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a b s t r a c t

Transduction is an inference mechanism adopted from several classification algorithms capable of

exploiting both labeled and unlabeled data and making the prediction for the given set of unlabeled

data only. Several transductive learning methods have been proposed in the literature to learn

transductive classifiers from examples represented as rows of a classical double-entry table (or

relational table). In this work we consider the case of examples represented as a set of multiple tables of

a relational database and we propose a new relational classification algorithm, named TRANSC, that

works in a transductive setting and employs a probabilistic approach to classification. Knowledge on the

data model, i.e., foreign keys, is used to guide the search process. The transductive learning strategy

iterates on a k-NN based re-classification of labeled and unlabeled examples, in order to identify

borderline examples, and uses the relational probabilistic classifier Mr-SBC to bootstrap the

transductive algorithm. Experimental results confirm that TRANSC outperforms its inductive counter-

part (Mr-SBC).

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

During recent years, there has been a growing interest in
learning algorithms capable of utilizing both labeled and
unlabeled data for prediction tasks, such as classification. The
reason for this attention is the cost of assigning labels which can
be very high for large datasets. Two main settings have been
proposed in the literature to exploit information contained in both
labeled and unlabeled data: the semi-supervised setting and the
transductive setting (Seeger, 2000). The former is a type of
inductive learning, since the learned function is used to make
predictions on any possible example. The latter asks for less—it is
only interested in making predictions for the given set of
unlabeled data. Since transduction needs no general hypothesis,
it appears to be an easier problem than (semi-supervised)
induction and it is likely to become much more popular in the
future.

Several transductive learning methods have been proposed in
the literature for support vector machines (Bennett, 1999;
Gammerman et al., 1998; Joachims, 1999; Chen et al., 2003), for
k-NN classifiers (Joachims, 2003) and even for general classifiers
(Kukar and Kononenko, 2002). However, all of these transductive
learning algorithms assume (un)labeled input examples are
represented as rows of a classical double-entry table (or database

relation), whose columns correspond to elementary (nominal,
ordinal or numeric) single-valued attributes. This tabular repre-
sentation of data, also known as propositional or feature-vector

representation, turns out to be too restrictive for several
applications, whose units of analysis have quite a complex
structure, composed of several related objects with different
properties. These units of analysis can be naturally modeled as a
set of tables T1; . . . ; Tn, such that each table Ti describes a specific
type of objects involved in the units of analysis, while foreign key
constraints explicitly model relationships between objects. Units
analyzed by spatial data mining algorithms provide us with a clear
example of such complex structures: objects of different types are
organized in separate layers, i.e., database relations with their own
distinct sets of attributes (including a geometry attribute), and
locational properties of objects implicitly define several spatial
relationships (e.g., topological).

To analyze these complex units of analysis, several (multi-)
relational data mining (MRDM) methods have been reported in the
literature (Džeroski and Lavrač, 2001). They can be applied
directly to data distributed over several relations to find relational
patterns which involve multiple relations. Relational patterns can
be expressed not only in SQL, but also in first order logic (or
predicate calculus), which explains why many MRDM algorithms
originate from the field of inductive logic programming (ILP)
(Muggleton, 1992; De Raedt, 1992; Lavrač and Džeroski, 1994).

Two MRDM methods have been reported in the literature for
prediction in a transductive setting. Krogel and Scheffer (2004)
investigate a transformation (known as propositionalization) of a
relational description of gene interaction data into a classical
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double-entry table, and then study transduction with the well-
known transductive support vector machines. Therefore, trans-
duction is not explicitly investigated on relational representations
and it is based on propositionalization, which is fraught with
many difficulties in practice (De Raedt, 1998; Getoor, 2001). Taskar
et al. (2001) build, on the framework of Probabilistic Relational
Models, a generative probabilistic model that captures interac-
tions between examples, some of which have class labels, while
others do not. However, given sufficient data, a discriminative
model generally provides significant improvements in classifica-
tion accuracy over generative models (Vapnik, 1995). Therefore,
we intend this work to be a further step toward the investigation
of methods which originate from the intersection of these two
promising research areas, namely transduction and relational data
mining. In particular, by developing transductive classification
algorithms which work on relational data and are based on a
discriminative model, we aim to extend the benefits of using
unlabeled data to a wide range of applications characterized by
complex units of analysis.

A further motivation for this study is related to the contiguity
of two important concepts which characterize studies on
transductive learning and relational learning, namely the smooth-

ness assumption and the relational correlation. The former is typical
of semi-supervised learning and refers to the fact that if two
points x1 and x2 in a high-density region are close, then the
corresponding outputs y1 and y2 should also be so (Chapelle et al.,
2006a). Although still debated, this assumption seems to be
fundamental also in the transductive setting (Chapelle et al.,
2006b). In relational learning, relational autocorrelation refers to
the fact that the values of a given attribute are highly uniform
among objects that share a common neighbor. As reported in
Jensen and Neville (2002), a high relational autocorrelation seems
to characterize several relational learning problems reported in
the literature. Our intuition is that when a high relational
autocorrelation affects the dependent variable, the semi-super-
vised smoothness assumption is likely to hold and the transduc-
tive setting can return better results than the inductive setting.
This intuition is clearer in spatial domains, where closeness of
points corresponds to a spatial distance measure and relational
autocorrelation is a manifestation of the (positive) spatial auto-
correlation. To corroborate our insight we observe the interesting
convergence of two opinions: transduction is most useful when the
standard i.i.d. assumption is violated (Chapelle et al., 2006a), and
statistical independence of examples is contradicted by many
relational datasets (Jensen and Neville, 2002).

Upgrading transductive classification algorithms devised for
double-entry tabular data to multi-relational data is not a trivial
task. First, we have to choose a strategy for the classification of
unlabeled data and make it suitable for relational data. Second, we
have to choose a classifier which can handle relational data and is
based on a discriminative model. Third, we have to define a
distance measure between examples described by several rela-
tions. Solutions to these issues are described in the following
sections. They have been implemented in a new relational
classification algorithm, named TRANSC (TRANsductive Structural
Classifier), which exploits knowledge on the data model, namely
foreign keys, to guide the search process. TRANSC works in a
transductive setting and employs a probabilistic approach to
classification. Information on the potential uncertainty of classi-
fication conveyed by probabilistic inference is useful when small
changes in the attribute values of a test case may result in sudden
changes of the classification. It is also useful when missing (or
imprecise) information may prevent a new object from being
classified at all.

This paper presents an extension of the preliminary work
reported in Ceci et al. (2007). It is organized as follows. In the next

section, the transductive learning strategy is described. It is based
on an iterative k-NN based re-classification of training and
working examples which aims at identifying ‘‘borderline’’ exam-
ples, i.e., examples for which the classification is more uncertain.
The relational probabilistic classifier used to bootstrap the
transductive algorithm is presented in Section 3, while the
relational dissimilarity measure used for k-NN is defined in
Section 4. A theoretical analysis of the computational complexity
of TRANSC is reported in Section 5. Experimental results are
reported and discussed in Section 6. Finally, Section 7 concludes
and presents ideas for further work.

2. The transductive learning strategy

Let D be a dataset labeled according to an unknown target
function, whose range is a finite set Y ¼ fC1;C2; . . . ;CLg. Observa-
tions in D are described by a set of attributes X and by the
attribute Y. The transductive classification problem is formalized
as follows:

Input:

� a training set TS � D, and
� the projection of the working set WS ¼ D� TS on X.

Output: a prediction of the class value of each example in the
working set WS which is as accurate as possible.

The learner receives full information (including labels) on the
examples in TS and partial information (without labels) on the
examples in WS and is required to predict the class values only of
the examples in WS. The original formulation of the problem of
function estimation in a transductive (distribution-free) setting
requires TS to be sampled from D without replacement. This
means that, unlike the standard inductive setting, the examples in
the training (and working) set are supposed to be mutually
dependent. Vapnik also introduced a second (distributional)
transduction setting, in which the learner receives training and
working sets, which are assumed to be drawn i.i.d. from some
unknown distribution. As shown in Vapnik (1998, Theorem 8.1),
error bounds for learning algorithms in the distribution-free
setting also apply to the more popular distributional transductive
setting. Therefore, in this work we focus our attention on the first
setting.

In the case of relational data, the problem of transductive
classification can be more precisely formulated as follows:

Given:

� a database schema S which consists of a set of h relational
tables fT0; . . . ; Th�1g, a set PK of primary keys on the tables in S,
and a set FK of foreign key constraints on the tables in S;
� a target relation T 2 S and a target discrete attribute Y in T,

different from the primary key of T, whose domain is the finite
set fC1;C2; . . . ;CLg;
� the projection T 0 of T on all attributes of T except Y;
� a training (working) set that is an instance TS (WS) of the

database schema S with known (unknown) values for Y.

Find: the most accurate prediction of Y for examples in WS.
This problem is solved by TRANSC by accessing both the full

representation of examples in the training set (T and its joined
tables) and the partial representation of examples in the working
set (T 0 and its joined tables). Indeed, an example in TS (WS) is
represented as one tuple t 2 TS:T (t 2WS:T 0) and all tuples related
to t in TS (WS) according to FK.
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In keeping with the main idea expressed in Joachims (1999),
we iteratively refine the classification by changing the class of
‘‘borderline’’ training and working examples, i.e., of those
examples whose classification is more uncertain. We propose an
algorithm (see Algorithm 1) which starts with a given classifica-
tion and, at each iteration, alternates a step during which
examples are re-classified and a step during which the class of
borderline examples is changed.

The initial classification of E 2WS [ TS is obtained according to
the classification function preclass defined as follows:

preclassðEÞ ¼
classðEÞ if E 2 TS;

BayesianClassificationðEÞ if E 2WS;

(

where BayesianClassification(E) is the initial probabilistic classi-
fier built from the training set TS (see next section).

The examples are then re-classified by means of a version of
the k-NN algorithm (Mitchell, 1997), tailored for transductive
inference in MRDM. The idea is to classify each example E 2

fTS [WSg on the basis of a k-sized neighborhood NkðEÞ ¼

fE1; . . . ; Ekg, consisting of the k examples of TS [WS closest to E

with respect to a dissimilarity measure d. This is obtained by
estimating the L-dimensional class probability vector associated
to the example E, i.e., y0 ¼ ðy1ðEÞ; . . . ; yLðEÞÞ, where yiðEÞ ¼

PðclassðEÞ ¼ CiÞ, PðclassðEÞ ¼ CiÞX0 for each i ¼ 1; . . . ; L, andP
i¼1;...;L PðclassðEÞ ¼ CiÞ ¼ 1. More precisely, each PðclassðEÞ ¼ CiÞ

is estimated as follows:

PðclassðEÞ ¼ CiÞ ¼
jfEj 2 NkðEÞjCEj

¼ Cigj

k
, (1)

where CEj
is the class value associated to Ej at the previous step (at

the first step, CEj
is the class label returned by preclassðEjÞ). It

should be noted that PðclassðEÞ ¼ CiÞ is estimated according to the
transductive inference principle, as both training and working
examples are taken into account in the process.

The changeClass procedure is in charge of changing the
classification of the borderline examples. Unlike what was
proposed in Joachims (1999), where examples on the border are
identified by means of support vectors, we consider the examples
for which the entropy of the decision made by the classifier is
maximum. The entropy for each example E is computed from the
probabilities associated with each class Ci:

EntropyðEÞ ¼ �
X

i¼1;...;L

PðclassðEÞ ¼ CiÞ � logðPðclassðEÞ ¼ CiÞÞ. (2)

The examples are ordered according to the entropy function and
the class label of at most the first k examples, having
EntropyðEÞ4MINENTROPY, is changed. In particular, each selected
example E is assigned the most likely class Ci for E among those
remaining after the old class of E has been excluded. The threshold
k is the same used for k-NN and is necessary in order to avoid

changing the class of several examples that would lead to
erroneously changing the class of entire ‘‘clusters’’.

Two distinct stopping criteria are used. The first criterion stops
the execution of the algorithm when the maximum number of
iterations (MAX_ITERS) is reached. This guarantees the termina-
tion of the algorithm. In any case, our experiments showed that
this criterion is rarely attained when the parameter MAX_ITERS is
as small as 10. The second criterion stops execution when a cycle

processes the same examples as the previous one. For this
purpose, the overlap between two sets of examples is determined.
The computeOverlap function returns the ratio between the
cardinality of the intersection between the sets of examples and
that of their union.

3. The relational probabilistic classifier

The initial classification of examples in the working set is
based on a probabilistic classifier, named Mr-SBC (Ceci et al.,
2003), which upgrades the classical naı̈ve Bayes classifier
(Domingos and Pazzani, 1997) to multi-relational data. Given an
example E, a classical naı̈ve Bayes classifier assigns E to the class Ci

that maximizes the posterior probability PðCijEÞ. By applying the
Bayes theorem, PðCijEÞ is expressed as follows:

PðCijEÞ ¼
PðCiÞPðEjCiÞ

PðEÞ
. (3)

Since PðEÞ is independent of the class Ci, it does not affect the
classification, therefore PðCijEÞ / PðCiÞPðEjCiÞ.

The basic idea in Mr-SBC is that of constructing a set of
relational patterns (first order definite clauses) R to describe the
example E, and then using R to define a suitable decomposition of
the likelihood PðEjCiÞ à la naı̈ve Bayesian classifier to simplify the
probability estimation problem.

The construction of a first order definite clause to be included
in R is based on the notion of a foreign key path, which is an
ordered sequence of tables W ¼ fTi1 ; Ti2 ; . . . Tis g, such that Tij 2 S

(j ¼ 1 . . . s). In its original version, Mr-SBC considers only foreign
key paths W, where each table Tij has a foreign key to table Tij�1

(j ¼ 2; . . . ; s). In this work, we generalize the definition of foreign
key path, in order to take into account the case that a foreign key
can be from table Tij to table Tij�1

or vice versa.
To formally define the set of first order definite clauses R, some

definitions have to be introduced.

Definition 1 (Structural predicate). A binary predicate p is a
structural predicate associated to the pair of tables hTi; Tji 2 S if
a foreign key in Ti exists which references a table Tj 2 S, or vice
versa. The first argument of p represents the primary key of Tj

and the second argument represents the primary key of Ti, or
vice versa.

ARTICLE IN PRESS

Algorithm 1. Top level transductive algorithm description
1: transductiveClassifier(initialClassification, TS, WS)
2: classification1 initialClassification;
3: changedExamples f;
4: i 0;
5: repeat
6: prevClassification classification1;
7: prevChangedExamples changedExamples;
8: classification2 reclassifyExamplesKNN(classification1, TS, WS);
9: ðclassification1, changedExamples) changeClass(classification2);
10: until (ðþ þ iXMAX_ITERSÞ OR ðcomputeOverlapðprevChangedExamples,changedExamplesÞXMAXOVERLAPÞ)
11: return prevClassification
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Definition 2 (Property predicate). A binary predicate p is a
property predicate associated to a table Ti 2 S and an attribute
Att of Ti if the first argument of p represents the primary key of Ti

and the second argument represents a value observed for Att in Ti.
The attribute Att is neither the primary key of Ti nor a foreign key
in Ti.

Hence, we can formally define a first order definite clause to be
associated to a foreign key path as follows:

Definition 3 (First order definite clause based on a foreign key

path). A first order definite clause associated to the foreign key
path W is a clause in the form:

p0ðA1; yÞ  p1ðA1;A2Þ; p2ðA2;A3Þ; . . . ; ps�1ðAs�1;AsÞ; psðAs; cÞ

or

p0ðA1; yÞ  p1ðA1;A2Þ; p2ðA2;A3Þ; . . . ; ps�1ðAs�1;AsÞ,

where

(1) p0 is a property predicate associated to both the target table T

and the target attribute Y.
(2) W ¼ fTi1 ; . . . ; Tis�1

g is a foreign key path such that for each
k ¼ 1; . . . ; s� 1: pk is a structural predicate associated to the
pair of tables hTik�1

; Tik i of W. p1 is associated to the target table
T and table Ti1 of W.

(3) ps is an optional property predicate associated to both table
Tis�1

and an attribute Att of Tis�1
.

Mr-SBC constructs R by searching the first order definite
clauses Ri based on a foreign key path W, such that the antecedent
of Ri covers at least one training example E. This means that given
the first order definite clause Ri defined as follows:

Ri : p0ðA1; yÞ  pi1
ðA1;A2Þ; pi2

ðA2;A3Þ,

. . . ; pis�1
ðAs�1;XsÞ; pis ðAs; cÞ,

Ri is introduced in R if a training example E and a substitution y
exist, such that

fpi1
ðA1;A2Þ;pi2

ðA2;A3Þ; . . . ; pis�1
ðAs�1;XsÞ; pis ðAs; cÞgy � E.

The length of the foreign key path W is less than or equal to a user-
defined maximum length (MAX_LENGTH_PATH). The property
predicate pis is associated to either a discrete attribute or a
continuous attribute Att of the table Tis�1

. In the former case, pis

checks a condition in the form ‘‘Att ¼ v’’, where v is a value in the
range of Att, while in the latter case, pis checks a condition in the
form ‘‘Att 2 ½v1; v2�’’, where ½v1; v2� is a bin obtained by means of a
discretization of Att based on an equal-width strategy. Indeed, a
continuous attribute is discretized into Nb bins, where Nb is a
user-defined parameter.

If RðEÞ � R is the set of first order definite clauses, whose
antecedent covers the example E, then the probability PðEjCiÞ is
defined as

PðEjCiÞ ¼ P
^

Rj2RðEÞ

antecedentðRjÞ

������Ci

0
@

1
A. (4)

The straightforward application of the naı̈ve Bayes independence
assumption to all literals in

V
Rj2RðEÞ

antecedentðRjÞ is not correct,
since it may lead to underestimating PðEjCiÞ when several similar
clauses in RðEÞ are considered for the class Ci. Therefore, in this
study, we employ a less biased procedure for the computation of
the probabilities in Eq. (4), namely that adopted in the multi-
relational naı̈ve Bayesian classifier Mr-SBC (Ceci et al., 2003).

4. The relational dissimilarity measure

The re-classification of training and working examples is based
on a dissimilarity measure d. The classical k-NN method assumes
that examples correspond to points in the m-dimensional space
Rm and the nearest neighbors of the example to classify are
defined in terms of the standard Euclidean distance. However, in
our multi-relational transductive formulation, examples cannot
be associated to points of Rm. This motivates the need for a
different notion of a distance (dissimilarity) measure that applies
to relational data.

TRANSC computes the dissimilarity between each pair of
examples E1 and E2 by first converting the first order definite
clauses, discovered by Mr-SBC, into a set of Boolean features
and then using these features as input of some propositional
dissimilarity measure.

The set of first order definite clauses extracted by Mr-SBC
should be transformed before converting into Boolean
features. This transformation involves only the first order
definite clauses Ri 2 R, whose property predicate pis is defined
on a continuous attribute Att. In this case, pis models the
condition Tis�1

:Att 2 ½v1; v2�. However, this representation may
cause information loss on the order relation of continuous
values. To overcome this problem, we follow the idea formulated
in Esposito et al. (2000) and transform the rule Ri into R0i, such
that:

(1) p0ij ¼ pij
, for each j ¼ 0; . . . ; s� 1, while

(2) the property predicate p0is expresses the condition Tis�1
:Attpv2.

The advantage of R0i with respect to Ri is that R0i models as closer
two examples E1 and E2, whose Att values belong to two
consecutive bins, rather than two examples, whose Att values
belong to distant bins.

Once the new set R0 ¼ fR0ig is constructed, Boolean features are
derived from R0, in order to represent examples by means of a
single relational table V. This is a form of propositionalization
(Krogel et al., 2003) which allows us to use dissimilarity measures
defined for classical propositional representations. The schema of
V includes jR0j attributes, that is, V1; . . . ;V jR0 j: one attribute Vi for
each first order definite clause R0i. Each row of V corresponds to an
example E 2 fTS [WSg. If the antecedent of the first order clause
R0i covers E, then the i-th value of the row in V corresponding to E is
set to true, false otherwise.

Example 1. Let us consider the example E:

mutagenecityðm; yesÞ; logpðm; trueÞ; atomðm; a1Þ; atomðm; a2Þ,

atomðm; a3Þ; chargeða1;0:2Þ; chargeða2;0:7Þ; . . . ,

which describes a molecule m in terms of the ‘‘logP’’ property and
the ‘‘mutagenicity’’ degree. The molecule is composed of one or
more atoms and each atom is described by the ‘‘charge’’. This
relational description of m can be converted into the Boolean
vector (true, false), if R ¼ fR1;R2g, where

R1 : molecule_mutagenecityðM; trueÞ

 atomðM;AÞ; chargeðA; ½0:5;0:8�Þ,

R2 : molecule_mutagenecityðM; falseÞ  logpðM; falseÞ.

Indeed, there is a substitution y ¼ fM m;A a2g, such that
antecedentðR1Þy � E, while there is no substitution y, such that
antecedentðR2Þy � E.

Finally, the similarity between the pair of examples E1 and E2

can be computed by means of the Kendall, Sokal–Michener
similarity measure (Esposito et al., 2000), computed on their
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feature vector representation VðE1Þ and VðE2Þ stored in V, that is:

sðE1; E2Þ ¼
cardinalityðVðE1Þ XNOR VðE2ÞÞ

jR0j
, (5)

where cardinalityð�Þ returns the number of true values occurring
in the Boolean vector describing the example in V. The similarity
coefficient computed in Eq. (5) takes values in the unit interval:
sðE1; E2Þ ¼ 1, if the two vectors match perfectly, while sðE1; E2Þ ¼ 0,
if the two vectors are orthogonal. The dissimilarity between the
pair of examples hE1;E2i is then computed as

dðE1; E2Þ ¼ 1� sðE1; E2Þ. (6)

5. Learning complexity

The time complexity of the TRANSC strongly depends on the
number of rules (jRj) learned by Mr-SBC and the maximum
number of literals in a single rule (MAX_LENGTH_PATH). In
particular, the construction of the V table is preliminar to the
execution of Algorithm 1 and, in the worst case, its time
complexity is

Oð ap
TW|{z}

joins cost

�jRjÞ, (7)

where

� p ¼MAX_LENGTH_PATH;
� aTW is the number of tuples in a single table of TS [WS (for

simplicity, we suppose that all tables have the same number of
tuples).1

The time complexity of Algorithm 1 is

O aTW � aTW � jRj|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
reclassifyExamplesKNN

þ aTW � L|fflfflffl{zfflfflffl}
changeClass

0
B@

1
CA �MAX_ITERS

0
B@

1
CA

¼ Oða2
TW � jRjÞ, (8)

where L is the number of classes.
By combining (8) and (7), the complexity of TRANSC is

OðMr-SBC_complexityþ ap
TW � jRjÞ, (9)

under the reasonable condition that MAX_LENGTH_PATHX2
(pX2).

It can be proved that, in the worst case, the time complexity of
Mr-SBC is

Oðap
TS � L � b

ðp�1Þ
� s � vÞ, (10)

where

� aTS is the number of tuples in a single relational table of TS (for
simplicity, we suppose that aTS is constant),
� b is the number of tables directly related to a table by means of

foreign keys (for simplicity, we suppose that b is constant),
� s is the number of attributes per table (for simplicity, we

suppose that s is constant),
� v is the number of distinct values per attribute (for simplicity,

we suppose that v is constant).

Since jRj in the worst case is jRj ¼ L � bðp�1Þ
� s � v, we have that the

complexity of TRANSC increases the complexity of Mr-SBC of a
factor ðaTW=aTSÞ

p.

6. Experiments

An empirical evaluation of our algorithm was carried out on
both the Mutagenesis dataset, which has been used to test several
MRDM algorithms, and on two real-world spatial data collections
concerning North West England (NWE) Census Data and Munich
Census Data, respectively.

We compared the performance of TRANSC to that of Mr-SBC in
order to identify the advantages of employing a transductive
reformulation of the problem of relational probabilistic classifica-
tion in real-world applications, where few labeled examples are
available and manual annotation is fairly expensive.

The two algorithms are compared on the basis of the average
misclassification error on the same M-fold cross-validation (CV) of
each dataset. For each dataset, the target table is first divided into
M blocks of nearly equal size and then a subset of tuples related to
the tuples of the target table block is extracted by means of
foreign key constraints. In this way, M database examples are
created. For each trial, both TRANSC and Mr-SBC are trained on a
single database instance and tested on the hold-out M � 1
database instances, forming the working set. It should be noted
that the error rates reported in this work are significantly higher
than those reported in other literature (Ceci et al., 2003; Ceci and
Appice, 2006) because of this peculiar experimental design.
Indeed, unlike the standard CV approach, here one fold at a time
is set aside to be used as the training set (and not as the test set).
Small training set sizes allow us to validate the transductive
approach, but result in high error rates as well.

Since the performance of the transductive classifier TRANSC
may vary significantly, depending on the size (k) of the neighbor-
hood used to predict the class value of each working example,
experiments for different k values are performed in order to set
the optimal value. In theory, we should experiment with each
value of k ranging in the interval ½1;N�, where N ¼ jTS:Tj þ jWS:T 0j.
However, as observed in Wettschereck (1994), it is not necessary
to consider all possible values of k during CV to obtain the best
performance. This can be well approximated by means of CV on
no more than about 10 values of k. A similar consideration has
also been reported in Gora and Wojna (2002), where it is shown
that the search for the optimal k can be substantially reduced
from ½1;N� to ½1;

ffiffiffiffi
N
p
�, without too much inaccuracy in the

approximation. Hence, we have decided to consider in our
experiments only k 2 fZiji ¼ 1; . . . ;qg, where Z ¼

ffiffiffiffi
N
p

=q is the step
value and q is the number of steps.

Classifiers mined in all experiments in this study are obtained
by setting the following parameters:

� MAX_LENGTH_PATH ¼ 3, coherently with the length of sen-
sible foreign key paths in the selected databases;
� MAX_ITERS ¼ 10, since experiments showed that the number

of iterations is almost always less than 10;
� MINENTROPY ¼ 0:65, since all the experiments are performed

on two-class problems for which entropy varies in the unit
interval;
� MAXOVERLAP ¼ 0:5, since it is the middle value of the range of

possible values ½0;1�;
� q ¼ 5, since no more than approximately 10 values of k are

necessary.

6.1. Benchmark relational data application

The Mutagenesis dataset concerns the problem of identifying
some mutagenic compounds. We have considered, similarly to
most experiments on data mining algorithms reported in
literature, the ‘‘regression friendly’’ dataset consisting of 188
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1 For the sake of notational simplicity, we assume that TW ¼ TS [WS is an

instance of the database schema S, built by taking the union of the corresponding

tables in TS and WS.
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molecules. A study on this dataset (Srinivasan et al., 1999) has
identified five levels of background knowledge. Each subset is
constructed by augmenting a previous subset and provides richer
descriptions of the examples. Table 1 shows the first three sets of
background knowledge, the ones we have used in our experi-
ments, where BKi � BKiþ1 for i ¼ 0;1. The larger the background
knowledge set, the more complex the learning problem. Experi-
ments are run according to the 10-fold CV framework (M ¼ 10).

The predictive accuracy of TRANSC was measured by consider-
ing the values k 2 f2;5;8;10;13g. For each setting BKi (i ¼ 0;1;2),
the average misclassification error of both TRANSC and Mr-SBC is
reported in Table 2.

Results clearly show that TRANSC performs better than Mr-SBC
in all settings. This is more evident for the most complex setting
(BK2). Another observation concerns the sensitivity of results to
the k value. In particular, it can be noted that accuracy increases
with high values of k, but at the same time accuracy decreases
when k approximates

ffiffiffiffi
N
p

. In addition, the accuracy is also affected
by the number of bins in the Mr-SBC discretization. From Table 3
we can observe that better performances of TRANSC and Mr-SBC
are obtained for Nb ¼ 10 and 15 when discretization permits a
good compromise between specificity and generality. However, it
is interesting to notice that the percentage of error reduction of
TRANSC increases with Nb ¼ 20. This means that TRANSC is less
sensitive to discretization than Mr-SBC. This is probably due to a
flattening of probabilities in Mr-SBC when intervals are small and
attribute values do not permit discrimination between classes.

6.2. Spatial data applications

We have also tested TRANSC on two different spatial data
collections, that is, the NWE Census Data and the Munich Census
Data.

The NWE Census Data are obtained from both census and
digital map data provided by the European project SPIN!.2 These
data concern Greater Manchester, one of the five counties of NWE.
Greater Manchester is divided into 10 metropolitan districts, each
of which is in turn divided into censual sections (wards), for a
total of 214 wards. Census data are available at ward level and
provide socio-economic statistics (e.g., mortality rate—the per-
centage rate of deaths with respect to the number of inhabitants)
as well as some measures of the deprivation of each ward
according to information provided by the Census, combined into
single index scores. We have employed the Jarman Under-
privileged Area Score (which is designed to estimate the need
for primary care), the indices developed by Townsend and
Carstairs (used to perform health-related analyses), and the
Department of the Environment (DoE) index (which is used in
targeting urban regeneration funds). The higher the index value,
the more deprived the ward.

The goal of the classification task is to predict the value of the
Jarman index (low or high) deprivation factor by exploiting both
the other deprivation factors, mortality rate and geographical
factors, represented in some linked topographic maps. Spatial
analysis is possible thanks to the availability of vectorized
boundaries of the 1998 census wards as well as of other Ordnance
Survey digital maps of NWE, where several interesting layers, such
as urban area (115 spatial objects), green area (9), road net (1687),
rail net (805) and water net (716) can be found. The objects on
each layer have been stored as tuples of relational tables, also
including information on the object type (TYPE). For instance,
an urban area may be either a ‘‘large urban area’’ or a ‘‘small
urban area’’. Topological non-disjoint relationships between
wards and objects in all these layers are materialized as relational
tables (WARDS_URBAN_AREAS, WARDS_GREEN_AREAS, WARDS_
ROADS, WARDS_RAILS and WARDS_WATERS). The number
of tuples in these tables is 5313 (381 wards-urban areas, 13
wards-green areas, 2798 wards-roads, 1054 wards-rails and 1067
wards-waters).

The Munich Census Data concern the level of monthly rent per
square meter for flats in Munich, expressed in German Marks.3

The data were collected in 1998 by Infratest Sozialforschung to
develop the 1999 Munich rental guide. This dataset contains 2180
geo-referenced flats situated in the 446 subquarters of Munich,
obtained by first dividing the Munich metropolitan area into three
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Table 1
Background knowledge for Mutagenesis data

Background Description

BK0 Data obtained with the molecular modeling package QUANTA. For

each compound it obtains the atoms, bonds, bond types, atom types,

and partial charges on atoms

BK1 Definitions in BK0 plus indicators ind1 and inda in molecule table

BK2 Variables (attributes) logp and lumo are added to definitions in BK1

Table 2
TRANSC vs. Mr-SBC on Mutagenesis data: average misclassification error on the

working sets

Experiment TRANSC Mr-SBC (%)

k ¼ 2 (%) k ¼ 5 (%) k ¼ 8 (%) k ¼ 10 (%) k ¼ 13 (%)

Avg. BK0 error 21.16 20.27 22.27 22.77 23.75 24.40

%error reduction 13.27 16.90 8.71 6.66 2.66

Avg. BK1 error 23.75 22.27 22.75 22.75 24.27 24.42

%error reduction 2.77 8.80 6.86 6.86 0.61

Avg. BK2 error 16.67 16.58 16.58 17.67 20.31 23.33

%error reduction 28.57 28.95 28.95 24.29 12.97

The number of bins (Nb) for the discretization is set to 15.

Table 3
TRANSC vs. Mr-SBC on Mutagenesis (BK2) data: working set results varying

number of bins (Nb) in Mr-SBC discretization

TRANSC Mr-SBC (%)

k ¼ 2 (%) k ¼ 5 (%) k ¼ 8 (%) k ¼ 10 (%) k ¼ 13 (%)

Error

Nb ¼ 5 20.75 19.16 20.77 20.75 24.25 23.42

Nb ¼ 10 17.61 17.63 17.63 19.63 21.75 22.92

Nb ¼ 15 16.67 16.58 16.58 17.67 20.31 23.33

Nb ¼ 20 16.58 17.11 17.69 18.28 18.81 24.92

%error reduction

Nb ¼ 5 11.43 18.21 11.31 11.43 �3.52

Nb ¼ 10 23.20 23.08 23.08 14.36 5.13

Nb ¼ 15 28.57 28.95 28.95 24.29 12.97

Nb ¼ 20 33.48 31.37 29.01 26.65 24.53

2 http://www.ais.fraunhofer.de/KD/SPIN/ 3 http://www.di.uniba.it/	ceci/micFiles/munich_db.tar.gz
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areal zones and then by dividing each of these zones into 64
districts. The vectorized boundaries of subquarters, districts and
zones, as well as the map of public transport stops, consisting
of public train stops (56 subway (U-Bahn) stops, 15 rapid train
(S-Bahn) stops and 1 railway station), within Munich are available
for this study. The objects included in these layers are stored in
different relational tables (SUBQUARTERS, TRANSPORT_STOPS
and FLATS). Information on the ‘‘area’’ of subquarters is stored
in the corresponding table. Transport stops are described by
means of their type (U-Bahn, S-Bahn or Railway station), while
flats are described by means of their ‘‘monthly rent per square
meter’’, ‘‘floor space in square meters’’ and ‘‘year of construction’’.

The target attribute was represented by the ‘‘monthly rent per
square meter’’, whose values have been discretized into the two
values low ¼ ½2:0;14:0� or high ¼�14:0;35:0�. The spatial arrange-
ment of data is defined by both the ‘‘close_to’’ relation between
Munich metropolitan subquarter areas and the ‘‘inside’’ relation
between public train stops and metropolitan subquarters. Both of
these topological relations are materialized as relational tables
(CLOSE_TO and INSIDE).

The average misclassification errors of TRANSC and Mr-SBC are
reported in Tables 4 and 5. The results are obtained according to
both a 10-fold CV of the data and a 20-fold CV of the same data. In
the case of the NWE Census Data, we set k 2 f4;7;9;11;14g, while
in the case of the Munich Census Data we set k 2 f9;18;27;36;45g.
In both datasets, results confirm an improved accuracy for the
transductive setting with respect to the inductive one. The gain
depends on the k value and this result is more evident in the case
of 10-fold CV. In 20-fold CV, there is an error propagation through
algorithm iterations, due to the presence of few training examples.
A deeper analysis of the results of 10-fold CV confirms that
accuracy increases with high values of k (k ¼ 11 for NWE and
k ¼ 36 for Munich), but at the some time accuracy decreases
when k approximates

ffiffiffiffi
N
p

. This poses the problem of determining
some criterion to automatically approximate the best k value.

7. Conclusions

In this work we have investigated the combination of transduc-
tive inference with principled probabilistic MRDM classification, in
order to face the challenges posed by real-world applications,
characterized by both complex and heterogeneous data, which are
naturally modeled as several tables of a relational database and the
availability of a small (large) set of labeled (unlabeled) data. Our
proposal builds on a multi-relational naı̈ve Bayesian classifier
(Mr-SBC), which is learned from the training (i.e., labeled) examples
and is then used to perform a preliminary labeling of the working
(i.e., unlabeled) data. The initial classification of the examples,
comprising the working set, is then refined iteratively over a finite
number of steps, each of which consists of a k-NN classification of
all examples and a subsequent reclassification of some borderline
examples. Neighbors are determined by computing a dissimilarity
measure, defined for relational representations of examples.

The proposed transductive multi-relational classifier (TRANSC)
has been compared to its inductive counterpart (Mr-SBC) in an
empirical study, involving both a benchmark relational dataset
and two spatial datasets. Results are in favor of TRANSC and the
percentage of accuracy improvement of the transductive setting with
respect to the inductive one appears to be better than the small
improvement observed in Joachims (2003), when SVMs are
compared in both the inductive and the transductive setting. As
future work, we intend to extend the empirical investigation, in order
to corroborate our intuition that transductive inference has benefits
over inductive inference when applied to relational datasets, which
are characterized by a strong relational autocorrelation.
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