Fundamenta Informaticae 57 (2003) 39-77 39
1OS Press

Learning Recursive Theories in the Normal ILP Setting

Donato Malerba
Dipartimento di Informatica
Universita degli Studi di Bari

malerba@di.uniba.it

Abstract. Induction of recursive theories in the normal ILP setting is a difficult learning task whose
complexity is equivalent to multiple predicate learning. In this paper we propose computational
solutions to some relevant issues raised by the multiple predicate learning problem. A separate-and-
parallel-conquer search strategy is adopted to interleave the learning of clauses supplying predicates
with mutually recursive definitions. A novel generality order to be imposed on the search space
of clauses is investigated, in order to cope with recursion in a more suitable way. The consistency
recovery is performed by reformulating the current theory and by applying a layering technique,
based on the collapsed dependency graph. The proposed approach has been implemented in the
ILP system ATRE and tested on some laboratory-sized and real-world data sets. Experimental re-
sults demonstrate that ATRE is able to learn correct theories autonomously and to discover concept
dependencies. Finally, related works and their main differences with our approach are discussed.

Keywords: machine learning, inductive logic programming (ILP), learning recursive theories, mul-
tiple predicate learning.

1. Introduction

Recursion is a fundamental concept in all abstract computation models with the same expressive power as
Turing machines. It is also the only control flow mechanism available in pure logic programming, without
which, few interesting functions might be actually implemented. Despite its computational relevance,
recursion is rarely handled by inductive learning systems. There has been considerable debate on the
actual usefulness of learning recursive programs in knowledge acquisition and discovery applications. It
is a common opinion that very few real life concepts seem to have recursive definitions, rare examples

Address for correspondence: Dipartimento di Informatica, via Orabona 4, I-70126 Bari, Italy



40 D. Malerba/Learning Recursive Theories in the Normal ILP Setting

being “ancestor” and natural language [6, 52]. Recursion is considered more useful in programming by
examples [3, 4], where the main task is that of synthesizing programs that compute results, rather than
generating programs that classify observations as instances of one concept or another. However, in the
literature it is possible to find several other applications in which recursion has proved helpful, such as
finite mesh design [7], dynamical systems [40], planning [31, 64] and automated telephony [66]. In all
these cases, a pattern occurs repetitively in the same training observation, and the best way to capture
such an occurrence is by means of recursive programs. The fact that one generally does not know in
advance whether recursion is beneficial or not in a given application domain seems to justify the use
of more general-purpose learning techniques that can induce both recursive and non-recursive programs
[23].

Usually, explanations of recursion are based on the idea that the definition of a concept (formally
expressed by either a function, a procedure or a predicate) is formulated in terms of the same concept.
Although this is often true, such explanations skip those cases of mutual recursion in which several
concepts are mutually defined. For instance, the following logic program:

odd(succ(X)) «— even(X)

even(succ(X)) «— odd(X)

even(X) « zero(X)
provides a mutually recursive definition of odd and even numbers, although no clause, taken on its own, is
recursive. This example shows that the problem of learning recursive programs is related to the problem
of learning multiple concept definitions, and in the final analysis the two problems are equivalent.

This work can be framed in the area of inductive logic programming (ILP) [49, 12, 35, 4, 56], which
uses computational logic as the representation formalism of both training observations and induced hy-
potheses. Therefore, we will assume that the concepts to be learned are represented by means of predicate
symbols, and that the result of the learning process is a logical theory.

Most research in ILP has focused on learning in the so-called normal (or strong or explanatory) ILP
setting [14, 15]. Given a background theory BK, a set of positive examples E T and a set of negative
examples E~, in the normal ILP setting, a hypothesis 7' is sought, such thatt BK UT | E™T and
BK UT [~ E~. In other words, the theory 7" has to be complete and consistent with respect to the set
of training examples, given BK.

In this framework, inductive learning of recursive logical theories is equivalent to learning multiple
predicate definitions from a set of examples. Recent renewed interest in learning multiple predicate
definitions [32, 52], justified by the employment of ILP systems in more complex tasks, has induced us
even more to investigate learning recursive theories.

Three important issues characterize multiple predicate learning problems.

i) De Raedt et al. [16] have shown that learning multiple predicates is more difficult than learning a
single predicate. This is not due to the fact of having several predicate definitions to learn instead
of only one; the main difficulty is that multiple target predicates involved in the same learning task
might be someway related, so it is crucial to discover such dependencies, while learning predicate
definitions. A wrong hypothesis on predicate dependencies may affect the learning results.

ii) A further difficulty lies in the generality order to be used in multiple predicate learning. The
ordering typically used in ILP, namely §-subsumption [58], is not sufficient to guarantee the com-
pleteness and consistency of learned definitions, with respect to logical entailment [27, 50, 55].



D. Malerba/Learning Recursive Theories in the Normal ILP Setting 41

Therefore, it is necessary to consider a stronger generality order, which is consistent with the
logical entailment for the class of logical theories we take into account.

iii) The main problems in multiple predicate learning can be explained in terms of an important prop-
erty of the normal ILP setting: Whenever two individual clauses are consistent in the data, their
conjunction need not be consistent in the same data [13]. This is called the non-monotonicity
property of the normal ILP setting,! since it states that consistency is not preserved by adding
new clauses to a theory T'. Indeed, adding definite clauses to a definite program enlarges its least
Herbrand model (LHM), which may then cover negative examples as well. For instance, the two
clauses

Cy: happy(X) « loves(Y, X), woman(Y)

Cy: woman(Z) < hag(Z)

are individually consistent with respect to:

BK = {loves(daisy, donald), loves(amelia, scrooge), hag(amelia), hag(pemphredo)}
E* = {happy(donald), woman(daisy), woman(pemphredo)}

E~ = {happy(scrooge)},
while the logical theory T' = {C1, Ca} is not (BK UT |= happy(scrooge)). As a consequence of

the non-monotonicity property, clauses supplying predicates with multiple definitions should not
be learned individually but, in principle, they should be generated all together.

In order to overcome these problems, De Raedt and Lavrac¢ [15] have proposed working on a non-
monotonic setting of ILP, where clauses can be investigated independently of each other, since their
interactions are no longer important. However, this setting produces properties of examples instead of
rules generating examples. For instance, the following clause:

Cs: loves(Y, X) «— happy(X)
which expresses a necessary, but not sufficient, condition for being happy, can be generated in the non-
monotonic setting. This kind of hypotheses cannot always be used for predicting the truth values of facts.
When we are interested in predictions the normal ILP setting is more appropriate.

Several studies on the problem of learning restricted forms of recursive theories in the normal ILP
setting have been presented in the literature. Cohen [11] proves positive and negative results on the pac-
learnability of several classes of logic theories that are allowed to include a recursive clause. Cameron-
Jones and Quinlan [9] investigate a heuristic method for preventing infinite recursion in single predicate
definitions with the system FOIL. De Raedt et al. [16] propose an algorithm, named MPL, that performs
a greedy hill-climbing search for learning multiple predicate definitions. Giordana ef al. [26] define a
bottom-up learning algorithm, called RTL, that first learns a hierarchical (i.e., non-recursive) theory 7'
which is complete and consistent, and then tries to synthesize a simple recursive theory from 7. Aha
et al. [1] have developed a system called CRUSTACEAN (derived from LOPSTER by Lapointe and
Matwin [34]), which is able to learn recursive definitions consisting of a unit clause and a two-literals
recursive clause. PROGOL guides a top-down generalization process with a known bottom clause and
can learn recursive clauses by inverting implication between function-free definite clauses [51]. Martin

I"This property should not be confused with other properties of the alternative non-monotonic ILP setting, whose name is due
to its relation to non-monotonic reasoning.



42 D. Malerba/Learning Recursive Theories in the Normal ILP Setting

and Vrain [45] deal with the problem of inducing mutually recursive predicate definitions such that each
clause of the learned theory extensionally covers some positive examples and rejects the negative ones.
Bostrom [5] proposes an algorithm that, under some assumptions, correctly specializes a given recursive
theory with respect to positive and negative examples. Idestam-Almquist [29] suggests a technique for
efficiently learning recursive definitions including one base clause and one tail recursive clause from a
random sample of examples. An iterative bootstrap induction method for learning recursive predicate
definitions has been studied by Jorge and Brazdil [30]. Mofizur and Numao [48] adopt a top-down
approach to learning recursive programs with only one recursive clause. An extension of MPL to normal
programs is proposed by Fogel and Zaverucha [24]. Finally, an interactive multiple predicate learning
system called Logan-H has been presented in the literature [32]. A thorough overview of achievements
in the inductive synthesis of recursive logic programs can be found in [23].

In this paper, a new approach to the problem of learning multiple dependent concepts is proposed.
It differs from other approaches for at least one of the following three aspects: the learning strategy, the
generalization model, and the strategy to recover the consistency property of the learned theory when a
new clause is added. These ideas have been implemented in a new version of the learning system ATRE
[42], whose full description is reported in this paper.

The paper is organized as follows. Section 2 introduces the issues related to the induction of recur-
sive logical theories. Section 3 illustrates the learning strategy adopted by ATRE. Section 4 is devoted
to the generalization model whose implementation is also sketched. A solution to the problem of recov-
ering non-monotonic theories is proposed in Section 5. In Section 6 the proposed approach is illustrated
through the system ATRE, which is characterized by an object-centered representation of training exam-
ples, by the use of seed objects, and by the adoption of classical negation. Some experimental results and
an application to the real-world problem of understanding multi-page printed documents are described in
Section 7. Finally, Section 8 concludes, touches upon related work and discusses ideas for further work.

2. Problem specification

Henceforth, the term logical theory will denote a set of definite clauses. Every logical theory 7" can be
associated with a directed graph v(T') = (N, E), called the dependency graph of T, in which (i) each
predicate of " is a node in /N and (ii) there is an arc in E directed from a node a to a node b, iff there
exists a clause C' in 7', such that @ and b are the predicates of a literal occurring in the head and in the
body of C, respectively.

A dependency graph allows representing the predicate dependencies of T', where a predicate depen-
dency is defined as follows:

Definition 2.1. (predicate dependency)

A predicate p depends on a predicate ¢ in a theory 7" iff (i) there exists a clause C for p in T'such that ¢
occurs in the body of C’; or (ii) there exists a clause C for p in T with some predicate 7 in the body of C
that depends on ¢ [12].

It is easy to notice that the direct (i) and indirect (ii) predicate dependencies of T are represented
as arcs and paths respectively in v(7"). This correspondence may be highlighted by reformulating the
problem from an algebraic point of view. Let 7(T") be the set of predicates occurring in the logical theory
T. The direct (i) predicate dependencies in 7' may be mathematically depicted as instances of a binary



D. Malerba/Learning Recursive Theories in the Normal ILP Setting 43

relation on 7(7"), namely Rgpq C 7(T") x w(T). The binary relation R,q for predicate dependencies is
the transitive closure of Rg,q. Given that each binary relation can be associated with a directed graph,
the graph corresponding to R, is just the dependency graph v(T") = (7(T'), Rapa)-

Definition 2.2. (recursive theory)
A logical theory T is recursive if the dependency graph ~(7") contains at least one cycle.

In simple recursive theories all cycles in the dependency graph go from a predicate p into p itself,
that is, simple recursive theories may contain recursive clauses, but cannot express mutual recursion. An
example of a dependency graph for a recursive theory is given in Figure 1.

odd

even(X) « suce(Y X}, 0dd(X)
even(X) < zero(X)

i /
odd(X) < succ( Y. X).even(Y) j
even
Zero succ

Figure 1. A recursive theory and its corresponding dependency graph for the predicates odd and even.

Definition 2.3. (predicate definition)
Let T be a logical theory and p a predicate symbol. Then the definition of p in T' is the set of clauses in
T that have p in their head.

Henceforth, 6(7") will denote the set of predicates defined in 7'. It is worthwhile to notice that
d(T) C =(T). For instance, with reference to the theory in Figure 1, §(7) = {even,odd}, while
m(T) = {even, odd, zero, succ}.

In a quite general formulation, the learning task in the normal ILP setting can be defined as follows:

Given

e A set of predicates py, pa, ..., pr to be learned

e A set of positive (negative) examples Ef (E;") for each predicate p;, 1 <i <r
e A background theory BK

e A language of hypotheses £y that defines the space of hypotheses S

Find

a (possibly recursive) logical theory T' € Sy defining the predicates p1,po,...,p, (that is, 6(T) =
{p1,p2,.-.,pr}) such that for each i, 1 < ¢ < r, BKUT | E:r (completeness property) and
BK UT - E; (consistency property).

Most studies on the problem of induction of recursive theories have concentrated on learning a simple
recursive predicate definition [9, 29, 30, 48], that is a single predicate definition including some recursive
clause. In this case, the main issue is how to guarantee that learned definitions are intensionally complete
and consistent. Learning simple recursive theories is more complicated, since it is necessary to discover



44 D. Malerba/Learning Recursive Theories in the Normal ILP Setting

the right order in which predicates should be learned [26], that is the dependency graph of the theory.
Once such an order has been determined, possibly using statistical techniques, the problem can be boiled
down to learning single predicate definitions [44]. The learning problem becomes harder for (mutually)
recursive theories,” because the learning of one (possibly recursive) predicate definition should be inter-
leaved with the learning of the other ones. One way to build such interleaving is by parallel learning
clauses for different predicates. In fact this is the strategy adopted by ATRE.

3. The learning strategy

The high-level learning algorithm in ATRE belongs to the family of sequential covering (or separate-
and-conquer) algorithms [47], since it is based on the strategy of learning one clause at a time (procedure
LEARN-ONE-RULE), by removing the covered examples and iterating the process on the remaining
examples. Indeed, a recursive theory 7T is built step by step, starting from an empty theory 7}, and
adding a new clause at each step. In this way we obtain a sequence of theories:

To=0,T1,.... 75, Ti1,..., Tn =T

such that 7; C T;1; and all theories in the sequence are consistent with respect to the training set. If
we denote with LH M (T;) the least Herbrand model of a theory T3, the stepwise construction of theories
requires that LHM (T;) C LHM (T;41), foreachi € {0,1,...,n— 1}. Indeed, the addition of a clause
to a theory can only augment the least Herbrand model of the theory. Henceforth, we will assume that
both positive and negative examples of predicates to be learned are represented as ground atoms with a +
or - label. Since examples are ground atoms and Herbrand models are sets of ground atoms by definition,
it is possible to check whether an example belongs to LH M (T5;), foreachi € {0,1,...,n}.

Let pos(LHM(T;)) and neg(LHM (T;)) be the number of positive and negative examples in
LHM(T;), respectively. If we guarantee that pos(LHM (T;)) < pos(LHM (T;4+1)), for each
i€{0,1,...,n— 1} and that neg(LH M (T;)) = 0, for each i € {0, 1, ..., n}, then, after a finite num-
ber of steps, a theory 7', which is complete and consistent, is built. Whether the theory 7" is “correct”,
that is, whether it classifies correctly all other examples not in the training set, cannot be established,
since no information on the generalization accuracy can be drawn from the same training data. In fact,
the selection of the “best” theory is always made on the basis of an inductive bias embedded in some
heuristic function or explicitly expressed by the user of the learning system (preference criterion).

In order to guarantee the first condition above, namely pos(LH M (T;)) < pos(LHM (T;+1)), we
follow the same procedure adopted in INDUCE [46] and Progol [51]. First, a positive example e™ of a
predicate p to be learned is selected, such that e* ¢ LH M (T;). The example e* is called seed. Then
the space of definite clauses more general than e™ is explored, looking for a clause C, if any, such that
neg(LHM (T; U{C})) = 0. In this way, we guarantee that the second condition above holds as well.
When found, C'is added to T; giving T;+1. If some positive examples are not included in LH M (T}41),
then a new seed is selected and the process is repeated.

The most relevant novelties of the learning strategy sketched above are embedded in the design of the
procedure LEARN-ONE-RULE being proposed. Indeed, this implements a parallel general-to-specific

*In general, the mutual recursion cannot be removed by reformulating a theory T" without introducing additional new predicates.
This also explains the additional degree of complexity in learning recursive theories, with respect to inducing simple recursive
theories.



D. Malerba/Learning Recursive Theories in the Normal ILP Setting 45

example-driven search strategy in the space of definite clauses, whose ordering (called generalized im-
plication) is explained in Section 4. The search space is actually a forest of as many search-trees (called
specialization hierarchies) as the number of chosen seeds, where at least one seed per incomplete pred-
icate definition is kept. Each search-tree is rooted with a unit clause and a directed arc from a node C
to a node C” exists if C’ is obtained from C' by a single refinement step. Operatively, the (downward)
refinement operator considered in this work adds a new literal to a clause.?

The forest can be processed in parallel by as many concurrent tasks as the number of search-trees.
Each task traverses the specialization hierarchies top-down (or general-to-specific), but synchronizes
traversal with the other tasks at each level. Initially, some clauses at depth one in the forest are examined
concurrently. Each task is actually free to adopt its own search strategy, and to decide which clauses are
worth testing. If none of the tested clauses is consistent, clauses at depth two are considered. Search
proceeds towards deeper and deeper levels of the specialization hierarchies, until at least one consistent
clause is found.

Task synchronization is performed after all “relevant” clauses at the same depth have been examined.
A supervisor task decides whether the search should carry on or not, on the basis of the results returned
by the concurrent tasks. When the search has stopped, the supervisor selects the “best” consistent clause,
according to the user’s preference criterion.

The advantage of this strategy is that the simplest consistent clauses are found first, independently of
the predicates to be learned.* Moreover, the synchronization allows tasks to save much computational
effort when the distribution of consistent clauses in the levels of the different search-trees is uneven.

The parallel exploration of the specialization hierarchies for the predicates odd and even is shown in
Figure 2. Suppose that the seeds even(0) and odd(1) are selected. A partial view of the two corresponding
specialization hierarchies is shown in the figure, where consistent clauses are reported in italics. Levels
refer to the specialization step. By exploring the two hierarchies level by level, ATRE finds several
candidate clauses to add to the initial empty theory 7. However, the simplest clause, that is:

even(X) < zero(X)
is found first, and is added to Tp, so the base case of recursion is defined. To generate the second clause,
two new seeds are considered, say even(2) and odd(1). In this case, the first two consistent clauses
generated by the system are:

odd(X) < succ(Y,X), zero(Y)

odd(X) « succ(Y,X), even(Y).

In particular, the generation of the second clause is possible since a partial definition of even numbers
has already been generated in the previous step. One of the two clauses will be selected and added to the
theory T = {even(X) « zero(X)}.

It is noteworthy that both clauses entail the only positive example odd(1), therefore, a selection of the
most promising clause can be based exclusively on some form of search bias or user preference criterion.
For instance, the second clause is preferred because it is more general than the first, given the partially
learned theory (see the definitions of generality order in the next section). Another critical choice is
that concerning the seeds. If the system had started from even(2) and odd(1), the first clause added

3 A discussion on properties of this operator is beyond the scope of this paper. A thorough description of upward and downward
refinement operators can be found in [56].

*Note that in some recursive definitions a recursive clause can be syntactically simpler than the base clause. This might appear
to cause problems in this strategy. However, the proposed strategy does not allow the discovery of the recursive clause until the
base clause has been found, whatever its complexity is.



46 D. Malerba/Learning Recursive Theories in the Normal ILP Setting

to the theory would have been odd(X) < succ(Y,X), zero(Y), thus resulting in a less compact, though
still correct, theory for odd and even numbers. Therefore, it is important to explore the specialization
hierarchies of several seeds for each predicate. When training examples and background knowledge are
represented either as sets of ground atoms (flattened representation) or as ground clauses, the number of
candidate seeds can be very high, so the choice should be stochastic. The object-centered representation
adopted by ATRE has the advantage of reducing the number of candidate seeds by partitioning the whole
set of training examples E into objects. Each object contains some of the seeds for the generation of
base clauses in a recursive theory. Since in many learning problems the size of an object is not very
high, a parallel exploration of all candidate seeds is feasible and the computational issue reported above
is solved. More details on ATRE’s object-centered representation are given in Section 6.

For a comparison of the proposed search strategy with respect to the other systems that attack the
problem of multiple predicate learning see Section 8.1.

seeds even(0) add(1)

Level 0 even(X) < odd(X) <

Level 1 even(X} «'—ZérO().f)/ >n(;<) 3 suCC(XY? odd(X) < succ('l:{ >d(X)‘<—,$uCC(X,Y)

Level? even(X) ezerofX)  even(X) esucc(;i,Y)/ - odd(x) «—sz:cc({)() >d(;<) —suee(Y,X) o
succ(X,7) suce(Y,Z) zerofT} suce(X,Z)

seeds even(2) add(1)

Level 0 even(X) < odd(X) <

Level 1 even(X) suw-("lg >n(;<) £ suCC(XY? odd(X) ff}lcc('l:,X)/ >d(X)‘ <—succ(XY)

Level2 cven(X) e:QX) even(X) ﬂucv&{ R odd(X) «'—s@ >a’()f‘) esuce(V.X) o
succ(ZY) suce(Y,Z) zerof¥) even(T)

Figure 2. Parallel search for the predicates odd and even

4. The generalized implication model

A more precise definition of the search space of the LEARN-ONE-RULE stage is necessary. We follow
the usual practice established in ILP of defining a generality order (or generalization model), which
provides a basis for organizing this search space. Indeed, clarifying what is the generality order is the
first step towards a reasoned design of a learning system.

Several generality orders have been reported in the literature, the most known being the 8-subsumption
[58]. In the #-subsumption, the objects of comparison are two clauses, say C' and D, and no additional



D. Malerba/Learning Recursive Theories in the Normal ILP Setting 47

source of knowledge (e.g., a theory T') is considered. This is also true for other generality order like im-
plication or T-implication [28]. However, comparing two definite clauses, whatever the generality order
is, may lead to incorrect results in the case of recursive theories.

Example 4.1. For instance, with reference to previous example on odd and even predicates, the clause
C: odd(X) < succ(Y, X), even(Y)
logically entails, and hence can be correctly considered more general than
D: odd(3) « succ(0,1), succ(1,2), succ(2, 3), even(0)
only if we take into account the theory:
T: even(A) « succ(B, A), odd(B)
even(C) « zero(C)

Therefore, we are only interested to those generality order that compare two clauses relatively to a
given theory T, such as Buntine’s generalized subsumption [8].

Definition 4.1. (generalized subsumption)
Let C' and D be two definite clauses with disjoint variables:

C:Cy«—Cq,Co,...,Ch

D: DO — Dl,DQ,...,Dm
C is more general than D under generalized subsumption with respect to a theory 7', denoted C' <7 D,
if a substitution ¢ exists, such that Cp) = Dy and for each substitution ¢ that grounds the variables in D
using new constants which do not occur in C, D, and 7', it happens that:

TU{Dio «,Dy0 «,...,Dyo —} = 3C1,Cy,...,Cph)00.

Operatively, the above test can be performed by proving that

TU{Dio «,Dy0 «,...,Dpo —}tgrp (C1,Co,...,Cp)00

Informally, generalized subsumption requires that the heads of C' and D refer to the same predicate,
and that the body of D can be used, together with the background theory 7', to entail the body of C'.

Example 4.2. Let us consider the following clauses:

C: even(X) « suce(Y, X), succ(Z,Y), even(Z)

D: even(U) «— succ(V,U), succ(W, V), zero(W)
and the following theory:

T: even(A) «— zero(A)

Then, the substitution # = {X « U} matches the head of C' against that of D. Moreover, for each
substitution ¢ that grounds the variables in D (i.e., U, V and W) using new constants which do not occur
in C, D, and T, it happens that:

suce(Y,Uo), succ(Z,Y), even(Z)
can be derived from the definite program

1. even(A) < zero(A)
2. succ(Vo,Uo)

3. succ(Wo,Vo)

(

4. zero(Wo).



48 D. Malerba/Learning Recursive Theories in the Normal ILP Setting

The derivation is reported in Figure 3. Therefore, C' <7 D.

suce(Y,Us), succ(Z,T), even(Z)
1(2) {Y<Va}

suce(Z,Va), even(Z)
(3) {Z«Wo }

even(Wa)
(1) {A<Wo}

zero/Wa)

|

Figure 3. SLD resolution proving that C' <, D. At each step both the number of the resolving clause and the
most general unifiers are reported.

Unfortunately, generalized subsumption is too weak for recursive theories.’

Example 4.3. Let us consider the following clauses:

C: odd(X) « succ(Y, X),even(Y)

D: odd(U) « succ(V,U), succ(W, V), succ(Z, W), zero(Z)
and the following theory:

T: even(A) « succ(B,A),odd(B)
even(C) « zero(C)

The substitution § = {X « U} matches the head of C' against that of D. However, if we consider
the following grounding substitution 0 = {U « 3,V «— 2, W « 1, Z < 0} the following goal clause:

succ(Y, 3), even(Y)
cannot be derived from the definite program

1. even(A) «— succ(B, A), odd(A)
2. even(C) « zero(C)
3. succ(2,3)
4. succ(1,2)
5. succ(0,1)
6. zero(0).

Therefore, we cannot conclude that C' <7 D, although T"U {C'} = D.

SInformally, an order is too strong for a class £ of theories when it can be used to organize theories of a strictly wider class
L' D L, according to logical entailment. If the organization of theories in £ is not consistent with logical entailment, then the
order is too weak.



D. Malerba/Learning Recursive Theories in the Normal ILP Setting 49

An alternative generality order, known as relative generalization, was proposed by Plotkin [58, 59].
It is at the base of the better known Plotkin’s definition of relative least general generalization [59].

Definition 4.2. (relative generalization)

Let H be a set of clauses, 1" a set of unit clauses (or a conjunction of atoms) and D a definite clause.
H is more general than D given T, if and only if one can derive a definite clause C' by resolution from
TUH which 6-subsumes D, and all resolutions in the derivation of C' involve a clause of T'.

Buntine [8] reports an extension of Plotkin’s relative generalization to the case of a theory T' com-
posed of definite clauses (not necessarily unit clauses).

Definition 4.3. (relative generalization)
Let C' and D be two definite clauses. C' is more general than D under relative generalization, with
respect to a theory 7', if a substitution € exists such that T = V(C6 = D).

The following theorem holds for the this extended notion of relative generalization:

Theorem 4.1. Let C and D be two definite clauses and 7" a logical theory. C is more general than D
under relative generalization, with respect to 7', if and only if C' occurs at most once in some refutation
demonstrating 7' = V(C = D).

However, this extended notion of relative generalization is still inadequate. From one side, it is
still weak. Indeed, if we consider the clauses and the theory reported in example 4.1, it is clear that a
refutation demonstrating 7' = V(C' = D) involves twice the clause C' to prove both odd(1) and odd(3).
On the other side, this notion is too strong for our goals. Taken literally, it would lead us to consider
unintuitive solutions of the conquer stage as illustrated in the following example.

Example 4.4. Let us consider the following training set:

+ {p(a), p(b)}

— {p(c)}
the following background knowledge:

BK: {q(a),r(a,b),s(b),r(c,b)}
and the following incomplete theory built at the first step:

Ti: p(X) «— q(X).

Let p(b) be the selected seed. A desirable search space of clauses more general than p(b), given
BK UT7, would be the set of clauses whose head is p(X ), since our aim is to induce a predicate definition
for p. This space contains, for instance, the clause p(Z) < s(Z). However, the space of clauses that are
relatively more general than p(b) given BK U T} includes other solutions, such as ¢(Y') « s(Y'). This
last clause is correct and even relatively more general than p(Z) « s(Z).% Nevertheless it is not intuitive
because it does not seem to be related to the target predicate p. Moreover, this solution is not coherent
with our formulation of the learning problem, since ¢ is defined in the background knowledge and does
not appear among the predicates whose definition had to be induced. In this work, we do not consider
these solutions, which would make the multiple predicate learning problems even harder to solve.

SIndeed, given T = BK U T} and 6 = {Y « Z}, it can be proven that T' = ¥(q(Z) « s(Z)) = (p(Z) « s(Z)), which is
equivalent to proving that T UV{q(Z) «— s(2)} EV(p(Z) < s(Z)).



50 D. Malerba/Learning Recursive Theories in the Normal ILP Setting

This restriction is reflected by a new ordering, named generalized implication.

Definition 4.4. (generalized implication)

Let C' and D be two definite clauses. C'is more general than D under generalized implication, with
respect to a theory 7', denoted as C' <7 —. D, if a substitution § exists such that head(C)6# = head(D)
and T =V(C = D).

This generality order can be proved to be strictly stronger than generalized subsumption since the
condition T' = V(C = D) in Definition 4.4 entails the condition T'U { D16 «—, D26 <, ..., Dp,0 «— }
= 3(C1,Co, . .., Cp)00 in Definition 4.1.7 In view of Theorem 4.1 generalized implication reduces to
generalized subsumption when C compares only at the root of the refutation demonstrating
T = V(C = D). Moreover, the following properties hold.

Proposition 4.1. Let C', D and E be definite clauses and 7" be a theory. The generalized implication
order satisfies the properties of:

i) reflexivity: C' <7 - C

ii) transitivity: C 27— Dand D <7, FE,thenC <7 E

Proof:

1) Trivial if the empty substitution is chosen.

ii) By definition, a substitution #; exists such that head(C)0y = head(D) and T = V(C = D),
and a substitution 0y exists such that head(D)f2 = head(E) and T |= V(D = FE). Let 0 = 6,69
be the substitution obtained by the composition of §; and 6. Then head(C)0 = head(C)0162 =
head(D)0y = head(FE). Moreover, from T = V(C = D)and T = V(D = E), T  V(C = E)
follows. O

It can also be proved that the semi-decidability of the generalized implication, namely the termina-
tion of the generalized implication test, is guaranteed when C' <7 —. D. However, such a negative result
is overcome when Datalog clauses [10] are considered. In fact, the restriction to function-free clauses
is common in ILP systems, which remove function symbols from clauses and put them in the back-
ground knowledge by techniques such as flattening [61]. This transformation does not cause problems
in handling numeric data, as we will show in Section 6.

4.1. Implementing generalized implication test

A naive implementation of the generalized implication test is obtained by testing that head(C)0 =
head(D) for some 6 and then by computing the least Herbrand models of {C} U T and {D} U T
C =r= Difandonly if LHM({D} UT) C LHM({C} UT). Since the least Herbrand model

"Let 6 be a substitution that unifies the heads of C' and D. Since the implication is monotone, with respect to the application
of a substitution, T’ = V(C' = D) entails T' |= V(C8 = D@). Moreover, it is sufficient to consider the logical equivalence
between CO = DO and -DO = —(C0, and the theorem stating that proving 7' = V(—~D6# = —C0) is equivalent to proving
T U{-D8} = V-Cb.



D. Malerba/Learning Recursive Theories in the Normal ILP Setting 51

of a theory T coincides with the least fixed point of the immediate consequence operator 77,8

compute the least Herbrand models operatively.

Wwe can

Definition 4.5. (immediate consequence operator)
Let ground(T') be the set of all ground instances of clauses in 7". Given a Herbrand interpretation Z, that
is a set of ground atoms built on the same alphabet of 7', the immediate consequence operator computes
the following interpretation:

m(Z):={H|H < By,...,By, € ground(T),{B1,...,By,} CT}

It can be shown that, for sets of definite clause, the infinite sequence of interpretations computed by
the iterative application of the immediate consequence operator:

T T 0:= @

r 1 1:=71p(0)

T T 2:= TT(TT(V)))

7 1i:=7r(rp...71(0))
W
(2
converges to LH M (T'), which is the least fixpoint of 77 [39]. Notationally, 70 T oo := LHM(T).
Moreover, the convergence to the fixpoint in a finite number of iterations is guaranteed by the finiteness
of the Herbrand base for Datalog theories.

One cause of inefficiency in the naive evaluation is that ground facts in LH M (T') may be com-
puted many times during the iterative application of 7. Semi-naive evaluation partially overcomes
this redundancy by partitioning T into n layers, such that T = T°U...UT' U ... U T" ! and
LHM(T) = LHM(LHM (U;—0.. »—2 T7) U T™ 1. Actually, more efficient methods than the semi-
naive one proposed in this section are reported in the literature. They have been mostly developed in the
context of bottom-up evaluation of queries in deductive databases [10, 60]. However, the main objective
of our proposal is that of introducing some important properties of layered theories, which will be useful
in the next section on recovering the consistency of a theory.

It is worthwhile noticing that the computation of LHM (LHM (U;—y ;1 T 7) U T?) is equivalent
to the iterative application of the immediate consequence operator to 7", starting from the interpretation
LHM (U=, i1 T7), that is T (LHM (U=, T7)). In this way, clauses in 7% U ... U T* "1 are
no longer considered when computing the logical consequences of 7.

Example 4.5. Let 7" be the following theory:

Ch: p(X) — q(X)

Cyq(Y) —r(X,Y)
and

BK: {q(a),r(a,b),s(b),r(c,b)}.

Let us suppose that the theory 7 = BK U T’ may be partitioned as follows: 7" = 70 U T U T2,
where T° = {r(a,b), s(b),r(c,b)}, T* = {q(a),Ca} and T? = {C}}.

Indeed, LHM (T') = {q(a),r(a,b), s(b),r(c,b),q(b),p(a),p(b)}, and

8The standard notation used in logic programming and deductive databases for the immediate consequence operator is Tp,
where P is the logic program or the Datalog program. Henceforth, the operator will be denoted by 77, in order to avoid
confusion with the symbol 7" used for the logical theories.



52 D. Malerba/Learning Recursive Theories in the Normal ILP Setting

LHM(T®) =1°

LHM(T°UTYY = LHM(LHM(T°)UT') = LHM(T° UT") =

— {r(a,b), s(b),7(c,b), aa), a(B)} = 72 ({r(a,b), s(b), 7(c, b)) = 74 (LH M (T?))

LHM(TUT'*UT?)= LHM(LHM(T° UTY))UT?) =

— LHM ({r(a,b), s(b), 7(c,b), q(a), a(B) U{C1}) = {r(a, b), s(b), r(c,b). q(a), a(b), pla), p(b)} =

= 1p2({r(a,b),s(b),r(c,b),q(a), q(0)}) = Tr2(LHM(T° UT"))

Notice that according to the classical iterative application of the immediate consequence operator the
ground atoms p(a) and ¢(b) would be computed both in 77 T 2 and 71 1 3, since:

T 10:=0

mr 1 1:=7p(rr 10) = BK

7 12:=7p(rr 11) = BK U{p(a),q(b)}

mr 1 3:=71p(mr 1 2) = BK U {p(a),q(b)} U{p(a),q(b),p(b)}.

Issues related to the problem of finding layers of a recursive theory T such that
LHM(T) = LHM(UJ.:O,“J%1 T7) = L;"—IM(LHM(Uj:m.mf2 T7) U T™1) are to be dealt with.
Difficulties arise because the dependency graph v(7') is a directed cyclic graph. In order to remove
cycles from «(7") we resort to the notion of the strongly connected component of a directed graph [37].

Definition 4.6. (strongly connected component)
Two vertices of a directed graph G, v; and vy, are said to be strongly connected if there is a directed path
from v; to ve and a directed path from vs to v;.

It can be proven that a directed graph G = (V, E) can be decomposed as an “acyclic graph” of
strongly connected components in O(|V |+|E|) time. The result of this decomposition is called collapsed
dependency graph.

Definition 4.7. (collapsed dependency graph)

Let «(T") be the dependency graph of a logical theory 1. The collapsed dependency graph of T', denoted
as (T), is a directed acyclic graph (dag), obtained by collapsing each (maximal) strongly connected
component of v(7") into a single node.

Nodes in 4(T") are equivalence classes with respect to the strong connectivity relation. Thus, given
also the properties of dag’s, it is easy to compute the level of a predicate p € 7(T") as the maximum
distance of [p] from a terminal node in 4(7"), where terminal nodes are nodes with no out-coming edges.

Definition 4.8. (predicate level)
Let 4(T') be the collapsed dependency graph of a logical theory T'. The level of a predicate p € w(T) is
given by:
level(p) { 0 if [p] is a terminal node in §(7")
1 + max{level(q)|q € 7(T) and [¢] is a child of [p] in 4(T")} otherwise

Any logical theory can be layered on the basis of the level of its predicates.

Definition 4.9. (layered theory)

Let 4(T") be the collapsed dependency graph of a logical theory 7". Then 7" can be partitioned into n

disjoint sets of clauses T' = T°U...UT'U...uT" ! called layers, such that
Vie{0,...,n—1}:8(T") = {p e n(T)| level(p) = i}.



D. Malerba/Learning Recursive Theories in the Normal ILP Setting 53

It is worthwhile observing that such a technique for the layering of a logical theory induces a total
order on the layers, 70 < ... < T" < ... < T 1

Example 4.6. Let 7" be a theory obtained by the union of a background knowledge
BK: {f(a),s(a,b),s(b,c),s(c,d),s(d,e)}
and a theory 7" consisting of
C1: p(X) « f(X)
02: Q(Y) — p(Z), S(Zv Y)
Cs: p(U) < q(V),s(V,U)
GivenT = BK UT', then n(T) = {f, s,p, q}, while v(T) is the following:

= g
N
]

- e

Thus the equivalence classes with respect to strong connectivity are [f], [s], and [p, ¢], and 5(T') is
the following graph:

[p, q]
/ N
[f] [s]

with level(f) = level(s) = 0 and level(p) = level(q) = 1. Therefore, two layers T° = BK and
T' = T are extracted.

The following proposition can be proved.

Proposition 4.2. Let T be a logical theory which has been partitioned into n layers, T = T°U. . .uT" 1,
and H be a ground atom with predicate symbol p € §(T%), k = 0,...,n — 1. Then H € LHM(T), if
andonlyif H € LHM(LHM(U,_y 4 ,T")UT").

Proof:
(=) Let H € LHM (T). For the fix-point theorem, 3i > 0, such that H € 7 1 1, that is, by definition
of immediate consequence operator, a ground clause of 7" exists, H «— Aj,..., A, € ground(T),

where A; € 70 1 (i — 1), 5 = 1,2,...,m. Since p € §(T*) then H «— Ay, ..., Ay, € ground(T").
The proof is by induction on the layer k.

k =0 We want to prove that each A; € LHM (T"), from which H € LHM (T°) follows. The proof
continues by induction on the iteration step .

t=1 Since H € 70 T1, then H € T, thatis, H is a ground fact of the theory 7T'. More specifically,
H € T°, therefore H is in the LH M (T°).

i>1 Each A; € 70 T (i — 1), therefore A; € LHM (T). From the construction of the layers
it follows that each A; is a ground atom with predicate symbol 6(A;) C «(T°). By the
induction hypothesis each A; € LHM (T°), j =1,2,...,m.



54 D. Malerba/Learning Recursive Theories in the Normal ILP Setting

k>0 We want to prove that each A; € LHM(LHM(U,—o ; 1717 U T*), from which
H e LHM(LHM(U,— 5 1T") U T*) follows. The proof continues by induction on the
step <.

1 =1 Since H € 7 11, then H € T, thatis, H is a ground fact of the theory T". More specifically,
H € T¥ therefore H is in the LHM(T*), and more generally H is in
LHM(LHM (U=, 1 T%) U T*), since the addition of a set of clauses (i.e., the ground
clauses LHM (U,—q 11 T")) to a theory T* can only augment the least Herbrand model
of the theory. o

¢ > 1 From the construction of the layers it follows that each A; is a ground atom with predi-
cate symbol d(A;) C §(T"), for some r < k. Moreover, A; € 70 T (i — 1), there-
fore A; € LHM(T). By both inductive hypotheses (on k and i), we may say that A; €
LHM(LHM (U, 1T") U T*), for each j = 1,2,...,m, and then conclude that

He LHM(LHM(U,—q. ;,T")UTF).

(<) Let H € LHM(LHM(U,_o._;,_, T7) UT*). In particular, if H € LHM(U,_o__j_, T").
then H € LHM(T), since |J,_, 11" € T. Otherwise, H is obtained by applying iteratively
the immediate consequence operator Tp«, starting with the interpretation LHM (U,—o_ , 1 1") C

Uy

e (LHM (U, 51 T7)) 1 00 € 7pu(LHM(T)) 1 00 = LHM(T). Therefore H € LHM(T).
g

This proposition states that a necessary and sufficient condition for a ground atom with predicate
symbol p € &(TF) being in LHM (T) is that H is computed by iteratively applying the immediate
consequence operator Ty, starting with the interpretation LHM (UJ,—; ;. 1"). Proposition 4.2 can
be used to prove the following theorem on the least Herbrand model of a layered theory.

Theorem 4.2. Let 7" be a theory which has been partitioned into n layers according to the criterion given
in Definition 4.9. Then

Vn>1: LHM(T) = LHM(LH]\/[(UT:OMH_2 TYyuTn b,
Proof:
(=)Let P°, P! ... P"!beapartition of LH M (T), such that each P*,i = 0,...,n—1, contains only
ground atoms with a predicate symbol in §(7%). From Proposition 4.2 it follows that

PiC LHM(LHM(U;—_ ;-1 T") U T*) and
LHM(T)=P°UP'U...u P!

C LHM(T) U LHM(LHM(T®)UT") U...U LHM(LHM (U;_, Tryu T 1)

oo V—2

-----

since LHM (U;—o._ ;-1 T7) C LHM(LHM(U;—,. i1 TI)YuT?.

(<) Let H be in LHM(LHM (U;—. , o T/)UT" ). f H € LHM(U;—,. , _oT7) then H €
LHM(T), since | J i=0,..n—2 17 C T. Otherwise, H is obtained by applying iteratively the immediate
consequence operator 771, starting with the interpretation LHM (U, ,_»T7) € LHM(T), that is,
H € mpaa(LHM(Ujzp, . 2T7)) 1 oo Since 7pn-1 is monotone and 77! C T,



D. Malerba/Learning Recursive Theories in the Normal ILP Setting 55

Tpnt (LHM (U, 2 T9)) 1 00 C 7pn-s(LHM(T)) 1 00 C mp(LHM(T)) = LHM(T). There-
fore H € LHM(T). O

To sum up the procedure, the layering of a theory provides a semi-naive way of computing the
generalized implication test presented above. The importance of layering will be more evident when the
problem of recovering consistency is dealt with (see next section).

5. The consistency recovery strategy

Another learning issue to be considered in multiple predicate learning is the non-monotonicity of the
normal ILP setting: Whenever two individual clauses are consistent on the data, their conjunction does
not need to be consistent on the same data [13]. Algorithmic implications of this property may be
effectively illustrated by means of an example.

Example 5.1. Let the following sets be positive examples, negative examples and background knowl-
edge respectively:

+ {p(5)a(1), g(4)}

- {p(3),4(3)}

BE: {f(3).9(0),9(1),5(0,1),5(1,2),5(2,3),5(3,4),5(4,5)}
Let us suppose that the following consistent, but not complete, recursive theory 75 has been learned after
two conquer stages:

Cr: q(X) < s(Y, X), f(Y)

Co: p(Z) — s(W, Z),q(W)
Note that C1 =X(coyuBk,— 19(4)}, and C2 2¢ciyuBk,— {P(5)}, that is T explains two positive exam-
ples ¢(4) and p(5) given BK. Since T% is incomplete, the learner will generate a new clause, say

C:qU) —s(V,U),9(V)
which is consistent (it entails ¢(1) and ¢(2), given T, U BK), but when added to the recursive theory, it
makes clause Cy inconsistent (C2 =¢c1,cyuBk,= 1P(3)})

There are several ways to remove such inconsistency by revising the learned theory. Nienhuys-
Cheng and de Wolf [54] describe a complete method of specializing a logic theory with respect to sets of
positive and negative examples. The method is based upon unfolding, clause deletion and subsumption.
These operations are not applied to the last clause added to the theory, but may involve any clause of the
inconsistent theory. As a result, clauses learned in the first inductive steps could be totally changed or
even removed. This theory revision approach, however, is not coherent with the stepwise construction of
the theory 7' presented in Section 3, since it re-opens the whole question of the validity of clauses added
in the previous steps. An alternative approach consists of simple syntactic changes in the theory, which
eventually creates new layers in a logical theory, just as the stratification of a normal program creates
new strata [2].

Our recovery strategy proposal follows the latter approach, since it is based on the layering technique
illustrated in Section 4.1 (see Definition 4.9).

Example 5.2. In the previous example, it is possible to define only three layers for T U BK (see Fig-
ure 4):



56 D. Malerba/Learning Recursive Theories in the Normal ILP Setting

1 T°=BK with §(T9={f, g, s},
2 T!'={C1,C} with§(TH={q}, and
3 T?={Cy} with §(T?)={p}.
By reformulating C'; and Cs as follows:
C1: ¢ (X) — s(Y, X), f(Y)
Cy: p(Z) — s(W, Z),q' (W)
and by adding the following two clauses:
C3: q(A) — ¢'(A)
C: q(U) < s(V,U),9(V)
the new theory 77 will present three different layers:
1. 7°=BK with §(T"°)={f, g, s},
2. T ={C}} with 8(7"")={¢'}, and
3. T? ={Cy,C5,C} with 6(T"%)={q. p}.
It is easy to see that the theory 77 is consistent.

Level 2 [p] [q [p]
Level 1 [q] [ﬁ
Level 0 el [ Is] lgl [ [s]

Figure 4. Collapsed dependency graph for T5 and 7T%.

Due to theory restructuring, the number of layers may increase, as proved by the following proposi-
tion.

Proposition 5.1. Let T be a consistent theory partitioned into n layers, T = T° U ... UT? U ... U
T"~! and C be a definite clause whose addition to the theory 7" makes a clause in 7" inconsistent. Let
p € {p1,p2, ..., pr} be the predicate in the head of C, thatis 6({C'}) = {p}. Let T” be a theory obtained
from T by substituting all occurrences in T of the predicate p with a new predicate symbol p’. Then the
theory 7" = T" U {p(t1,...,tn) < P/ (t1,...,tn)} U {C} has a number of layers greater than or equal
to 7.

Proof:

Obviously, if the addition of C to T' makes 7" inconsistent then p is represented in the collapsed depen-
dency graph 4(T). Let [ be the level(p) in 4(T'). Since p’ replaces p in T, it has the same level of p
before theory restructuring, namely level(p’) = I in 4(T"). Moreover, level(p) > level(p’) in 4(T"). If
[ equals the maximum level of a node in 4(7T'), then the new theory 7" has a predicate at a greater level,
that is, the number of layers in 7" increases. Conversely, the level of all predicates ¢ depending on p in
T can either increase, because of the breaking of equivalence classes, or remain stable. O



D. Malerba/Learning Recursive Theories in the Normal ILP Setting 57

{Pre-conditions: T is consistent with respect to F; C'is consistent with respect to E' given T';
s({C}) S {p1,p2,-...pr}}
procedure verify_global_consistency(C, T, E)
partition the theory T into 7° U ... UT U ... UT" !
partition E into E°U...UEU...UE™ ! such that E* contains instances of 6(7")
for eachi € {0,1,...,n — 1}
if a negative example e~ € E exists such that 7' U {C} |= e~ then
{the addition of C' to T makes a clause in T" inconsistent }
let p be the predicate in head(C')
let p’ be a new predicate symbol
T" :=renaming p with p’ in T’
return 77 U {p(t1,...,t,) < p'(t1,...,tn)} U{C}
end for each
return 7'U {C'}
{Post-condition: T'= verify_global_consistency(C, T, E), 7" is consistent with respect to F,
LHM(T) C LHM(T")}

Figure 5. Procedure for theory layering. The input are the induced theory 7, the new induced clause C, the
background knowledge BK and the whole set of examples E. The procedure returns a new theory, which is
consistent and explains at least all examples explained by 7.

An example showing an increase of the number of layers and a breaking of equivalence classes is reported
in [19].

It is noteworthy that, under the assumption of 7" partially defining the predicates {p1,p2,...,p} to
learn, the addition of a clause C can make 7" inconsistent only if at least another clause for p € §({C})
has already been added to 7. In other words, inconsistency may occur when the following two conditions
hold:

a. (T contains a dependence p < ¢

b. the definition of p needs at least two clauses to explain all positive examples of p itself.

The procedure for theory layering is reported in Figure 5. Since the computational complexity
of the first partitioning step is linear in the number of vertices and arcs of the collapsed dependency
graph §(7T'), the real computational burden of the procedure verify_global consistency is in the test
T U{C} E e for each negative example e~ in E. Obviously, supposed that the induced theory is
a Datalog program, the above logical entailment can be computed by the terminating semi-naive proce-
dure for the computation of generalized implication (see Section 4.1).

The procedure returns a new theory, which is consistent and explains at least all examples explained
by T, as proved by the following two propositions.

Proposition 5.2. Let T be a consistent theory partitioned into n layers, T = T0U...UT/U...UT" !
and C be a definite clause which is consistent given 7" but makes a clause in 7" inconsistent when added



58 D. Malerba/Learning Recursive Theories in the Normal ILP Setting

toT. Letp € {p1,p2,...,pr} be the predicate in the head of C, that is 6({C}) = {p}. Let T” be a
theory obtained from T by substituting all occurrences of p in 7' with a new predicate symbol, p’. Then
the theory 77 = T" U {p(t1,...,tn) < D'(t1,...,t,)} U{C} is consistent.

Proof:
By definition LHM (T") = LHM (T" U {p(t1,...,tn) — p'(t1,...,tn)} U{C}).
Since the conclusions of C' cannot affect the conclusions of 7" U {p(t1,...,tn) < p'(t1,...,tn)}

because of the layering effect we have:

LHM(T" U{p(t1,...,tn) < P (t1,...,tn)} U{C}) =

= LHM(LHM(T" U {p(t1, ... tp) — p'(t1,...,tx)}) U{C}) =

LHM(LHM(T)U{p'(t1, ..., t,)| p(t1, ... t,) € LHM(T)} U {C})
since 7" U {p(t1,...,tn) «— D'(t1,...,ty)} simply renames p with p’ and adds the clause
p(t1, ... tn) < P/ (t1,...,t,). Moreover, the following equivalence holds:

LHM(LHM(T)U{p'(t1, ... tn)| pltr, ... ty) € LHM(T)}U{C}) =

= LHM(LHM(T)U{C}) U{p'(t1,...,tn)|p(t1,...,tn) € LHM(T)}
since new ground atoms p’(¢1, . .., t,) are generated on the basis of LH M (T) alone.

By chaining all these equivalences we have:

LHM(T"Y = LHM(LHM(T)U{C}) U{p'(t1,...,tn)| p(t1,...,tn) € LHM(T)}.
Suppose that 7" is inconsistent, that is, a ground atom H € LH M (T") exists, such that H is a negative
example in the training set. Obviously, H ¢ {p'(t1,...,t,)| p(t1,...,tn) € LHM(T)}, since negative
examples are instances of the predicates p1, pa, . .., p,. Moreover, H ¢ LHM (LHM (T') U{C'}) since
clause C is consistent given T, that is, LHM (LHM (T) U {C}) does not contain negative examples.
The contradiction follows. ad

Corollary. Let T be a consistent theory partitioned into n layers, T = 70U ... UT' U ... uT"!
and C be a definite clause whose addition to the theory 7" makes a clause in 7 inconsistent. Let
p € {p1,p2,...,pr} be the predicate in the head of C, that is 6({C}) = {p}. Let T” be a the-
ory obtained from 7T by substituting all occurrences of p in 7" with a new predicate symbol, p’, and
T =T"U{p(t1,...,tn) < p'(t1,...,t,)} U{C}. Then

LHM(T) C LHM(T")\{p(t1,...,tn) < p'(t1,...,tn)}

Proof:
It follows immediately from proof of Proposition 5.2, since
LHM(T"Y = LHM(LHM(T)U{C}) U{p'(t1,...,tn)| p(t1,...,tn) € LHM(T)}
and LHM (T")\{p(t1,...,tn) < 0'(t1,...,tn)} = LHM(LHM(T)U{C}) 2 LHM(T).
Set inclusion is strict if C' explains an example not previously explained by 7T'. O

In short, the new theory 7" obtained by layering is consistent when C' is consistent given 7" and it
keeps the original coverage of 7.

It is noteworthy that, in the proposed approach to consistency recovery, new predicates are invented,
which aim to accommodate previously acquired knowledge (theory) with the currently generated hy-
pothesis (clause).



D. Malerba/Learning Recursive Theories in the Normal ILP Setting 59

6. The ATRE system

ATRE is a multiple-concept learning system, which solves the following problem:
Given

e a set of concepts K1, K», ..., K, to be learned,

e a set of objects O described in a language Lo,

e a background knowledge BK described in a language L g,

e alanguage of hypotheses £ that defines the space of hypotheses Sy
e auser’s preference criterion PC,

Find
a (possibly recursive) logical theory 17" € Sy, defining the concepts C1, Cy, ..., C,, such that T" is com-
plete and consistent with respect to the set of observations and satisfies the preference criterion PC.

Two differences, with respect to the learning problem formulated in Section 2, are: the introduction
of the concept of the preference criterion and the replacement of the terms “predicates” and “examples”
with the words “concepts” and “objects”, respectively. The introduction of the preference criterion,
which was not required to describe the logical foundations of our learning procedure, is now necessary
to deal with the problem of selecting the “best” theory among those satisfying the completeness and
consistency properties. The second difference is due to ATRE’s representation formalism, which is
explained in the following subsection.

6.1. Representation issues

In ATRE the basic component of the representation languages Lo, Lpx, Ly is the literal, which takes
two distinct forms:

f(t1,...,tn) = Value (simple literal) and f(t1,...,t,) € [a..b] (set literal),
where f and g are function symbols called descriptors, t;’s and s;’s are terms and [a..b] is a closed
interval. Descriptors can be either nominal or linear, according to the ordering relation defined on their
domain values. In particular, no ordering relation is defined on the domain of nominal descriptors,
thus they can only appear in simple literals. On the contrary, a total ordering relation is defined for
linear domains, thus linear descriptors can also appear in set literals. Some examples of literals are:
color(X)=blue, distance(X,Y)=463.09, extension(X1)€[982.207 .. 983.103], and close_to(X,Y )=true.

The last example shows the lack of predicate symbols in the representation languages adopted by
ATRE. Therefore, the first-order literals p(X,Y") and —p(X,Y") will be represented as f,,(X,Y)=true and
fp(X.Y)=false, respectively, where f, is the function symbol associated to the predicate p. This means
that ATRE can deal with classical negation, —, but not with negation by failure, not [39]. Henceforth, for
the sake of simplicity, we will adopt the usual notation p(X,Y") and —=p(X,Y’), instead of f,(X,Y)=true
and fp(X,Y)=false, respectively.

Each concept K; to be learned is represented by a simple literal. Concepts sharing the same descriptor
(and arity), but having different values, define a multi-class problem [65], which imposes the membership



60 D. Malerba/Learning Recursive Theories in the Normal ILP Setting

of a training example in exactly one class, so that positive examples of one class are negative examples for
the other mutually exclusive classes. For instance, with reference to the application domain of document
image understanding reported in the next section, the concepts

K2 logic_type(X)=title
Ko: logic_type(X)=abstract, and
K3z logic_type(X)=author

define a three-class problem. Training examples of logic_type can be either instances of title, or ab-
stract, or author or any other logic type, but they cannot be instances of two (or more) logic types
simultaneously. Training examples of logic_type(X)=title will be considered negative for the con-
cepts logic_type(X)=abstract and logic_type(X)=author, and viceversa. Moreover, training examples of
logic_type(X)=other, which is not a concept we are interested in learning, are considered to be negative
examples of title, abstract and author.

It is noteworthy that also in multi-class problems it is possible to have concept dependencies ex-
pressed by recursive theories. For instance, with reference to the same document image understanding
domain, the following clause can be learned:

logic_type(X)=author «— on_top(Y,X) , logic_type(Y)=title
which expresses the dependence between the position of a block title and the position of a block author
in a page layout.

Concepts to be learned can also have different descriptors, as in the typical multiple predicate learning
problem concerning the ‘family’ domain:

Ky: mother(X,Y)=true
Kot father(X,Y)=true, and
Ks: ancestor(X,Y)=true

This flexibility in the formulation of the learning problem is a distinguishing characteristic of the
system.

ATRE’s language of observations Lo is object-centered, in the sense that observations are repre-
sented as ground multiple-head clauses [38], called objects, which have a conjunction of simple literals
in the head. The following is an instance of an object taken from the blocks-world:

Oq: type(blkl) = lintel Atype(blk2) = column «— pos(blkl) = hor, pos(blk2) = ver, on_top(blk1, blk2)
Note that this multiple-head clause is semantically equivalent to the definite program:

type(blkl) = lintel < pos(blkl) = hor, pos(blk2) = ver, on_top(blk1, blk2)

type(blk2) = column «— pos(blk1) = hor, pos(blk2) = ver, on_top(blk1, blk2)
but is not equivalent to the disjunctive clause:

type(blk1) = lintel, type(blk2) = column «— pos(blkl) = hor, pos(blk2) = ver, on_top(blk1, blk2)
whose comma in the head is interpreted as a disjunction and not a conjunction.

The notion of multiple-head clauses in ATRE adapts the notion of interpretation, which is common
to many relational data mining systems [18]. It presents two main advantages with respect to definite
clauses: better comprehensibility and efficiency. The former is basically due to the fact that multiple-
head clauses provide the system with a compact description of multiple properties to be predicted in



D. Malerba/Learning Recursive Theories in the Normal ILP Setting 61

complex objects. The second advantage is the possibility of having a unique representation of known
properties shared by a subset of observations. In fact, ATRE distinguishes objects from examples. As said
before, objects are ground multiple-head clauses (i.e., interpretations) which can be uniquely identified
by an object identifier OID. Examples are described as pairs (L, OID), where L is a literal in the head
of the object indicated by the object identifier OID. Examples can be considered positive or negative,
according to the concept to be learned. For instance (rype(blkl)=lintel, O1) is a positive example of the
concept type(X)=lintel, a negative example of the concept type(X)=column, and it is neither a positive nor
a negative example of the concept stable(X)=true. The body of an example (L, OID), body({L,0ID)), is
the body of the multiple-head clause identified by OID.

The object identifiers define a partitioning of the set of training examples. This makes the choice
of the seeds in the separate-and-parallel-conquer search strategy more efficient. Indeed, the basic as-
sumption made in ATRE is that each object contains examples explained by some base clauses of the
underlying recursive theory. Therefore, by choosing as seeds all examples of different concepts repre-
sented in one training object, it is possible to induce some of the correct base clauses. Mutually recursive
concept definitions will be generated only after some base clauses have been added to the theory. Prob-
lems caused by incomplete object descriptions violating the above assumption are not investigated in
this work, since they require the application of abductive operators, which are not available in the current
version of the system.

The language of hypotheses L is that of linked, range-restricted definite clauses [12] with simple
and set literals in the body and one simple literal in the head. It is noteworthy that ATRE also deals
with numeric descriptors. More precisely, given an n-ary function symbol, f(X7, ..., X,,), taking values
in a numerical domain, ATRE can produce hypotheses with set literals f(X1, ..., X,,) € [a..b], where
[a..b] is a numerical interval computed according to the same information theoretic criterion used in
INDUBI/CSL [43]. Much related work can also be found in other contexts, such as qualitative and
relational regression in inductive logic programming, and learning numerical constraints in inductive
constraint logic programming. An updated review can be found in the work by [36].

The background knowledge defines the relevant domain knowledge. It is expressed in a language
Lpr with the same constraints as the language of hypotheses. The following is an example of spatial
background knowledge:

close_to(X,Y) < distance(X,Y) € [0..20],
which states that two objects whose distance is between 0 and 20 are also close.

The representation languages used by ATRE do not seem to fit very well into the ILP framework,
but it is easy to transform ATRE’s definite clauses into Datalog clauses, extended with built-in pred-
icates. The transformation of literals like on_top(X,Y)=true or on_top(X,Y)=false is straightforward.’
In general, a simple literal f(t1,...,%,) = Value can be transformed into an (n + 1)-ary predicate
f(t1,...,tn, Value), while a set literal f(¢1,...,t,) € Range, where Range is an interval [a..b], can
be transformed into f(¢1,...,tn, Z),Z > a,Z < b. The relational operators > and < are built-in
predicates.

Thanks to this transformation it is possible to apply to ATRE all concepts and properties developed
in standard first-order logic languages. In particular, a clause can still be considered a set of literals,
and the definitions of resolution and #-subsumption for clauses with simple literals remain unchanged.
The only extension is due to the presence of set literals, whose transformation introduces the built-in

Negation can be removed by replacing the classical negation of each predicate p with a new predicate p~ [25].



62 D. Malerba/Learning Recursive Theories in the Normal ILP Setting

predicates > and <. In this case, a clause C' can be partitioned into two subsets of literals, those with
ordinary predicates, C,, and those with built-in predicates, Cy. A clause C' -subsumes a clause D if a
substitution 6 exists, such that C,6 C D, and the set of solutions of the constraints Cyf is a non-empty
set including the set of solutions of the constraints D). For instance, the following clause
C:p(X)=a+« q(X) €]0.5..1.5] Co ={p(X,a),q¢(X,Y)} Cp,={Y >05Y <1.5}
f-subsumes the following clause D for § = {X «— Z,Y «— W},
D:p(Z)=a+«—q(Z)€[0.7.1.2] D,={p(Z,a),q(Z,W)} Dy={W >0.7,W < 1.2}
as well as the ground clause D’ for = {X « z},

D' :p(x)=a«q(x) =0.9 D! :{p(x,a),q(x,0.9)} D; =10
but it does not #-subsume the clause:
D" :p(x)=a«q(zx) =19 D! {p(x,a),q(x,1.9)} Dy =10

since the set of Cpf solutions is empty.

Finally, we observe that the resolution of two definite clauses C' and D expressed in ATRE’s hy-
pothesis language L7, corresponds to the classical resolution principle, since the heads of C' and D are
always simple literals. Consequently, the generalized implication definition given in Section 4 can be
easily applied to ATRE.

6.2. Algorithmic issues

The main procedure of ATRE is shown in Figure 6. The system input is a set of objects, a background
knowledge, a set of concepts to be learned, and a preference criterion that guide the heuristic search in
the space of possible hypotheses.

To illustrate the algorithm, let us consider the input data in Table 1.

The first step towards the generation of inductive hypotheses is the saturation of all objects with
respect to the given BK [61], so that information that was implicit in the example, given the back-
ground knowledge, is made explicit (procedure saturate objects). In the above example, the satura-
tion of O involves the addition of the nine literals logically entailed by BK, that is, close_to(zones,
zoney), close_to(zoney, zones), close_to(zones, zoney), close_to(zones, zoney), close_to(zoney, zones),
close_to(zones, zoney), close_to(zones, zoneg), close_to(zoneg, zones) and close_to(zoneg, zoneg).

Initially, all positive and negative examples (pairs (L,0ID)) are generated for every concept to be
learned, the learned theory is empty and the set of concepts to be learned contains all K;. With refer-
ence to the above input data, the system generates two positive examples for K (downtown(zone;) and
downtown(zoner)), two positive examples for Ky (residential(zones) and residential(zoney)) and eight
negative examples equally distributed between Ky and Ko (—downtown(zones), —~downtown(zones),
—downtown(zone,), ~downtown(zones), —residential(zone1 ), —residential(zones), —residential(zoneg),
—residential(zoner)).

The conquer stage performs a general-to-specific beam search to generate a set of consistent, linked
and range-restricted clauses for the concepts to be learned. A seed is associated with each specialization
hierarchy. Seeds are chosen according to the textual order in which objects are given to the system. If
Oy is the first object with an example still uncovered of concept K, then Oy, is taken to generate seeds
for K;. In particular, all examples of K; in Oy, still uncovered will be selected as seeds, so it is possible
to have several specialization hierarchies for each concept.

Ground literals in the body of seed objects are generalized. In particular, the generalization of a
ground literal f(¢1,...,t,) = Value is obtained by turning distinct constants into distinct variables,



D. Malerba/Learning Recursive Theories in the Normal ILP Setting

procedure learn_recursive_theories( O, BK, {K1, ..., K,}, PC)
Saturated_O := saturate_objects(O, BK)
O := Saturated_O

E := generate_positive negative_examples (O, {K1,...,K,})
T:=0

Learned K := {K1, ..., K,}

repeat

Consistent_clauses := parallel_conquer_by _beam search(Learned K, E, PC)
C := find_best_clause(Consistent_clauses, PC )
Consistent T := verify_global_consistence(C, T, E, O)
T := Consistent_ T U {C}
O := saturate_objects(Saturated_O,T)
E := update_examples(T, E)
JoreachK; € Learned K do
if pos_example(K ;)=0) then Learned K := Learned K \{K;} endif

endforeach
until Learned K = ()
return T
Figure 6. ATRE 2.0: Main procedure.
Table 1. An example of input data to the main procedure
Objects 01 downtown(zone1 )\—residential(zoneq )\ residential(zones)\

—downtown(zones) N—downtown(zones) N residential(zoney) N\
—downtown(zone4) N—downtown(zones) N—residential(zones) N\
—residential(zoneg) N downtown(zoner) N—residential(zoner) «—
onthesea(zoney ), high_business_activity(zoney ), close_to(zoney,zones ),
low_business_activity(zones), close_to(zones,zoney),
adjacent(zoney,zones), onthesea(zones),
low_business_activity(zones), low_business_activity(zoney),
close_to(zoney,zones), high_business _activity(zones),
adjacent(zones,zoneg), low_business_activity(zoneg),
close_to(zoneg,zoneg), low_business_activity(zones),
close_to(zoney,zonezr), onthesea(zonez), high_business_activity(zonez)

BK close_to(X,Y) < adjacent(X,Y)
close_to(X,Y)« close_to(Y,X)

Concepts | K1 | downtown(_)=true
Ko | residential zone(_)=true

PC Minimize/maximize the number of negative/positive examples ex-
plained.

63



64 D. Malerba/Learning Recursive Theories in the Normal ILP Setting

and replacing all occurrences of a constant ¢; with the same variable X; (simple inverse substitution
[61]). Clause specialization is performed either by adding a new generalized seed literal that preserves
the property of linkedness of the clause or by restricting the interval of a set literal already in the body.
When a consistent, range-restricted clause is found it is put aside: The search stops when at least M
consistent, range-restricted clauses have been determined.

In the above example seeds are generated from the unique object O;. The procedure paral-
lel_conquer_by_beam_search generates a set of consistent clauses, whose minimum number is defined
by the user. By requiring the generation of at least one consistent clause with respect to the above
examples, this procedure returns the following set of clauses:

downtown(X) < onthesea(X), high_business_activity(X).

downtown(X) < onthesea(X), adjacent(X,Y).

downtown(X) < adjacent(X,Y), onthesea(Y).

In fact, the hypothesis space of the concept residential has been simultaneously explored, but when
only the three consistent clauses for the concept downfown have been found, no consistent clause for
residential has yet been discovered. Thus, the parallel-conquer procedure stops, since the number of
consistent clauses is greater than one.

At this point, the best one is selected according to the user’s preference criterion (procedure
find_best_clause). The default criterion is the maximization of the number of positive examples cov-
ered and the minimization of the complexity of the clause (here represented by the number of literals in
the body). In the above example, the first of the three clauses is selected.

Since the addition of a consistent clause may lead to an augmented, inconsistent theory, ATRE
applies the layering technique explained in Section 5 to recover the consistency (procedure ver-
ify_global_consistence). The only difference between the procedure reported in Figure 5 and that invoked
in ATRE’s main procedure is that also the set of objects O has to be passed in order to reconstruct the
body of the examples in E. The selected clause is used to re-saturate the object, so that recursive clauses
could be generated in the next call of the procedure parallel conquer_by beam search. Continuing the
previous example, the two literals added to O; are downtown(zone;) and downtown(zoner). This
operation enables ATRE to also generate the definition of the concept residential, which depends on the
concept downtown.

Finally, the procedure update _examples tags positive examples explained by the current learned the-
ory, so that they will no longer be considered for the generation of new clauses. The loop terminates
when all positive examples are tagged, which means that the learned theory is complete and consistent.
In the above example, (downtown(zoney),O1) and (downtown(zoner), O1) are tagged, that is, a com-
plete definition of downtown(-) = true has been learned. Since not all positive examples are tagged,
the procedure parallel_conquer_by_beam _search is re-invoked and returns the clause:

residential(X) <« close_to(X,Y), downtown(Y"), low_business_activity(X).

By re-saturating the object with both learned clauses, it becomes possible to generate a recursive
clause at the third iteration, namely:

residential(X) <« close_to(X,Y), residential(Y'), low_business_activity(X).

Therefore, the following sets of clauses is learned:

downtown(X) < onthesea(X), high_business_activity(X)

residential(X) « close_to(X,Y), downtown(Y), low_business_activity(X)

residential(X) « close_to(X,Y), residential(Y'), low_business_activity(X)
which is a simple recursive theory.



D. Malerba/Learning Recursive Theories in the Normal ILP Setting 65

6.3. Computational complexity

The generation of consistent clauses requires the exploration of a search space whose size is finite but
increases exponentially with the number of literals in the bodies of the selected seeds. Indeed, all clauses
in the specialization hierarchy of a seed example et = (L, OID) will be obtained by adding a set of
literals to the following clause:

f(X1,...,X,) = Value —

obtained by turning all constants in L into variables. Since literals used in the specialization process must
be generalizations of literals in the body of e™ obtained by turning constants to variables and possibly by
determining an interval (in the case of linear descriptors), the number of clauses is 2lbody(e )],

Nevertheless, ATRE explores only a polynomially bounded portion of this space. More precisely,
at the first step at most |body(e™)| clauses will be considered. Soon afterwards, P of them are selected
for the next specialization step (P is the beam of the search). During the second step each selected
hypothesis can be specialized in at most |body(e )| — 1 different ways. In general, at the i-th step, each
selected hypothesis can be specialized in at most |body(e™)| — i — 1 different ways. To sum up, the
number of generated clauses is:

’body(e*)‘fl
body(eH)| + X P-i=[body(e*)] + & [body(e?)| - (Jbody(e®)] — 1)

i=1
This analysis confirms the efficiency of the system while searching for a consistent clause, since the

number of tested hypotheses is linear in the beam of the search, and quadratic in the maximum number
of literals of a training object. Neither the arity of the function symbols nor the number of variables in
any learned clause affect the cost of the search, as it happens in other systems [57]. Since the number
of specialization hierarchies equals the number of training examples at worst, we can conclude that
the computational complexity of the procedure parallel conquer_by_beam search is polynomial in the
number of training examples, in the beam of the search, and in the maximum number of literals of a
training object.

Unfortunately, this analysis does not take into account the fact that the saturation of objects may
increase the number of literals of a training object. In the worst case, such a number might be exponential
in the number of constants in the body of objects, thus making the upper bound of the computational
complexity of the search exponential.

7. Experimental results

ATRE has been implemented in Prolog and C++. In this section we show the results for some multiple
concept learning problems. The first experiments refer to the domain of family relations used to test
MPL [15]. Then we present a real world application, namely, document image understanding, where
interrelated definitions of logic components are possible. Other results concerning the induction of a
mutual recursive theory for odd and even numbers and an application to cognitive modeling are reported
in [42] and are available in the web site of the system. Finally, ATRE has been applied to geographi-
cal knowledge discovery [41], although the main feature of the system tested in that application is the
handling of numerical attributes and relations in a first-order context.



66 D. Malerba/Learning Recursive Theories in the Normal ILP Setting

7.1. The domain of family relations

De Raedt and Lavrac [15] defined a class of experiments on the domain of family relations. The first
experiment aims at learning the definitions of ancestor, father and mother from a complete set of positive
and negative examples. In MPL the negative examples were generated under close world assumption, and
the knowledge base contained some ground atoms concerning the predicates male, female and parent.
A convenient representation for ATRE is a single object in which all positive and negative examples of
ancestor, father and mother are explicitly reported in the head, while all instances of male, female and
parent are reported in the body.

The simple recursive theory learned by MPL is the very elegant:

ancestor(X,Y) « parent(X,Y)

father(X,Y) « parent(X,Y), male(X)

mother(X,Y) < parent(X,Y), female(X)

ancestor(X,Y) <« parent(X, Z), ancestor(Z,Y).

Clauses are reported in the order in which they are learned. For this problem ATRE learns a correct
theory in 68s on a PentiumlIl PC — 1GHz, though different and less intuitive, namely:

ancestor1(X1, X2) « parent(X1, X2)

father(X1, X2) «— ancestor1(X1, X2), male(X1)

mother(X1, X2) «— ancestor1(X1, X2), female(X1)

ancestor(X1, X2) < ancestor1(X1, X2)

ancestor(X1, X2) — father(X1, X3), ancestor(X3, X2)

ancestor(X1, X2) < mother(X1, X3), ancestor(X3, X2).

In the above theory a new predicate ancestorl has been ‘invented’ due to consistency recovery.
Taking into account that ancestorl and parent are semantically equivalent, the interpretation of the above
theory is clearer. The explanation of this result is straightforward. The first three clauses generated by
ATRE are:

Cy: ancestor(X1, X2) « parent(X1, X2)

Cy: father(X1, X2) < ancestor(X1, X2), male(X1)

Cs3 : mother(X1, X2) « ancestor(X1, X2), female(X1).

In fact, ATRE overgeneralizes the definitions of father and mother, but at this point of the learning
process the system does not know the complete definition of ancestor and considers the clauses

father(X1, X2) « parent(X1, X2), male(X1)

mother(X1, X2) « parent(X1, X2), female(X1)
equivalent to Co and Cj respectively. ATRE discovers its overgeneralization error when the new clause

Cy : ancestor(X1, X2) « father(X1, X3),ancestor(X3, X2)
is added to the theory. At this point, the system applies the consistency recovering strategy and invents
the new predicate ancestorl.

It is noteworthy that these results are obtained by using a beam equal to 5. By enlarging the beam to
15, ATRE takes 180s to learn a theory analogous to that induced by MPL, namely:

ancestor(X,Y) « parent(X,Y)

ancestor(X,Y) «— parent(X, Z), ancestor(Z,Y)

father(X,Y) « parent(X,Y), male(X)

mother(X,Y) <« parent(X,Y), female(X).



D. Malerba/Learning Recursive Theories in the Normal ILP Setting 67

This example also suggests some improvement of the system. Currently ATRE checks that
Cy ={c1)uBK,~ € for each example e of the concept father. The only examples of ancestor that are
considered in this test are those inferred by the partial definition C;. By augmenting the BK with
the set OH of all positive examples of ancestor available in the head of the object, that is, by testing
Cy =2(c1yuBkuor— € ATRE would not overgeneralize, at least not in this experiment, in which all
positive and negative examples of ancestor are input to the system. The reason for this modified test is
that, sooner or later, ATRE will generate clauses to cover all examples in OH. So we can anticipate some
of the conclusions to be drawn from prospectively generated clauses. This trick has also been adopted in
the work by Lamma et al. [33]. However, it does not work when a set of positive and negative examples
is incomplete, which explains why the consistency recovery strategy based on theory layering is still
necessary.

The second experiment of the family domain aims at learning male _ancestor and female ancestor
from father and mother. Once again, the training set is complete. MPL learned the following theory:

female_ancestor(X,Y) < mother(X,Y)

male_ancestor(X,Y) « father(X,Y)

female_ancestor(X,Y) «— mother(X, Z), female_ancestor(Z,Y)

male_ancestor(X,Y) « father(X,Z), female_ancestor(Z,Y)

male_ancestor(X,Y) « father(X, Z), male_ancestor(Z,Y)

female_ancestor(X,Y) <« female_ancestor(X, Z), male_ancestor(Z,Y).

ATRE learned a slightly different but equally correct reformulation of the MPL’s theory, that is:

male_ancestor(X1, X2) «— father(X1, X2)

female_ancestor(X1, X2) < mother(X1, X2)

male_ancestor(X1, X2) < male_ancestor(X1, X3), female_ancestor(X3, X2)

male_ancestor(X1, X2) <« male_ancestor(X1, X3), male_ancestor(X3, X2)

female_ancestor(X1, X2) «— female_ancestor(X1, X3), female_ancestor(X3, X2)
female_ancestor(X 1, X2) «— male_ancestor(X 3, X2), female_ancestor(X1, X3).
The beam used in this experiment is 5 and the learning time is 660s.

Finally, the third experiment on the family domain aims at learning father and grandfather from an
incomplete example set. The example set contains all positive examples of father and grandfather. The
negative examples are complete for grandfather and incomplete for father, since they are generated by
means of the rule:

father(X,Y) = false « parent(X,Y) = false.

Results reported for MPL are:

Cs: father(X,Y) < parent(X,Y)

Cs: grandfather(X,Y) «— male(X), parent(X, Z), parent(Z,Y)
while the theory learned by ATRE in 530s is:

C7: father(X1,X2) «— parent(X1, X2)

Cs: grandfather(X1, X2) < male(X1), father(X1, X3), father(X3, X2).

It is noteworthy that C's <(c7)- Cg, that is ATRE generates a more general theory. This means that
ATRE is more prone to make an error as soon as a mother is seen, since the definition of father is wrong.
However, ATRE also generated C and considered it indistinguishable from C's, with respect to covered
examples. Therefore, the result is simply influenced by the order in which these equivalent clauses have
been added to the set of solutions.



68 D. Malerba/Learning Recursive Theories in the Normal ILP Setting

7.2. Application to the document image understanding problem

ATRE has also been also applied to the problem of processing printed documents and its induced logical
theories are used by an intelligent document processing system, named WISDOM-++ (see the web site
http://www.di.uniba.it/~malerba/wisdom++/) [20]. Henceforth, only the specific problem of learning
rules for document image understanding will be dealt with. The main innovation with respect to previous
work is the automated discovery of possible concept dependencies, as well as the consideration of multi-
page documents.

A document is characterized by two different structures representing both its internal organization
and its content: the layout (or geometrical) structure and the logical structure. The former associates
the content of a document with a hierarchy of layout objects, such as text lines, vertical/horizontal lines,
graphic/photographic elements, pages, and so on. The latter associates the content of a document with a
hierarchy of logical objects, such as sender/receiver of a business letter, title/authors of an article, and so
on. Here, the term document image understanding denotes the process of mapping the layout structure
of a document into the corresponding logical structure. The document image understanding process is
based on the assumption that document images can be understood on the basis of their layout structures
alone.

The mapping of the layout structure into the logical structure can be represented as a set of rules.
Traditionally, such rules were hand-coded for particular kinds of document [53], requiring much human
tuning and effort. We propose the application of inductive learning techniques to generate the rules
automatically from a set of training examples. The user-trainer is asked to label some layout components
of a set of training documents according to their logical meaning. Those layout components with no
clear logical meaning are not labeled. Therefore, each document generates as many training examples as
the number of layout components.

In this application, we have a multi-class learning problem. Concepts correspond to the distinct
logical components to be recognized in a document. They are defined by different values taken by the
descriptor logic_type. The unlabelled layout objects act as counterexamples for all the concepts to be
learned, since they are instances of the concept logic_type(X) = unde fined.

Each training document is represented as an object in ATRE, where different constants represent
distinct layout components of a page. The description of a document page is reported in Figure 7, while
Table 2 lists all the descriptors used to represent a page layout of a multi-page document.

The following four rules are used as background knowledge, in order to automatically associate
information on page order to layout blocks.

at_page(X) = first — part_of (Y, X),page(Y) = first

at_page(X) = intermediate «— part_of (Y, X), page(Y') = intermediate

at_page(X) = last_but_one — part_of (Y, X), page(Y) = last_but_one

at_page(X) = last «— part_of (Y, X),page(Y) = last

Three long papers, which appeared in the January 1996 issue of the IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), have been considered. The papers contain thirty-seven pages,
each of which has a variable number of layout components (about ten on average). The total number of
layout components is 380 but only 170 of them can be associated with one of the following eleven logical
labels: abstract, affiliation, author, biography, caption, figure, index_term, page number, references,
running_head, title. Remaining blocks are considered instances of the logical component body, for which
we are not interested in learning recognition rules.



D. Malerba/Learning Recursive Theories in the Normal ILP Setting

Table 2. Descriptors used by WISDOM++ to represent the page layout of a multi-page document

x_pos_centre(block)
y_pos_centre(block)
type_of(block)

part_of(page,block)
on_top(block1,block?2)
to_right(block1,block?2)

alignment(block1,block?2)

Descriptor Domain

page(page) Nominal domain: first, intermediate, last_but_one, last
width(block) Integer domain: (1..640)

height(block) Integer domain: (1..875)

Integer domain: (1..640)

Integer domain: (1..875)

Nominal domain: text, hor_line, image, ver_line,
graphic, mixed

Boolean domain: true if page contains block

Boolean domain: true if block1 is above block2

Boolean domain: true if block2 is to the right of
block1

Nominal domain:  onlyleft_col, only_right_col,
only_middle_col, both_columns, only_upper_row,
only_lower_row, only_middle_row, both_rows

& tpamil-1.TIF - Wisdom++
File Operate View P

Leamning  M: Help

e e L= e o T e < T e e o = A

: Rule Description - [E\Wisdom\Users\mpd\... [H[=] F3

bage mumbes

T elivi ing Modeal for Tracking Roz page(l)=first B
in Satellite Images part_of(1 2)=true,

S8 g R S

par_of(118)=true.
| wicth(2)=290,

wnclth(3)=94,

widlthi(16)=105.

height{2)=5.

height(3)=6,

height(16)=5,
type_of(2)=hor_line.
type_of(3)=tex.

type_of(16)=text.
x_pos_centre(2)=164
x_pos_centre(3)=362.

x_pos_centre(16)=286,
V_pos_centre(2)=26,
w_pos_centre(3)=26,

v_pos_centre(16)=784,
on_top(2 B)=true,
on_top(35)=true.

on_top(13.14)=true,
to_right(12.18)=tue.

to_right(d,10)=true.
slignment(2.11)=only_left_col,

alignment(4.15)=only_nght_col,

alignment(3.4)=only_middle_row hd
4| | >

ForHelp, press F1 i

Enc:me;l;MmPnge |Page1/14 [LevelFrame2 VElnckType‘All Doc. dass:Long NUM |

69

Figure 7. Layout of the first page of a multi-page document (left) and its partial description in a first-order logic

language (right)



70 D. Malerba/Learning Recursive Theories in the Normal ILP Setting

Learning rules for the recognition of semantically relevant layout components in a document raises
issues concerning the induction of recursive theories. Simple and mutual concept dependencies are to be
handled, since the logical components refer to a part of the document rather than to the whole document
and they may be related to each other. For instance, in the case of papers published in journals, the
following dependent clauses:

running_head(X) « top_left(X), text(X), even_page_number(X)

running_head(X) «— top_right(X), text(X), odd_page_number(X)

paragraph(Y') « ontop(X,Y), running_head(X), text(Y")
express the fact that a textual layout component at the top left (right) hand corner of an odd (even) page
is a running head, while a textual layout component below a running-head is a paragraph of the paper.
Moreover, the recursive clause

paragraph(Y') «— ontop(X,Y), paragraph(X), text(Y)
is useful to classify all textual layout components below the upper-most paragraph. Therefore, document
understanding seems to be the kind of application that may benefit from learning strategies for multiple
predicate learning.

By running ATRE on the training set described above, the theory in Table 3 is returned. The beam
used in this experiment is 15 and the learning time is about 1,086s. Clauses are reported in the order
in which they are learned. They have been filtered out from candidate clauses during the evaluation
step, performed according to a composite preference criterion that minimizes the number of negative
examples covered, maximizes the number of positive examples covered, and minimizes the cost of the
clause. The theory contains some concept dependencies (see clauses 11 and 15, 17, 19 and 20), which
are all plausible. The significance of these clauses is more evident by looking at the number of positive
examples covered by each of them (see the fourth column). In particular ATRE discovers the following
concept dependencies: page number < running_head and figure «— caption. Therefore, the learned
theory has two distinct layers: abstract, affiliation, author, biography, figure, index_term, page _number,
references, and title are in one layer, while running _head and caption are in the other.

In order to test the predictive accuracy of the learned theory, we considered the fourth long article
published in the same issue of the transactions used for training. WISDOM++ segmented the fourteen
pages of the article into 169 layout components, sixty of which were instances of one of the concepts
used in the training set, while the remaining 109 are instances of the concept body for which no rule was
generated. The learned theory may commit both omission and commission errors. In particular, it per-
formed sixteen omission errors, that is about 26% (16/60) of the blocks to be labeled were not correctly
recognized by the theory, and fourteen commission errors, that is about 1.1% (14/(109x 11+60x10)) of
possible commission errors (the worst case being the association of each block with all concepts except
for the correct one). Many of the omission errors are due to near misses. For instance, the title of the
first page is not recognized simply because its height is 54, while the range of width values determined
by ATRE in the training phase is [18..53] (see clause 13). Significant recovery of omission errors can be
obtained by relaxing the definition of subsumption between definite clauses [21].

8. Discussion

In this paper we have discussed and proposed computational solutions to some relevant issues raised by
the induction of recursive theories in the normal ILP setting. A separate-and-parallel-conquer search



D. Malerba/Learning Recursive Theories in the Normal ILP Setting 71

1 logic_type(X)=running_head < height(X) € [6..9], 36 36
y_pos_centre(X) € [18..35], width(X) € [77..544]

2 logic_type(X) = figure < height(X) € [90..313], 20 20
width(X) € [9..255], at_page(X)=intermediate

3 logic_type(X)=page_number «+ y_pos_centre(X) € [19..29], 14 14
width(X) € [2..8]

4 logic_type(X)=page_number « width(X)€[4 .. 8], 10 20
y_pos_centre(X)€[22..40]

5  logic_type(X)=figure «+ type_of(X)=image, at_page(X)=intermediate 7 17

6 logic_type(X)=figure « type_of(X)=graphic 25 35

7 logic_type(X)=abstract «<— at_page(X)=first, width(X)&[487..488] 3

8  logic_type(X)=affiliation < at_page(X)=first,

y_pos_centre(X)€[720..745]

9  logic_type(X)=author «+ at_page(X)=first, 3 3
y_pos_centre(X)e[128..158]
10 logic_type(X)=biography «— at_page(X)=last, height(X)€[65..234] 3 3
11 logic_type(X)=caption « alignment(Y,X)=only_middle_col, 13 13
logic_type(Y)=figure, type_of(X)=text, height(X)<[18 .. 75]
12 logic_type(X)=index _term « height(X)€[8 .. 8], 3 3

y_pos_centre(X)€[263..295]
13 logic_type(X)=title < at_page(X)=first, height(X)€[18 .. 53]

14 logic_type(X)=references <+ width(X)c[268..268],
height(X)e[332..355]

15  logic_type(X)=running_head « alignment(Y,X)=only _upper_row, 2 14
logic_type(Y)=page_number

16  logic_type(X)=references < height(X)&[339..355] 2 3

17 logic_type(X)=caption « height(X)€[9..40], 11 22
on_top(Y,X), logic_type(Y)=figure, width(Y)€[5..364]

18  logic_type(X)=caption <« height(X)€[9..9], 2 4
y_pos_centre(X)€[417..605]

19 logic_type(X)=caption < on_top(Y,X), 1 2
alignment(Y,Z)=only_lower_row, logic_type(Y)=figure

20  logic_type(X)=caption « width(X)€[419..546], on_top(X,Y), 5 9
logic_type(Y)=figure

Total 170

Table 3. Theory learned for the document image understanding problem. The third column reports the number
of additional training examples explained by each clause when added to the theory. The fourth column reports the
number of training examples actually explained by each clause.



72 D. Malerba/Learning Recursive Theories in the Normal ILP Setting

strategy has been adopted to synchronize and interleave the learning of clauses by supplying predicates
with mutually recursive definitions. A novel generality order, called generalized implication, has been
imposed on the search space of clauses, in order to cope with recursion in a more suitable way. A layering
technique based on the collapsed dependency graph has been investigated to recover the consistency of
a partially learned theory. These ideas have been implemented in the ILP system ATRE, which is also
characterized by the object-centered representation of training examples. Some experimental results are
reported for some laboratory-sized data as well as for data obtained by processing multi-page document
images.
We continue this work by discussing both related researches and ideas for future developments.

8.1. Related work

ATRE presents several innovations with respect to previous works on multiple predicate learning, namely
MPL [16, 15] and its extension to normal logic programs NMPL [24], MULT _ICN [45], and RTL [26].

First, the separate-and-parallel-conquer search strategy provides ATRE with a solution to the prob-
lem of interleaving the induction process for distinct predicate definitions. According to this strategy, the
generation of clauses that introduce a (mutual) dependence of a predicate p on a predicate g (or p itself)
is possible only after at least one recursion base clause for ¢ (p) has been found. Moreover, ATRE op-
erates in a one-shot way, that is, with no additional synthesis step, as in RTL, and the iterative bootstrap
induction method by Jorge and Brazdil [30].

MPL solves the interleaving problem by performing a greedy hill-climbing search for theories and
a beam search for each single clause. Clauses can be generated by means of two types of refinement
operators, one for the body and one for the head. In particular, it is possible to generate the body of a
clause without specifying its head. The subsequent refinement of the heads introduces possibly different
predicates and the system chooses the most promising clause according to an interestingness measure
[16]. The generation of clauses like p «<— p is not forbidden, and it is possible to generate a recursive
clause for a predicate p, before a base clause for p has been found.

The strategy adopted in NMPL is slightly different from that of MPL. At the high level NMPL
follows the classical separate-and-conquer search strategy. The innovation is in the conquer strategy,
where the same refinement (literal addition) is applied to clauses with different heads. The heuristics for
evaluating the best refinement in this greedy conquer strategy is based on the Laplace estimate [17]. Un-
fortunately, two aspects are unclear. First, how to specialize with the same literal, say less than(A, B),
two clauses whose heads have different arity, such as, ordered(L) and between(X,Y, Z). Second, how
the generation of infinite recursive definitions (e.g., p «<— p) is prevented or dealt with.

A completely different approach is adopted in MULT_ICN. Again, at the high level, the separate-
and-conquer search strategy is used. During the conquer stage, the system chooses the predicate to
be learned. Preference is given to those target predicates whose definition is incomplete (that is, not all
positive examples have been covered) and appear in the body of previously learned clauses. For instance,
if the first generated clause is the following:

odd(X) «— succ(Y, X), even(Y)
at the second step the system tries to learn the definition of even(Y). In other words, base clauses are the
last to be learned.

The generalization model represents another difference between ATRE and the other multiple predi-
cate learning systems. MPL adopts two different generalization models during its search: 6-subsumption,



D. Malerba/Learning Recursive Theories in the Normal ILP Setting 73

while learning a single clause, and logical entailment, while learning the whole theory. Therefore, two
distinct checks are performed by the system for each learned clause: a local consistency/completeness
check based on #-subsumption (extensional coverage) and a global check based on logical entailment
(intensional coverage). A similar approach is also adopted by MULT _ICN. However, as pointed out by
Martin and Vrain [45], the extensional coverage test can lead to the generation of non-terminating, but
extensionally valid, theories, such as the following:

even(A) «— zero(A)

odd(A) «— succ(A, B), even(B)

even(A) « suce(B, A), odd(B)
which defines odd and even numbers on the basis of their successors (and not predecessors). To avoid this
problem, MULT _ICN introduces an acceptability criterion for a clause and lets the user choose the right
rate of acceptability. MPL solves the problem differently, by deleting globally incorrect and irrelevant
clauses added to the theory. Therefore, when the clause

odd(A) «— succ(A, B), even(B)
is generated as the best clause, it is first added to the theory and soon after removed, because it is globally
irrelevant (no positive examples of odd numbers are covered). However, in this approach it is not clear
how to select the clause to remove, when more than one is globally irrelevant or inconsistent. Moreover,
care should be taken not to get into infinite loops by first deleting clauses and then adding them again.

Similarly to Progol, MPL uses a depth-bounded interpreter to check whether an induced theory
logically entails an example. This depth-bound allows the system to check both consistency and com-
pleteness properties in the case of infinite recursive definitions (e.g., p < p). Although not explicitly
stated, a similar depth-bounded approach should be adopted in NMPL, where logical entailment is used
to check the properties of completeness and consistency of a clause.

Systems that adopt the extensional (or #-subsumption based) coverage tests have an additional prob-
lem in learning recursive clauses when examples are sparse. This problem is less evident in ATRE, which
can learn the correct definition of odd and even numbers, also when the example set is incomplete [42].

Finally, problems caused by the non-monotonicity property of the normal ILP setting have not been
considered in some multiple predicate learning systems, such as MULT ICN and NMPL. As explained
in Section 6, this is a crucial aspect of the multiple predicate learning problem. Progol, for instance,
cannot be properly considered a multiple predicate learning system since it can induce theories that
are globally inconsistent. MPL solves the problem by means of the clause deletion technique, although
undoing previous work may considerably increase the learning time. ATRE adopts the layering technique
and invents a new predicate, when the addition of a clause to the theory interferes with another clause
already added to the theory. As shown in Section 7.1, the application of the layering technique does not
prevent ATRE from discovering equally correct theories, which could be later simplified by keeping the
minimum Herbrand model (theory restructuring) [62, 63].

8.2. Further work

The current implementation of ATRE is not optimal. One of the reasons is that every time a clause is
added to the theory, the specialization hierarchies are reconstructed for a new set of seeds, which may
intersect the set of seeds explored in the previous step. In other words, it is possible that the system
explores the same specialization hierarchies several times, since it has no memory of the work done in
previous steps. Currently, we are optimizing the separate-and-parallel-conquer search strategy to stop it



74 D. Malerba/Learning Recursive Theories in the Normal ILP Setting

exploring the specialization hierarchies repeatedly during the learning process. This approach is based on
complex caching techniques, whose effectiveness is clear when concepts to learn are neither recursively
definable nor mutually dependent.

Another important aspect is the abundance of candidate consistent clauses that the ATRE’s paral-
lel_conquer_by_beam_search procedure can generate. Currently, only the best clause with respect to the
user’s preference criterion is selected, but, even in this case, we observed that often many ‘equivalent’
clauses exist, given a preference criterion. This means that ATRE makes a blind choice among many
equally good clauses. Whether better selection strategies exist and how sets of equivalent clauses can be
used in recursive theory learning is still an open question.

Finally, the well-known issues of sparse and noisy training sets make the problem of learning re-
cursive theories even harder. The integration of abductive mechanisms in inductive learning algorithms
can be a solution to the problems of data sparseness and class noise [22], while the presence of noise in
the background knowledge requires probabilistic tests, similar to the extension of the #-subsumption test
proposed by [21].

9. Web site

A stand-alone release of the ATRE 2.0 system together with the data sets used in the experiments can be
downloaded from http://www.di.uniba.it/~malerba/software/atre/.

10. Acknowledgments

The author is grateful to Floriana Esposito and David Lorenzo for interesting discussions and suggestions
concerning this work. Thanks to Margherita Berardi and Francesca A. Lisi for their assistance with some
experiments. The author also wishes to thank Michelangelo Ceci and Lynn Rudd who devoted much
time reading the manuscript.

References

[1] Aha, D. W, Lapointe, S., Ling, C. X., Matwin, S.: Learning recursive relations with randomly selected small
training sets, Proc. Eleventh International Conference on Machine Learning, 1994.

[2] Apt, K. R.: Logic programming, in: Handbook of Theoretical Computer Science (J. van Leeuwen, Ed.),
vol. B, Elsevier, Amsterdam, 1990, 493-574.

[3] Bergadano, F., Gunetti, D.: Learning clauses by tracing derivations, in: Proc. of the Fourth International
Workshop on Inductive Logic Programming (S. Wrobel, Ed.), vol. 237 of GMD-Studien, 1994.

[4] Bergadano, F., Gunetti, D.: Inductive Logic Programming: from machine learning to software engineering,
The MIT Press, Cambridge, MA, 1996.

[5] Bostrom, H.: Specialization of recursive predicates, in: Machine Learning: ECML-95 (N. Lavrac, S. Wrobel,
Eds.), vol. 912 of LNAI, Springer-Verlag, Berlin, 1995, 92-106.

[6] Bostrom, H.: Induction of Recursive Transfer Rules, in: Learning Language in Logic (J. Cussens,
S. Dzeroski, Eds.), vol. 1925 of LNAI, Springer-Verlag, Berlin, 2000, 237-246.



(7]

(8]

(9]

(10]

(11]

[12]
[13]
[14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

[25]

[26]

[27]

D. Malerba/Learning Recursive Theories in the Normal ILP Setting 75

Bratko, I.: Applications of machine learning: towards knowledge synthesis, New Generation Computing, 11,
1993, 343-360.

Buntine, W.: Generalised subsumption and its applications to induction and redundancy, Artificial Intelli-
gence, 36, 1988, 149-176.

Cameron-Jones, R. M., Quinlan, J. R.: Avoiding pitfalls when learning recursive theories, Proc. Twelfth
International Joint Conference on Artificial Intelligence, 1993.

Ceri, S., Gottlob, G., L.Tanca: What you always wanted to know about Datalog (and never dared to ask),
IEEE Transactions on Knowledge and Data Engineering, 1(1), 1989, 146-166.

Cohen, W. W.: Learnability of restricted logic programs, Proc. 3rd International Workshop on Inductive
Logic Programming (S. Muggleton, Ed.), 1993.

De Raedt, L.: Interactive Theory Revision, Academic Press, London, 1992.
De Raedt, L., Dehaspe, L.: Clausal discovery, Machine Learning Journal, 26(2/3), 1997, 99-146.

De Raedt, L., Lavrac, N.: The many faces of inductive logic programming, in: Methodologies for Intelligent
Systems (J. Komorowski, Z.W.Ras§, Eds.), vol. 689 of LNAI, Springer-Verlag, 1993, 435-449.

De Raedt, L., Lavrac, N.: Multiple predicate learning in two Inductive Logic Programming settings, Journal
on Pure and Applied Logic, 4(2), 1996, 227-254.

De Raedt, L., Lavra¢, N., Dzeroski, S.: Multiple predicate learning, Proc. 13th International Joint Conference
on Artificial Intelligence, 1993.

Dzeroski, S., Bratko, I.: Handling Noise in Inductive Logic Programming, Proc. Second International
Workshop on Inductive Logic Programming, Institute for New Generation Computing Technology, 1992.

Dzeroski, S., Lavral, N.: Relational Data Mining, Springer-Verlag, Berlin, 2001.

Esposito, F., D.Malerba, Lisi, F. A.: Induction of recursive theories in the normal ILP setting: issues and
solutions, in: Inductive Logic Programming (J. Cussens, A. Frisch, Eds.), vol. 1866 of LNAI, Springer-
Verlag, Berlin, 2000, 93-111.

Esposito, F., Malerba, D., Lisi, F. A.: Machine Learning for Intelligent Processing of Printed Documents,
Journal of Intelligent Information Systems, 14(2/3), 2000, 175-198.

Esposito, F., Malerba, D., Marengo, V.: Inductive Learning from Numerical and Symbolic Data: An Inte-
grated Framework, Intelligent Data Analysis, 5(6), 2001, 445-461.

Esposito, F., Semeraro, G., Fanizzi, N., Ferilli, S.: Multistrategy Theory Revision: Induction and Abduction
in INTHELEX, Machine Learning Journal, 38(1/2), 2000, 133-156.

Flener, P., Yilmaz, S.: Inductive synthesis of recursive logic programs: achievements and prospects, Journal
of Logic Programming, Special Issue on Synthesis, Transformation, and Analysis, 41(2-3), 1999, 141-195.

Fogel, L., Zaverucha, G.: Normal Programs and Multiple Predicate Learning, in: Inductive Logic Program-
ming (D. Page, Ed.), vol. 1446 of LNAI, Springer-Verlag, 1998, 175-184.

Gelfond, M., Lifschitz, V.: Logic programs with classical negation, Proc. of the Seventh International Logic
Programming Conference, MIT Press, Cambridge, 1990.

Giordana, A., Saitta, L., Baroglio, C.: Learning simple recursive theories, in: Methodologies for Intelligent
Systems (J. Komorowski, Z. Ras$, Eds.), vol. 689 of LNAI, Springer-Verlag, 1993, 425-434.

Gottlob, G.: Subsumption and Implication, Information Processing Letters, 24(2), 1987, 109-111.



76

[28]

[42]

[43]

[47]

D. Malerba/Learning Recursive Theories in the Normal ILP Setting

Idestam-Almaquist, P.: Generalization of clauses, Ph.D. Thesis, Department of Computer and Systems Sci-
ences, Stockholm University and Royal Institute of Technology, Stockholm, Sweden, 1993.

Idestam-Almquist, P.: Efficient induction of recursive definitions by structural analysis of saturations, in:
Advances in Inductive Logic Programming (L. De Raedt, Ed.), IOS Press, Amsterdam, 1996, 192-205.

Jorge, A., Brazdil, P.: Architecture for iterative learning of recursive definitions, in: Advances in Inductive
Logic Programming (L. De Raedt, Ed.), IOS Press, Amsterdam, 1996, 206-218.

Khardon, R.: Learning to take Actions, Machine Learning Journal, 35(1), 1999, 57-90.

Khardon, R.: Learning Horn Expressions with LogAn-H, Proc. of the Seventeenth International Conference
on Machine Learning, 2000.

Lamma, E., Mello, P.,, Milano, M., Riguzzi, F.: Integrating Extensional and Intensional ILP Systems through
Abduction, Proc. of the Seventh International Workshop on Logic Program Synthesis and Transformation
(LOPSTR’97), 1997.

Lapointe, S., Matwin, S.: Sub-unification: A tool for efficient induction of recursive programs, Proc. of the
Ninth International Conference on Machine Learning, Morgan Kaufmann, Aberdeeen, 1992.

Lavrac, N., DZeroski, S.: Inductive Logic Programming: techniques and applications, Ellis Horwood, Chich-
ester, 1994,

Lavra¢, N., DZeroski, S., Bratko, I.: Handling imperfect data in inductive logic programming, in: Advances
in Inductive Logic Programming (L. De Raedt, Ed.), IOS Press, Amsterdam, 1996, 48-64.

van Leeuwen, J.: Graph Algorithms, vol. A of Handbook of Theoretical Computer Science, Elsevier, Ams-
terdam, 1990, 525-631.

Levi, G., Sirovich, F.: Generalized and-or graphs, Artificial Intelligence, 7, 1976, 243-259.
Lloyd, J. W.: Foundations of Logic Programming, Second edition, Springer-Verlag, Berlin, 1987.

Lorenzo, D., Otero, R. P.: Learning to reason about actions, Proc. of the Fourteenth European Conference
on Artificial Intelligence (W. Horn, Ed.), IOS Press, Amsterdam, 2000.

Malerba, D., Esposito, F., Lanza, A., Lisi, F.: Machine learning for information extraction from topographic
maps, in: Geographic Data Mining and Knowledge Discovery (H. J. Miller, J. Han, Eds.), Taylor and Francis,
London, 2001, 291-314.

Malerba, D., Esposito, F., Lisi, F.: Learning Recursive Theories with ATRE, Proc. Thirteenth European
Conference on Artificial Intelligence (H. Prade, Ed.), John Wiley & Sons, Chichester, 1998.

Malerba, D., Esposito, F., Semeraro, G., Caggese, S.: Learning simple recursive theories, in: AI*IA 97:
Advances in Artificial Intelligence (M. Lenzerini, Ed.), vol. 1321 of LNAI, Springer-Verlag, 1997, 24-35.

Malerba, D., Semeraro, G., Esposito, F.: A multistrategy approach to learning multiple dependent concepts,
in: Machine Learning and Statistics: The interface (G. Nakhaeizadeh, C. Taylor, Eds.), John Wiley & Sons,
New York, 1997, 87-106.

Martin, L., Vrain, C.: A three-valued framework for the induction of general logic programs, in: Advances
in Inductive Logic Programming (L. De Raedt, Ed.), IOS Press, Amsterdam, 1996, 219-235.

Michalski, R.: A theory and methodology of inductive learning, in: Machine Learning - An Artificial Intelli-
gence Approach (R. Michalski, J. Carbonell, T. Mitchell, Eds.), Tioga Publishing Co., Palo Alto, CA, 1983,
83-133.

Mitchell, T.: Machine Learning, McGraw-Hill, 1997.



(48]

[49]
(50]

[51]
[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

[62]

[63]

[64]

[65]

[66]

D. Malerba/Learning Recursive Theories in the Normal ILP Setting 77

Mofizur, C., Numao, M.: Top-down induction of recursive programs from small number of sparse examples,
in: Advances in Inductive Logic Programming (L. De Raedt, Ed.), IOS Press, Amsterdam, 1996, 236-253.

Muggleton, S.: Inductive Logic Programming, Academic Press, London, 1992.

Muggleton, S.: Inverting Implication, Proceedings of the 2nd International Workshop on Inductive Logic
Programming (S. Muggleton, K. Furukawa, Eds.), 1992.

Muggleton, S.: Inverse Entailment and Progol, New Generation Computing, 13(3/4), 1995, 245-286.

Muggleton, S., Bryant, C.: Theory completion using inverse entailment, in: Inductive Logic Programming
(J. Cussens, A. Frisch, Eds.), vol. 1866 of LNAI, Springer-Verlag, 2000, 130-146.

Nagy, G., Seth, S., Stoddard, S.: A prototype document image analysis system for technical journals, /EEE
Computer, 25(7), 1992, 10-22.

Nienhuys-Cheng, S.-W., de Wolf, R.: A complete method for program specialization based upon unfolding,
Proc. Twelfth European Conference on Artificial Intelligence, 1996.

Nienhuys-Cheng, S.-W., de Wolf, R.: The Subsumption theorem in inductive logic programming: Facts and
fallacies, in: Advances in Inductive Logic Programming (L. De Raedt, Ed.), IOS Press, Amsterdam, 1996,
265-276.

Nienhuys-Cheng, S.-W., de Wolf, R.: Foundations of inductive logic programming, Springer, Heidelberg,
1997.

Pazzani, M., Kibler, D.: The utility of knowledge in inductive learning, Machine Learning Journal, 9, 1992,
57-94.

Plotkin, G.: A note on inductive generalization, vol. 5 of Machine Intelligence, Edinburgh University Press,
Edinburgh, 1970, 153-163.

Plotkin, G.: A further note on inductive generalization, vol. 6 of Machine Intelligence, Edinburgh University
Press, Edinburgh, 1971, 101-124.

Ramakrishnan, R., Srivastava, D., Sudarshan, S.: Rule ordering in bottom-up fixpoint evaluation of logic
programs, IEEE Transactions on Knowledge and Data Engineering, 6, 1994, 501-517.

Rouveirol, C.: Flattening and saturation: Two representation changes for generalization, Machine Learning
Journal, 14(2), 1994, 219-232.

Sommer, E.: FENDER: an approach to theory restructuring (extended abstract), in: Machine Learning:
ECML-95 (N. Lavracg, S. Wrobel, Eds.), vol. 912 of LNAI, Springer-Verlag, 1994, 356-359.

Sommer, E.: An approach to quantifying the quality of induced theories, Proc. IJCAI Workshop on Machine
Learning and Comprehensibility (C. Nedellec, Ed.), 1995.

Toussaint, J., Schmid, U., Wysotzki, F.: Using recursive control rules in planning, Proc. of ICAI Session on
Learning and Adapting in Al Planning, Las Vegas, 2001.

Van Laer, W., De Raedt, L., DZeroski, S.: On Multi-Class Problems and Discretization in Inductive Logic
Programming, in: Proceedings of the 10th International Symposium on Methodologies for Intelligent Systems
(ISM1S97) (Z. Ras, A. Skowron, Eds.), vol. 1325 of LNAI, Springer-Verlag, 1997, 277-286.

Zelezny, FE., Miksovsky, P., Stepankova, O., Zidek, J.: ILP for Automated Telephony, Inductive Logic Pro-
gramming (Work in Progress) (J. Cussens, A. Frisch, Eds.), 2000.



