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Abstract 
 
Symbolic data analysis generalizes some standard statistical data mining 
methods, such as those developed for classification and clustering tasks, to the 
case of symbolic objects (SOs). These objects, informally defined as “aggregated 
data” because they synthesize information concerning a group of individuals of a 
population, ensure confidentiality of original data, nevertheless they pose new 
problems which finds a solution in symbolic data analysis. A by-product of 
working with aggregate data is the possibility of dealing with data from complex 
questionnaires, where multiple answers are possible or constraints among 
different answers exists. Comparing SOs is an important step of symbolic data 
analysis. It can be useful either to cluster some SOs or to discriminate between 
them, or even to order SOs according to their degree of generalization. This 
paper presents a comparative study aiming at evaluating the degree of 
dissimilarity between the objects of a restricted class of symbolic data, namely  
Probabilistic Symbolic Objects. To define a ground truth for the empirical 
evaluation, a data set with understandable and explainable properties has been 
selected. In the experiment, only two dissimilarity measures, among the seven 
ones we have studied, seems to have a more stable behaviour.  
 
1 Symbolic data analysis 
 
Most of statistical data mining techniques are designed for a relatively simple 
situation: the unit for statistical analysis is an individual (e.g., a person or an 
object) described by a well defined set of random variables (either qualitative or 
quantitative), each of which result in just a single value. However, in many 
situations data analysts cannot access the single individuals (first-order objects).  
A typical situation is that of census data, which raise privacy issues in all 



governmental agencies that distribute them. To guarantee that data analysts 
cannot identify an individual or a single business establishment, data are made 
available in aggregate form, such as “the schools attended by students living in a 
given enumeration district or census tract and commuting by train for more than 
one hour per day are in Bredbury and Brinnington”. Aggregated data describe 
more or less homogeneous classes or groups of individuals (second-order 
objects) by means of set-valued or modal variables (for a formal definition see 
[1]). A variable Y defined for all elements k of a set E is termed set-valued with 
the domain Y if it takes its values in P(Y)={U | U � Y }, that is the power set of 
Y. When Y(k) is finite for each k, then Y is called multi-valued. A single-valued 
variable is a special case of set-valued variable for which |Y(k)|=1 for each k. 
When an order relation � is defined on Y then the value returned by a set-valued 
variable can be expressed by an interval [�,�], and Y is termed an interval 
variable. More generally, a modal variable is a set-valued variable with a 
measure or a (frequency, probability or weight) distribution associated to Y(k).   

The description of a class or a group of individuals by means of either set-
valued variables or modal variables is termed symbolic data or symbolic object. 
More specifically a Boolean symbolic object (BSO) is described by set-valued 
variables only, while a probabilistic symbolic object (PSO), which is a specific 
case of modal SO, is described by modal variables with a relative frequency 
distribution associated to each of them.  

A set of symbolic data, which involves the same variables to describe 
different (possibly overlapping) classes of individuals, can be described by a 
single table, called symbolic data table, where rows correspond to distinct 
symbolic data while columns correspond descriptive variables. Symbolic data 
tables are more complex to be analysed than standard data tables, since each item 
at the intersection of a row and a column can be either a finite set of values, or an 
interval or a probability distribution. The main goal of the research area known 
as symbolic data analysis is that of investigating new theoretically sound 
techniques to analyse such tables [2].  

Most of techniques currently developed in symbolic data analysis are 
extensions of statistical methods, where the computation of dissimilarity (or 
conversely, similarity) measures is crucial. Many proposals of dissimilarity 
measures for BSOs have been reported in literature; an extensive review of their 
definitions is reported in  [3], while a preliminary comparative study on their 
suitability to real-world problems is reported in [4]. They have been 
implemented in a software package developed for the three-years ESPRIT 
project SODAS1  (Symbolic Official Data Analysis System), concluded in 
November 1999. The recently started three-years IST project ASSO (Analysis 
System of Symbolic Official Data) (http://www.assoproject.be/) is intended to 
improve the SODAS prototype with respect to several aspects, one of which is 
the extension of dissimilarity measures to PSOs. 

                                                           
1 The SODAS software can be downloaded from: http://www.ceremade.dauphine.fr/~touati/sodas-

pagegarde.htm. 



In this paper a set of dissimilarity measures are proposed for the case of PSOs 
defined by multi-valued variables. Their definitions are based on different 
measures of divergence between two discrete probability distributions, which are 
associated to each Y(k) for some multi-valued variable Y. In Section 2 some 
coefficients measuring the divergence between discrete probability distributions 
are briefly presented, and some dissimilarity measures are defined by 
symmetrizing such coefficients. Possible aggregations of dissimilarity measures 
computed for each multi-valued variable are proposed in Section 3. An empirical 
evaluation of dissimilarity measures between PSOs is reported in Section 4. 
 
2 Comparison functions for discrete probability distributions 
 
Let S be a sample space and Yp

’, Yq
’ two random variables on S with the same 

discrete space Y  (e.g., Y = {0, 1, 2, ...}). Let p(y) and q(y) denote the 
probabilities induced on the point y�Y by the probabilities assigned to outcomes 
of the sample space S through the functions Yp

’ and Yq
’, respectively. The 

induced probabilities for each y�Y define two probability distributions, 
henceforth denoted as P and Q, associated to the two random variables. For 
instance, if S={red, white, black} and both Yp

’ and Yq
’associate red to 0, white to 

1 and black to 2, then Y = {0, 1, 2} and P and Q will be both triples of real 
numbers representing the probabilities (p(0),p(1),p(2)) and (q(0), q(1), q(2)), 
respectively. For the sake of simplicity, in the following we will denote the two 
probability distributions P and Q as follows: P=(red:p(0), white:p(1), black:p(2)) 
and Q=(red:q(0), white:q(1), black:q(2)). For instance, we may have: 
P=(red: 30. , white: 30. , black: 30. ) and Q=(red:0.1, white:0.2, black:0.7).            

Given two discrete probability distributions P and Q, we are interested in 
comparing them. Indeed, if p and q are two rows of a symbolic data table and Y 
is a multi-valued modal variable which contributes to the description of the PSOs 
in the same data table, then each probability distribution may be associated to 
Y(p) and Y(q), respectively. By comparing P and Q we assess the similarity 
between the two SOs p and q  when the variable Y alone describes them. The 
aggregation of partial similarities computed for each variable Yj describing a set 
of SOs will be defined in the next section, while in this section we introduce 
some comparison functions m(P,Q) for probability distributions, most of which 
belongs to the large family of “convex likelihood-ratio expectations” introduced 
by Csiszàr [5], Ali and Silvey [6].  

This family of dissimilarity coefficients is defined as the expected value of a 
continuous convex function � of the likelihood ratio r=p(x)/q(y), EP[�(r)], 
where �(1) = 0. It obeys the discriminating property, according to which the 
measure of divergence between the two discrete events should not decrease for 
any refinement of  both the discrete events and their two distributions [7].  
�� The KL-divergence is a measure of the difference between two probability 

distributions [8]. It is defined as mKL(P,Q):= �y�Y q(y)log(q(y)/p(y)) and 
measures to which extent the distribution P is an approximation of the 



distribution Q or, more precisely, the loss of information if we take P instead 
of Q. Stated differently, this is a measure of divergence of P (the subject)  
from Q (the referent). The KL-divergence is generally greater than zero, and 
it is zero only when the two probability distributions are equal. However, it 
is impossible to define in absolute terms whether Q is a good approximation 
of P by looking at mKL(P,Q). It is asymmetric, that is mKL(P,Q)�mKL(Q,P) in 
general, and it is not defined when p(y)=0. In the special case of p(y)/q(y)=0, 
it is typically set q(y)log(q(y)/p(y))=0. 

�� The �2-divergence defined as m�2(P,Q):=�y�Y |p(y)-q(y)|2/p(y), is strictly 
topologically stronger then KL-divergence since the inequality 
mKL(P,Q)	m�2(P,Q) holds, i.e. the convergence in �2-divergence implies 
convergence in KL-divergence, but the converse is not true [9]. Similarly to 
the KL-divergence, it is asymmetric and is not defined when p(y)=0. 

�� The Hellinger Coefficient is a similarity-like coefficient. It is given by 
m(s)(P,Q):=�y�Y qs(y).p1-s(y) where s is a positive exponent with 0 < s < 1.   
Hellinger’s special case s=½ yields the symmetric coefficient 
mB

(½)(P,Q):=�y�Y (q(y).p(y))½ which has been termed Bhattacharyya 
coefficient [10,11]. This is a well known measure of the similarity 
(correlation) between two arbitrary statistical distributions. It is a sort of 
overlap measure between the two distributions: when their overlap is zero 
(one), they are completely distinguishable (indistinguishable).  
From this similarity-like measure, a dissimilarity coefficient has been 
derived, namely the Chernoff’s distance of the order s defined as  
mC

(s)(P,Q) := -log m(s)(P,Q). Moreover, it is related to KL-divergence 
through its slope at s=0, that is 
mC

(s)(P,Q)/ 
s|s=0=mKL(P,Q), it is smaller 
than mKL(P,Q) and it is less sensitive than the KL-divergence to outlier 
values in Y. In particular a single value y�Y which has a non zero 
probability  Q but zero probability  P, causes mKL(P,Q) to diverge, whereas 
mC

(s) (P,Q) remains finite. Indeed Chernoff’s distance diverges only when 
the two distributions have zero overlap, i.e., the intersection of their support 
is empty [12]. 

The Rènyi’s divergence (or information gain) of order s between two 
probability distributions P and Q is given by mR

(s)(P,Q):=-logm(s)(P,Q)/(s-1). 
This generalized information measure was originally introduced for the 
analysis of memory-less sources. It is noteworthy that, as s�1, the Rènyi’s 
divergence approaches the KL-divergence [13]. 

�� The variation distance, given by m1(P,Q):= �y�Y |p(y)-q(y)|, is also known as 
Manhattan distance for the probability functions p(y) and q(y) and coincides 
with the Hamming distance when all features are binary. Similarly, it is 
possible to use Minkowski’s L2 (or Euclidean) distance given by 
m2(P,Q):=�y�Y |p(y)-q(y)|2 and, more in general, the Minkowski’s Lp 
distance with  p � {1,2,3, …. }. All measures mp(P,Q) satisfy the metric 
properties and in particular the symmetry property. The main difference 



between m1 and mp, p>1, is that the former does not amplify the effect of 
single large differences (outliers). This property can be important when the 
distributions P and Q are estimated from noisy data. 

�� The K–divergence is given by mK(P,Q) := �y�Y q(y)log(q(y)/(½p(y)+½q(y))) 
[14], which is an asymmetric measure. It is closely related to mKL(P,Q) 
through  the following relationship mK(P,Q):=mKL(P,½P+½Q). It has been 
proved that K-divergence is also related to the variation distance m1(P,Q) by 
the  inequality: mK(P,Q)	 m1(P,Q) 	 2. Therefore, the K-divergence is upper 
bounded.  

 
2.1 Symmetrization of non-symmetric coefficients 
Henceforth, the term dissimilarity measure d on a set of objects E refers to a real 
valued function on E×E such that da

*=d(a,a)	d(a,b)=d(b,a)<� for all a,b�E.  
Conversely, a similarity measure s on a set of objects E is a real valued function 
on E×E such that sa

*=s(a,a) s(a,b)=s(b,a)0 for all a,b�E. Generally, da
*= d* 

and sa
*= s* for each object a in E, and more specifically, d* = 1 while s* = 0. 

Studies on their properties can be limited to dissimilarity measures alone, since it 
is always possible to transform a similarity measure into a dissimilarity one with 
the same properties. 

Some of the divergence coefficients defined above do not obey all the 
fundamental axioms that dissimilarities must satisfy. For instance, the KL-
divergence does not satisfy the symmetric property. Nevertheless, a symmetrized 
version, termed J-coefficient (or J-divergence), can be defined as follows 
J(P,Q) := mKL(P,Q) + mKL(Q,P). Alternatively, many authors have defined the J-
divergence as the average rather than the sum J(P,Q):=(mKL(P,Q)+mKL(Q,P))/2. 
Generally speaking, for any (possible) non-symmetric divergence coefficient m 
there exists a symmetrized version  m(P,Q)= m(Q,P) + m(P,Q)  which fulfils all 
axioms for a dissimilarity measure, but typically not the triangle inequality. The 
symmetrized versions of the other coefficients just presented are: 
�� m�2(P,Q) := �y�Y |p(y)-q(y)|2/p(y) + �y�Y |q(y)-p(y)|2/q(y) obtained by 

symmetrizing �2 – divergence; 
�� mC

(s)(P,Q) := -log m(s)(P,Q) – log m(s)(Q,P) obtained by symmetrizing 
Chernoff’s distance; 

�� mR
(s)(P,Q) := log m(s)(P,Q)/(s-1) + log m(s)(Q,P)/(s-1) obtained by 

symmetrizing Rènyi’s distance; 
�� L(P,Q):=�y�Y q(y)log(q(y)/(½p(y)+½q(y)))+�y�Y p(y)log(p(y)/(½p(y)+½q(y))       

obtained by symmetrizing the K – divergence. 
Obviously, in the case of Minkowski’s Lp coefficient, which satisfies the 
properties of a dissimilarity measure and, more precisely of a metric (triangular 
inequality), no symmetrization is required. 

 



3 Dissimilarity measures for probabilistic symbolic objects 
 
Many methods have been reported in the literature to derive dissimilarity 
measures from a matrix of observed data, or, more generally, for a set of BSOs 
[3]. In the following, only some measures proposed for PSOs in the new ASSO 
project are briefly reported. Let a and b be two PSOs:  
a = [Y1�A1] � [Y2�A2] �…� [Yn�An] and b = [Y1�B1] � [Y2�B2] �…� [Yn�Bn]  
where each variable Yj is modal and takes values in the domain Yj  and  Aj , Bj  
are subsets of Yj. A dissimilarity function between a and b can be built by 
aggregating dissimilarity coefficients between probability distributions through 
the generalized and weighted Minkowski’s metric:  
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where, �k � {1, …, n},  ck>0  are weights with �k=1..n ck=1 and, by setting P=Ak  
and Q=Bk, m(P,Q) is a dissimilarity coefficient between probability distributions. 

Alternatively, the dissimilarity coefficients can be aggregated through the 
product. Therefore, by adopting appropriate precautions and considering only the 
Minkowski’s Lp distance, we obtain the following normalized dissimilarity 
measure between PSOs: 
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where each yi  corresponds to a  value of the i-th variable domain.  
Note that this dissimilarity measure is symmetric and normalized in [0,1]. 

Obviously d'p(a,b) = 0 if a and b are identical and  d'p(a,b) = 1 if the two objects 
are completely different.  
 
4 Experimental  evaluation 
 
In the Section 2, several dissimilarity measures between PSOs  have been 
proposed. They have never been compared in order to understand both their 
common properties and their differences. In this section, an empirical evaluation 
is reported with reference to the “Abalone Database”, available at the UCI 
Machine Learning Repository (http://www.ics.uci.edu/~mlearn/MLRepository.html). 
The database contains 4,177 cases of marine crustaceans, which are described by 
means of the nine attributes, namely sex (nominal), length (continuous), diameter 
(continuous), height (continuous), whole weight (continuous), shucked weight 
(continuous), viscera weight (continuous), shell weight (continuous), and number 
of rings (integer). The age in years of an abalone can be obtained by adding 1.5 
to the number of rings. Generally this data set is used for prediction tasks, where 



the number of rings is the target attribute. The number of rings varies between 1 
and 29 and we expect that two abalones with the same number of rings should 
also present similar values for the independent attributes sex, length, diameter, 
height, and so on. In other words, the degree of dissimilarity between 
crustaceans computed on the independent attributes should be proportional to 
the dissimilarity in the dependent attribute (i.e., the difference in the number of 
rings). This property is called monotonic increasing dissimilarity (MID). 

The experimental evaluation has been performed through three different 
steps. Firstly, the continuous attributes have been discretized2 since the proposed 
dissimilarity measures must be computed only on modal symbolic variables. 
Secondly, abalone data have been aggregated into symbolic objects, each of 
which corresponds to a range of values for the number of rings. In particular, 
nine PSOs have been generated by means of the DB2SO tool [15]. Thirdly, the 
dissimilarity measures presented in Section 2 have been applied to these PSOs. 

Since the computation of some dissimilarity coefficients is indeterminate 
when a distribution has a zero-valued probability for some categories, the KT-
estimate has been used to estimate the probability distribution. This estimate is 
based on the idea that no category of a modal symbolic variable in a PSO can be 
associated with a zero probability. Indeed, the KT-estimate is the following: 
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where y is the category of the modal symbolic variable, {R1,…,RM} are set of 
aggregated individuals, M is the number of individual in the class, and K is the 
number of categories of the modal symbolic variable. 

By ordering the nine PSOs in ascending order with respect to the number of 
rings, the MID property can be formally expressed by a Robinsonian 
dissimilarity matrix D=(dkl)k,l=1,…,9 between PSOs such that dissimilarities dkl 
increases when k and l moves away from the diagonal (with k=l). In this work, 
we are interested to understand which dissimilarity measures defined for PSOs 
returns (an approximation of) a Robinsonian dissimilarity matrix [16]. 

Two classes of dissimilarity measures have been considered, namely the 
generalized Minkowski’s measure for PSOs (PU_1) combined with one of the 
following comparison functions: 
�� J: J-coefficient  
�� CHI2 : �2 – divergence 
�� REN: Rènyi’s distance 
�� CHER: Chernoff’s distance 
�� LP: Minkowski’s Lp distance 
�� L: L divergence 
and the normalized distance function derived by aggregating Lp coefficient 

                                                           
2 For this process we used the Weka data mining software (http://www.cs.waikato.ac.nz/ml/weka/), which 
implements the entropy-based discretization method.  
 



(PU_2). The experimental results have been obtained setting the value of the 
parameter s to 0.5, the order of power q to 2, the value of the parameter p to 2 
and weights to uniform distribution.  

Results are shown in Figure 1. Dissimilarities are reported along the vertical 
axis, while PSOs are listed along the horizontal one, in ascending order with 
respect to the number of rings. Each line represents the dissimilarity between a 
given PSO and the subsequent PSOs in the sorted list.  

In [4] the same data set has been used for a comparative study of dissimilarity 
measures between BSOs. In that case, only some dissimilarity measures 
generated an approximate Robinsonian dissimilarity matrix. This result was 
partly expected due to the loss on information of the distribution of values when 
BSOs are generated. Surprisingly, similar results are also reported in the case of 
PSOs. In particular the dissimilarity matrix has no approximate Robinsonian 
value distribution in the case of the generalized Minkowski’s measure (PU_1) 
combined with the comparison functions J, CHI2, REN, CHER, and LP. In these 
cases, the most atypical objects are PSO1 and PSO2. In fact, PSO1 and PSO7 are 
more similar than PSO1 and PSO2, as well PSO2 is more similar to PSO8 than 
PSO3. By combining PU_1 with REN and CHER coefficients, the dissimilarity 
measures show a similar behaviour. This is due to the fact that the formulation of 
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Fig. 1 Graphs of six dissimilarity 
measures in Abalone data. 



both coefficients derives from the Hellinger coefficient. When the dissimilarity 
measure is computed by means of the PU_1 aggregated with L divergence, it has 
a better Robinsonian approximation. Indeed, PSO4 seems to be the only slightly 
atypical object, since the dissimilarity between PSO2 or PSO3 and PSO4 is 
higher that the dissimilarity PSO2 or PSO3 and PSO5. Finally, the Robinsonian 
approximation also holds for PU_2. In this case all PSOs are totally dissimilar, 
since d'2(PSOi , PSOj) ! 1, for each i�j.  
 

5 Conclusions 
 
In symbolic data analysis a key role is played by the computation of dissimilarity 
measures. Many measures have been proposed in the literature, although a 
comparison that investigates their applicability to real data has never been 
reported. The main difficulty was due to the lack of a standard in the 
representation of SOs and the necessity of implementing many dissimilarity 
measures. The software produced by the ESPRIT Project ASSO has partially 
solved this problem by defining a suite of modules that enable the generation, 
visualization and manipulation of SOs.  

In this work, a comparative study of the dissimilarity measures for PSOs is 
reported with reference to a particular data set for which an expected property 
could be defined. Interestingly enough, such a property has been observed only 
for some dissimilarity measures, which show very different behaviours. A more 
extensive experimentation is planned to confirm these initial observations. 
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