, in the case of Minkowski’s Lp coefficient, which satisfies the
properties of a dissimilarity measure and, more precisely of a metric (triangular inequality),
no symmetrization is required.

Given these componentwise dissimilarity measures, we can define the dissimilarity
measure between two probabilistic symbolic descriptions da and db by aggregation through
the generalized and weighted Minkowski metric:

dp�da	db� = p

√
m∑

i=1

�cim�Ai	Bi��
p	

where ∀k ∈ �1	    	m�	 ck > 0 are weights with �k=1    mck = 1 and m�Ai	Bi� is either
the Minkowski Lp distance (LP) or a symmetrized version of the J -coefficient (J), �2

divergence (CHI2), Rényi’s distance (REN), or Chernoff’s distance (CHER). These are
all variants of the dissimilarity measure denoted by P_1 in the ASSO Workbench. Notice
that the Minkowski Lp distance, the J -coefficient, the �2 divergence, Rényi’s distance and
Chernoff’s distance require no category of a probabilistic symbolic variable in a probabilistic
symbolic description to be associated with a zero probability. To overcome these limitations,
symbolic descriptions may be generated by using the KT estimate when estimating the
probability distribution, in order to prevent the assignments of a zero probability to a
category. This estimate is based on the idea that no category of a modal symbolic variable
in a PSO can be associated with a zero probability. The KT estimate is computed as:

p�x� = �No. of times xoccurs in �R1	    	RM�� + 1/2
M + �K/2�

	

where x is the category of the modal symbolic variable, �R1	    	RM� are sets of aggregated
individuals, M is the number of individuals in the class, and K is the number of categories
of the modal symbolic variable (Krichevsky and Trofimov, 1981).

The dissimilarity coefficients can also be aggregated through the product. Therefore, by
adopting appropriate precautions and considering only Minkowski’s Lp distance, we obtain
the following normalized dissimilarity measure between probabilistic symbolic descriptions:

d′
p�da	db� = 1 −

∏m
i=1

(
p
√

2 − p

√∑
yi

�p�xi� − q�xi��p
)

(
p
√

2
)m = 1 −

∏m
i=1

(
p
√

2 − p
√

Lp

)
(

p
√

2
)m 	

where each xi corresponds to a value of the ith variable domain.
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Table 8.2 Dissimilarity measures defined for Probabilistic symbolic descriptions.

Name Componentwise
dissimilarity measure

Objectwise dissimilarity measure

P_1 Either mp�P	Q� or a
symmetrized version of
mKL�P	Q�	m2

��P	Q�,

m
�s�
C �P	Q�, m

�s�
R �P	Q�

p

√
m∑

i=1
�cim�Ai	Bi��

p

P_2 mp�P	Q� 1 −

m∏
i=1

(
p
√

2 − p

√
mp�Ai	Bi�

)
(

p
√

2
)m

P_3 none 1 − �FlexMatch�a	b� +
FlexMatch�b	a��/2,
where FlexMatch denotes the flexible
matching function, while a and b are the
PSOs in the form of assertions representing
the descriptions da and db, respectively.

Note that this dissimilarity measure, denoted as P_2 in the ASSO Workbench, is
symmetric and normalized in [0,1]. Obviously d′

p�da	db�= 0 if da and db are identical and
d′

p�da	db� = 1 if the two symbolic descriptions are completely different.
Alternatively, the dissimilarity measure between two probabilistic dissimilarity descrip-

tions da and db can be computed by estimating both the matching degree between the
corresponding PSOs a and b and vice versa. The measure denoted as P_3 in the ASSO
Workbench extends the SO_6 measure defined for BSOs. A summary of the three dissimi-
larity measures, defined on probabilistic symbolic descriptions, is reported in Table 8.2.

As already observed for the boolean case, the list of dissimilarity measures implemented
in DISS for PSOs is not exhaustive. Some clustering modules of the ASSO Workbench (e.g.,
NBCLUST and SCLUST; see Chapter 14) implement a further dissimilarity measure that
estimates the dissimilarity between two probabilistic symbolic descriptions by composing
the values of dissimilarity indices �i as follows:

d�da	db� =
(

m∑
i=1

�2
i ��Ai	�Ai

�	 �Bi	�Bi
��

)1/2

�

In this case, the dissimilarity index �i��Ai	�Ai
�	 �Bi	�Bi

�� is computed in terms of:

• the L1 distance defined by

�i��Ai	�Ai
�	 �Bi	�Bi

�� =
�Yi�∑
j=1

��Ai
�cj� − �Bi

�cj���
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• the L2 distance defined by

�i�Ai	Bi� =
�Yi�∑
j=1

��Ai
�cj� − �Bi

�cj��
2�

• the de Carvalho distance defined by

�i�Ai	Bi� =
�Yi�∑
j=1

���Ai
�cj� + �′�Bi

�cj��
2	

where � and �′ are defined as before.

Also in this case we plan to implement these additional dissimilarity measures for PSOs
in a new release of the DISS module.

8.4 Output of DISS and its visualization

The DISS module outputs a new ASSO file that includes both the input symbolic data
table D and the dissimilarity matrix M resulting from the computation of the dissimilarity
between each pair of symbolic descriptions from D. This means that M�i	 j� corresponds to
the dissimilarity value computed between the ith symbolic description and the jth symbolic
description taken from D. Since dissimilarity measures are defined as symmetric functions,
M is a symmetric matrix with M�i	 j� = M�j	 i�. However, due to computation issues, M is
effectively computed as a lower triangular matrix, where dissimilarity values are undefined
for upper values (i < j) of M�i	 j�. In fact, upper values can be obtained without effort
by exploiting the symmetry property of dissimilarity measures. In addition, DISS produces
a report file that is a printer-formatted file describing both the input parameters and the
matching matrix. When a metadata file is associated with the input ASSO file, DISS updates
the metadata by recording the dissimilarity measure and the list of symbolic variables
considered when computing the dissimilarity matrix in question.

Both the dissimilarity matrix and the dissimilarity metadata can be obtained by means
of the ASSO module VDISS. More precisely, VDISS outputs the matrix M in either a table
format, a two-dimensional scatterplot or graphic representation.

The table format visualization shows the dissimilarity matrix M as a symmetric matrix,
where both rows and columns are associated with the individuals whose symbolic descrip-
tions are stored in the symbolic data table stored in the input ASSO file. Although M is
computed as a lower triangular matrix, undefined upper values of M (M�i	 j� with i < j),
are now explicitly stated by imposing M�i	 j� = M�j	 i� .

Moreover, several properties can be checked on the dissimilarity matrix: the definiteness
property,

M�i	 j� = 0 ⇒ i = j	 ∀i	 j = 1	    	 n�

the evenness property,

M�i	 j� = 0 ⇒ M�i	 k� = M�j	k�	 ∀k = 1	    	 n�
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the pseudo-metric or semi-distance,

M�i	 j� ≤ M�i	 k� + M�k	 j�	 ∀i	 j	 k = 1	    	 n�

the Robinsonian property, by which, for each k = 1	    	 n, we have that

M�k	k� ≤ M�k	k + 1� ≤    ≤ M�k	n − 1� ≤ M�k	n� ∧ M�k	k�

≤ M�k	k − 1� ≤    ≤ M�k	 2� ≤ M�k	 1�	

M�k	k� ≤ M�k + 1	 k� ≤    ≤ M�n − 1	 k� ≤ M�n	k� ∧ M�k	k�

≤ M�k − 1	 k� ≤    ≤ M�2	 k� ≤ M�1	 k��

Buneman’s inequality,

M�i	 j� + M�h	k� ≤ max�M�i	h� + M�j	k�	M�i	 k� + M�j	h�� ∀i	 j	 h	 k = 1	    	 n�

and, finally, the ultrametric property,

M�i	 j� ≤ max�M�i	 k�	M�k	 j�� ∀i	 j	 k = 1	    	 n�

The two-dimensional scatterplot visualization is based on the non-linear mapping of
symbolic descriptions stored in the input ASSO file and points of a two-dimensional space.
This non-linear mapping is based on an extension of Sammon’s algorithm (Sammon, 1969)
that takes as input the dissimilarity matrix M and returns a collection of points in the
two-dimensional space (visualization area), such that their Euclidean distances preserve the
‘structure’ of the original dissimilarity matrix.

Scatterplot visualization supports both scrolling operations (left, right, up or down) as
well as zooming operations over the scatterplot area. For each point in the scatterplot area,
the user can also display the (X	Y ) coordinates as well as the name (or label) of the
individual represented by the point.

The dissimilarity matrix M can also be output graphically in the form of a partial or
total line, bar and pie chart. In line chart based output, dissimilarity values are reported
along the vertical axis, while individual identifiers (labels or names) are reported on the
horizontal axis. For each column j of M , a different line is drawn by connecting the set of
points P�i	 j� associated with the M�i	 j� value. In particular, the (X	Y ) coordinates of the
point P�i	 j� represent the individual on the ith row of M and the dissimilarity value stored
in the M�i	 j� cell, respectively. The main difference between a partial line chart and a total
line chart is that the former treats M as a lower triangular matrix and draws a line for each
column j of M by ignoring points whose ordinate value is undefined in M (i.e. i< j), while
the latter treats M as a symmetric matrix and derives undefined values by exploiting the
symmetry property of the dissimilarity measures.

Both partial and total line charts can be visualized in a two- or three-dimensional space.
Dissimilarity values described with total line charts can also be output as bar or pie charts.

Finally, a report including the list of variables and the dissimilarity measures adopted
when computing M can be output in a text box.
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8.5 An Application of DISS

In this section, we show the use of both the DISS module for the computation of a
dissimilarity matrix from a symbolic data table stored in an input ASSO file and the VDISS
module for the visualization of dissimilarities by means of two-dimensional scatterplots
and line graphs. For this purpose, we present a case study of the analysis of the symbolic
data table stored in the ASSO file enviro.xml that contains symbolic descriptions of 14
individuals generated by DB2SO.

Symbolic data are extracted by generalizing the data derived from a survey conducted by
Statistics Finland. The population under analysis is a sample of 2500 Finnish residents aged
between 15 and 74 in December 2000. Data are collected by interview and missing values are
imputed by logistic regression. The survey contains 46 questions, but only 17 questions repre-
senting both continuous and categorical variables are selected as independent variables for
symbolic data generation. Symbolic data are constructed by Cartesian product among three
categorical variables (grouping variables): gender (M, F), age ([15–24], [25–44], [45–64],
[65–74]) and urbanicity (very urban and quite urban).3 Statistical metadata concerning infor-
mation about the sample Finnish population analysed for the survey, the original variables,
the symbolic descriptions and the symbolic variables are stored in metaenviro.xml.

Starting from the enviro symbolic data, a new ASSO chain named enviro is created
by selecting Chaining from the main (top-level) menu bar and clicking on New chaining
or typing Ctrl-N. The base node is associated with the ASSO file enviro.xml and a new
empty block is added to the running chain by right-clicking on the Base block and choosing
Insert method from the pop-up menu. The DISS module is selected from Dissimilarity and
Matching in the Methods drop-down list and dragged onto the empty block (see Figure 8.1).

Figure 8.1 An example of the ASSO chain.

3 The enviro.xml ASSO file contains the symbolic descriptions of only 14 individuals instead of 16. This is due to
the fact that no enviro micro-data fall in two of the grouping sets obtained by DB2SO when aggregating enviro
micro-data with respect to the ‘gender–age–urbanicity’ attributes.
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(a) (b)

Figure 8.2 (a) List of variables and (b) dissimilarity measures selected when computing
the dissimilarity matrix from the symbolic descriptions stored in the enviro ASSO file.

This chain is now able to compute and output the dissimilarity matrix representing
dissimilarity values between each pair of symbolic descriptions stored in the enviro symbolic
data table.

Before computing the dissimilarity matrix, users must choose the list of symbolic vari-
ables to be involved in computing dissimilarities, the dissimilarity measure(s) to be used,
the name of the output ASSO file, and so on. Both the list of symbolic variables and the
dissimilarity measures are chosen by selecting Parameters    from the pop-up menu asso-
ciated with the DISS block in the chain. The list of symbolic variables taken from the input
symbolic data table is shown in a list box and users choose the variables to be considered
when computing dissimilarity (see Figure 8.2(a)).

For each symbolic variable some statistics can be output, namely, the minimum and
maximum for continuous (single-valued or interval) variables and the frequency distribution
of values for categorical (single-valued or multi-valued) variables.

By default, all the symbolic variables are available for selection without any restriction
on the type. However, users may decide to output only a subset of the variables taken
from the input symbolic data by filtering on the basis of the variable type. Whenever users
select only set-valued (probabilistic) variables, symbolic descriptions to be compared are
treated as boolean (probabilistic) data. Conversely, when users select probabilistic variables
in addition to set-valued variables, symbolic descriptions to be compared are treated as
mixed data.

In this application, let us select all the symbolic variables (13 interval variables and
four probabilistic variables) from the enviro data. This means that symbolic descriptions
considered for dissimilarity computation are mixed data, where it is possible to separate the
boolean part from the probabilistic part. Users have to choose a dissimilarity measure for
the boolean part and a dissimilarity measure for the probabilistic part and to combine the
result of computation by either sum or product (see Figure 8.2(b)).

In this example, we choose the dissimilarity measures SO_2 to compare the boolean parts
and P_1(LP) to compare the probabilistic parts of the enviro symbolic descriptions. Equal
weights are associated with the set-valued variables, while dissimilarity values obtained by
comparing boolean parts and probabilistic parts are combined in an additive form.

When all these parameters are set, the dissimilarity matrix can be computed by choosing
Run method from the pop-up menu associated with the DISS block in the running chain.
DISS produces as output a new ASSO file that is stored in the user-defined path and includes



01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

October 25, 2007 13:48 Wiley/ASSO Page-138 c08

138 DISSIMILARITY AND MATCHING

Figure 8.3 The table format output of the dissimilarity matrix and the dissimilarity meta-
data output of DISS on symbolic descriptions stored in the enviro.xml ASSO file.

both the symbolic data table stored in the input ASSO file and the dissimilarity matrix
computed by DISS.

The metadata file is updated with information concerning the dissimilarity measures and
the symbolic variables involved in the dissimilarity computation.

When the dissimilarity matrix is correctly constructed, the dissimilarity matrix is stored
in the output ASSO file, in addition to the input symbolic data table. Moreover, the running
chain is automatically extended with a yellow block (report block) that is directly connected
to the DISS block. The report block allows users to output a report that describes the
symbolic variables and the dissimilarity measures selected for the dissimilarity computation,
as well as the lower triangular dissimilarity matrix computed by DISS. A pop-up menu
associated with the report block allows users to either output this report as a printer-formatted
file by selecting Open   and then View Result Report    or remove the results of the
DISS computation from the running chain by selecting Delete results    from the menu in
question.

Moreover, a red block connected to the yellow one is introduced in the running chaining.
This block is automatically associated with the VDISS module and allows users to output
both the dissimilarity matrix and the dissimilarity metadata (see Figure 8.3).

Table format output is shown by selecting Open   from the pop-up menu associated
with the VDISS block of the running chain.

VDISS allows users to plot the symbolic descriptions taken from the enviro ASSO file
as points on a two-dimensional scatterplot such that the Euclidean distance between the
points preserves the dissimilarity values computed by DISS.

Notice that opting for a scatterplot highlights the existence of three clusters of similar
symbolic descriptions (see Figure 8.4). In particular, symbolic descriptions labelled with
AA00 and AA08 appear tightly close in the scatterplot area. This result is confirmed
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AA08 AA00

Figure 8.4 Scatterplot output of the symbolic descriptions stored in the enviro ASSO
file, such that the Euclidean distance between the points preserves the dissimilarity values
computed by the DISS module.

Figure 8.5 Line chart output of the dissimilarity matrix computed on the mixed symbolic
data stored in the enviro ASSO file.

when visualizing line charts of the dissimilarity matrix in question (see Figure 8.5). This
result suggests that the SOs underlying the symbolic descriptions AA00 and AA08 have
a small dissimilarity (i.e., large similarity), that is, they identify ‘homogeneous’ classes of
objects.

8.6 The matching functions

Matching comparison is a directional judgement involving a referent and a subject. In SDA,
the referent is an SO representing a class description, while the subject is an SO that typically
corresponds to the description of an individual.
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The matching problem consists of establishing whether the individual described by the
subject can be considered an instance of the referent. For instance, the SO

r = �colour = �black	 white�� ∧ �height = �170	 200��

describes a group of individuals either black or white, whose height is in the interval [170,
200], while the SO

s1 = �colour = black� ∧ �height = 180�

corresponds to an individual in the extent of r�s1 ∈ExtE�r��, since it fulfils the requirements
stated in r. Conversely, the SO

s2 = �colour = black� ∧ �height = 160�

does not correspond to an individual in the extent of r�s2 �ExtE�r��, since 160 � �170	 200�.
Thus, we can say that r matches s1 but not s2.

More formally, given two SOs, r and s, the former describes a class of individuals
(referent of matching), the latter an individual (subject of matching) and matching checks
whether s is an individual in the class described by r. Canonical matching returns either 0
(failure) or 1 (success).

The occurrence of noise as well as the imprecision of measuring instruments makes
canonical matching too restrictive in many real-world applications. This makes it necessary
to rely on a flexible definition of matching that aims at comparing two descriptions and
identifying their similarities rather than the equalities.

The result is a flexible matching function with ranges in the interval [0,1] that indicates
the probability of a precisely matching the subject against a referent, provided that some
change is possibly made in the description of the referent. Notice that both canonical
matching and flexible matching are not a resemblance measure, due to the non-symmetry
of the matching function.

In the following, we briefly describe the matching operators implemented in the MATCH
module for BSOs and PSOs. In the case of mixed SOs, matching values obtained by
comparing the boolean parts and the probabilistic parts are combined by product.

8.6.1 Matching functions for boolean symbolic objects

Let S be the space of BSOs in the form of assertions. The canonical matching between
BSOs is defined as the function,

CanonicalMatch � S × S → �0	 1�	

that assigns the value 1 or 0 to the matching of a referent r ∈S against a subject s ∈S, where

r = �Y1 ∈ w1� ∧ �Y2 ∈ w2� ∧    ∧ �Yp ∈ wp�	

s = �Y1 ∈ v1� ∧ �Y2 ∈ v2� ∧    ∧ �Yp ∈ vp��
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More precisely, the canonical matching value is determined as follows:

CanonicalMatch�r	 s� =
{

1	 if vj ⊆ wj∀j = 1	    	 p	
0	 otherwise�

Conversely, the flexible matching between two BSOs is defined by

FlexMatch � S × S → �0	 1�	

such that:

FlexMatch�r	 s� =
{

1	 if CanonicalMatch�r	 s� = 1	
∈ �0	 1�	 otherwise�

Notice that the flexible matching yields 1 for an exact match.
In Esposito et al. (2000), the definition of flexible matching is based on probability

theory in order to deal with chance and uncertainty. In this way, the result of flexible
matching can be interpreted as the probability of r matching s, provided that a change is
made in s.

More precisely, let

S�r� = �s′ ∈ S�CanonicalMatch�r	 s′� = 1�

be the set of BSOs matched by r. Then the probabilistic view of flexible matching defines
FlexMatch as the maximum conditional probability in S�r�, that is,

FlexMatch�r	 s� = max
s′∈S�r�

P�s�s′� ∀r	 s ∈ S	

where s�s′� is the conjunction of simple BSOs (i.e., elementary events), that is,
s1	    	 sp�s

′
1	    	 s′

p� such that each si�s
′
i� is in the form �Yi = vi���Yi = v′

i��. Then, under
the assumption of conditional independence of the variables Yj , the probability P(s�s′) can
be factorized as

P�s�s′� = ∏
i=1	    	p

P�si�s′� = ∏
i=1	    	p

P�si�s′
1 ∧    ∧ s′

p�	

where P(si�s′) denotes the probability of observing the event si given s′.
Suppose that si is an event in the form [Yi = vi], that is, s describes an individual. If s′

contains the event [Yi = v′
i], P�si�s′� is the probability that while we observed vi, the true

value was v′
i. By assuming that si depends exclusively on s′

i, we can write P�si�s′�=P�si�s′
i�.

This probability is interpreted as the similarity between the events [Yi = vi] and [Yi = v′
i], in

the sense that the more similar they are, the higher the probability:

P�si�s′
i� = P��Yi = vi���Yi = v′

i���

We denote by P the probability distribution of a random variable Y on the domain �i

and �I a distance function such that �I � �i × �i → R. We obtain that

P�si�s′
i� = P��Yi = vi���Yi = v′

i�� = P��I�v
′
j	 Y� ≥ �I�v

′
j	 vj���
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Henceforth, we make some tacit assumptions on the distance �I as well as on the
probability distribution P when they are not specified (Esposito et al., 1991). In particular,
we assume that the distance function �I for continuous-valued variables is the L1 norm,

�I�v	w� = �v − w��

for nominal variables it is the binary distance,

��v	w� =
{

0	 if v = w	
1	 otherwise�

while for ordinal variables it is

�I�v	w� = �ord�v� − ord�w��	

where ord(v) denotes the ordinal number assigned to the value v.
The probability distribution of Yi on the domain �i is assumed to be the uniform

distribution.

Example 8.1. We assume a nominal variable Yi with a set �i of categories and a uniform
distribution of Y on the domain �i. If we use the binary distance, then

P��Yi = vi���Yi = v′
i�� = ��i� − 1

��i�
	

where ��i� denotes the cardinality of �i.

The definition of flexible matching can be generalized to the case of comparing any pair
of BSOs and not necessarily comparing a BSO describing a class with a BSO describing
an individual. In this case, we have that:

FlexMatch�r	 s� = max
s′∈S�r�

∏
i=1	    	p

∑
j=1	    	q

1
q

P�sij�s′
i�	

when q is the number of categories for the variable j in the symbolic object s.

Example 8.2. (Flexible matching between BSOs). Let us consider a pair of BSOs r
(referent of matching) and s (subject of matching) in the form of assertions, such that:

r = �R1 ∈ �yellow	 green	 white�� ∧ �R2 ∈ �Ford	 Fiat	 Mercedes��	

s = �S1 ∈ �yellow	 black�� ∧ �S2 ∈ �Fiat	 Audi��	

such that �1 = {yellow, red, green, white, black} is the domain of both R1 and S1 while
��1� is the cardinality of �1 with ��1 � = 5. Similarly �2 = { Ford, Fiat, Mercedes, Audi,
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Peugeot, Renault} is the domain of both R2 and S2 and ��2� is the cardinality of �2 with
��2� = 6. We build the set Sr as follows:

S�r� = �s′ ∈ S�CanonicalMatch �r	 s′� = 1� = �

s′
1 = �S1 = yellow� ∧ �S2 = Ford��

s′
2 = �S1 = yellow� ∧ �S2 = Fiat��

s′
3 = �S1 = yellow� ∧ �S2 = Mercedes��

s′
4 = �S1 = green� ∧ �S2 = Ford��

s′
5 = �S1 = green� ∧ �S2 = Fiat��

s′
6 = �S1 = green� ∧ �S2 = Mercedes��

s′
7 = �S1 = white� ∧ �S2 = Ford��

s′
8 = �S1 = white� ∧ �S2 = Fiat��

s′
9 = �S1 = white� ∧ �S2 = Mercedes���

When s′ = s1’, we obtain that:

P�s11�s′
11� = P�S1 = yellow�S1 = yellow� = 1	

P�s12�s′
11� = P�S1 = black�S1 = yellow� = ��1� − 1

��i�
= 4

5
	

P�s1�s′
1� = 0�5�P�s11�s′

11� + P�s12�s′
11�� = 9

10
	

P�s21�s′
12� = P�S2 = Fiat�S2 = Ford� = ��2� − 1

��2�
= 5

6
	

P�s22�s′
12� = P�S2 = Audi�S2 = Ford� = ��2� − 1

��2�
= 5

6
	

P�s2�s′
1� = 0�5�P�s21�s′

12� + P�s22�s′
12�� = 5

6
�

Consequently, we have that P�s1�s′
1�×P�s2�s′

1�= 3
4

. This means that FlexMatch�r	 s�≥0�75.

8.6.2 Matching functions for probabilistic symbolic objects

The definition of the flexible matching function given for BSOs can be extended to the case
of PSOs. If rand s are two PSOs, the flexible matching of r (referent of matching) against
s (subject of matching) can be computed as follows:

FlexMatch�r	 s� = max
s′∈S�r�

∏
i=1	    	p

P�s′
i�

∑
j=1	    	q

P�sij�P�sij�s′
i��
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Example 8.3. (Flexible matching between PSOs). Let us consider a pair of PSOs r and s,
such that:

r = �R1 ∈ �yellow�0�2�	 green�0�5�	 white�0�3���

∧ �R2 ∈ �Ford�0�1�	 Fiat�0�5�	 Mercedes�0�4���

s = �S1 ∈ �white�0�6�	 green�0�4��� ∧ �S2 ∈ �Fiat�0�3�	 Audi�0�7���	

such that �1 = {yellow, red, green, white, black} is the domain of both R1 and S1, while
�2 = { Ford, Fiat, Mercedes, Audi, Peugeot, Renault} is the domain of both R2 and S2. We
build the set Sr as follows:

S�r� = �s′ ∈ S�CanonicalMatch�r	 s′� = 1� = �

s′
1 = �S1 = yellow� ∧ �S2 = Ford��

s′
2 = �S1 = yellow� ∧ �S2 = Fiat��

s′
3 = �S1 = yellow� ∧ �S2 = Mercedes��

s′
4 = �S1 = green� ∧ �S2 = Ford��

s′
5 = �S1 = green� ∧ �S2 = Fiat��

s′
6 = �S1 = green� ∧ �S2 = Mercedes��

s′
7 = �S1 = white� ∧ �S2 = Ford��

s′
8 = �S1 = white� ∧ �S2 = Fiat��

s′
9 = �S1 = white� ∧ �S2 = Mercedes���

When s′ = s1’, we obtain that:

P�s11�s′
11� = P�S1 = white�S1 = yellow� = 4

5
	

P�s11� × P�s11�s′
11� = 3

5
× 4

5
= 12

25
	

P�s12�b′
11� = P�S1 = green�S1 = yellow� = 4

5
	

P�s12� × P�s11�s′
11� = 2

5
× 4

5
= 8

25
	

P�s11� × P�s11�s′
11� + P�s12� × P�s11�s′

11� = 12
25

+ 8
25

= 4
5

	

P�s21�s′
12� = P�S2 = Fiat�S2 = Ford� = 5

6
	

P�s21� × P�s21�s′
12� = 3

10
× 5

6
= 1

4
	

P�s22�s′
12� = P�S1 = Audi�S2 = Ford� = 5

6
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Figure 8.6 Setting the matching functions to compute the matching matrix.

P�s22� × P�s22�s′
12� = 7

10
× 5

6
= 35

60
	

P�s21� × P�s21�s′
12� + P�s22� × P�s22�s′

12� = 1
4

+ 35
60

= 5
6

�

Consequently, we have that �P�s′
11�× �P�s11�×P�s11�s′

11�+P�s12�×P�s11�s′
11���× �P�s′

12�×
�P�s21� × P�s21�s′

12� + P�s22� × P�s22�s′
12��� = � 1

5 × 4
5 � × � 1

10 × 5
6 � = 1

75 . This means that
FlexMatch�r	 s� ≥ 1

75 .

Alternatively, the flexible matching of r against s can be performed by comparing each
pair of probabilistic variables Ri and Si, which take values on the same range �i, according
to some non-symmetric function f and aggregating the results by product, that is:

FlexMatch�r	 s� = ∏
i=1	    	p

f�Ri	 Si��

For this purpose, several comparison functions for probability distributions, such as the
KL divergence, the �2 divergence and the Hellinger coefficient (see Section 8.3.2) have
been implemented in the MATCH module. Notice that both the KL divergence and the �2

divergence are two dissimilarity coefficients. Therefore, they are not suitable for computing
matching. However, they may be easily transformed into similarity coefficients by

f�P	Q� = e−x	

where x denotes either the KL divergence value or the �2 divergence value.

AQ1

8.7 Output of MATCH

The MATCH module outputs a new ASSO file that includes both the symbolic data table D
stored in the input ASSO file and the matching matrix M such that M�i	 j� is the (canonical
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or flexible) matching value of the ith SO (referent) against the jth SO (subject) taken from
the input data table. Matching values are computed for each pair of SOs whose descriptions
are stored in the input ASSO file.

In addition, a report file is generated that is a printer-formatted file describing the input
parameters and the matching matrix.

Finally, if a metadata file is associated with the input ASSO file, MATCH updates
metadata by recording both the matching functions and the list of symbolic variables
involved in the computation of the matching function.

8.8 An Application of the MATCH Module

In this section, we describe a case study involving the computation of the matching matrix
from the SOs underlying as assertions the symbolic descriptions stored in enviro.xml. To
this end, we create a new ASSO chain that includes a base block associated to the enviro.xml
file. The running chain is then extended with a new block that is assigned to the MATCH
module.

Before computing the matching matrix, users choose the list of symbolic variables to be
involved in computing matching values, the matching functions to be computed, the name
of the output ASSO file, and so on. Notice that in the current version of Match, users are not
able to select a subset of SOs to be involved in matching computation. Conversely, all the
SOs whose symbolic descriptions are stored in input ASSO file are processed to compute
the matching matrix.

Both the list of variables and the matching functions are set by selecting Parameters  

from the pop-up menu associated with the Match block in the running chain. The list of
symbolic variables taken from the symbolic data table stored in the input ASSO file is shown
in a list box and some statistics (e.g. minimum and maximum or frequency distribution)
can be output for each variable.

Users choose symbolic variables to be considered when computing the matching matrix
of the SOs taken from the enviro data. By default, all variables can be selected by users
without any restriction on the type. However, users may decide to output only a subset of
these variables (e.g. interval variables or probabilistic variables).

In this application, we decide to select all the symbolic variables (13 interval variables
and four probabilistic variables) from the enviro data. This means that the SOs considered
for matching computation are mixed SOs, where the boolean part is separated from the
probabilistic part. The matching values computed when comparing both the boolean and
probabilistic parts are then combined by product (see Figure 9.6).

When all the parameters are set, the matching matrix is built by choosing Run method
from the pop-up menu associated with the MATCH block in the running chain.

If the matching matrix is correctly constructed, then Match produces as output a new
ASSO file (e.g. enviroMatch.sds) that is associated with the current chain and is stored
in the user-defined path and includes both the input symbolic data table and the matching
matrix computed by MATCH.

A report file describing the input parameters (e.g. matching functions or symbolic vari-
ables) and the matching matrix is associated with a new block that is automatically introduced
into the running chain and directly connected to the MATCH block (see Figure 8.7(a)).
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(a) (b)

Figure 8.7 (a) Example of the ASSO chain including the Report block generated by
MATCH and (b) the output of the report on the matching computation performed by
MATCH.

Figure 8.8 Matching matrix computed from the MATCH module on enviro data.

This report can be output as a printer-formatted file by selecting Open   and then View
Result Report   from the pop-up menu associated with the report block (see Figure 8.7(b)).
Alternatively, the report block can be removed from the running chain by selecting Delete
Results   from the pop-up menu.

The matching matrix is stored in the output ASSO file that is associated with the current
chain. Both the enviro symbolic data table and matching matrix are stored in XML format
(see Figure 8.8). Such matching values are involved in the directional comparison of the
SOs extracted from the enviro data in order to identify the set of SOs matched (i.e., covered)
from each fixed SO.

Finally, the metadata file is updated by recording matching measures and symbolic
variables involved in the matching comparison.
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