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258	 Geographic Data Mining and Knowledge Discovery

Abstract 

The strength of a geographic information system (GIS) is in providing a rich data 
infrastructure for combining disparate data in meaningful ways, by using a spatial 
arrangement (e.g., proximity). As a toolbox, a GIS allows planners to perform spatial 
analysis using geo-processing functions, such as map overlay, connectivity measure-
ments, or thematic map coloring. Although this makes the geographic visualization 
of individual variables effective, complex multi-variate dependencies are easily over-
looked. The required step to take GIS beyond a tool for automating cartography is to 
incorporate the ability of analyzing and condensing a large number of geo-referenced 
variables into a single forecast or score. This is where spatial data mining promises 
great potential benefits and the reason why there is such a hand-in-glove fit between 
GIS and data mining facilities. INGENS 2.0 is a prototype GIS which resorts to 
emerging spatial data mining technology to support geographers, geologists, and 
town planners in discovering (descriptive and predictive) patterns, which are never 
explicitly represented in topographic maps or in a GIS-model and are useful in the 
task of topographic map interpretation. In spatial data mining, spatial dimension adds 
a substantial complexity to the data mining task. First, spatial objects are charac-
terized by a geometrical representation and relative positioning with respect to a 
reference system, which implicitly define spatial properties. Modeling these implicit 
spatial properties (attributes and relations) in order to associate them with clear 
semantics and a set of eficient procedures for their computation is the first challenge 
to be met when facing a spatial data mining problem. Second, spatial phenomena 
are characterized by autocorrelation, i.e., observations of spatially distributed ran-
dom variables are not location-independent. Third, spatial objects can be considered 
at different levels of abstraction (or granularity). Spatial data mining facilities in 
INGENS deal with these challenges in both inducing classification rules and discov-
ering association rules from spatial data. The spatial data mining process is aimed 
at a user who controls the parameters of the process by means of a query written in 
SDMOQL, a spatial data mining query language that permits the specification of the 
task-relevant data, the kind of knowledge to be mined, the background knowledge 
and the hierarchies and the interestingness measures. Some constraints on the query 
language are identified by the particular mining task. An application to a real reposi-
tory of topographic maps is briefly illustrated. 

10.1	 Introduction 

In a large number of application domains (e.g., traffic and fleet management, envi-
ronmental and ecological modeling), collected data are measurements of one or 
more attributes of objects that occupy specific locations with respect to the Earth’s 
surface. Collected geographic objects are characterized by a geometry (e.g., point, 
line, or polygon) which is formulated by means of a reference system and stored 
under a geographic database management system (GDBMS). The geometry implic-
itly defines both spatial properties, such as orientation, and spatial relationships of 
a different nature, such as topological (e.g., intersects), distance, or direction (e.g., 
north of) relations. 
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A GIS, is the software system that provides the infrastructure for editing, storing, 
analyzing, and displaying geographic objects, as well as related data on geoscientific, 
economic, and environmental situations [11]. Popular GISs (e.g., ArcView, MapInfo, 
and Open GIS) have been designed as a toolbox that allows planners to explore geo-
graphic data by means of geo-processing functions, such as zooming, overlaying, 
connectivity measurements, or thematic map coloring. Consequently, these GISs are 
provided with functionalities that make the geographic visualization of individual 
variables effective, but overlook complex multi-variate dependencies. Traditional 
GIS technology does not address the requirement of complex geographic libraries 
which search for relevant information, without any a priori knowledge of data set 
organization and content. In any case, GIS vendors and researchers now recognize 
this limitation and have begun to address it by adding spatial data interpretation capa-
bilities to the systems. 

A first attempt to integrate a GIS with a knowledge-base and some reasoning 
capabilities is reported in [43]. Nevertheless, this system has a limited range of appli-
cability for a variety of reasons. First, providing the GIS with operational definitions 
of some geographic concepts (e.g., morphological environments) is not a trivial task. 
Generally only declarative and abstract definitions, which are difficult to compile 
into database queries, are available. Second, the operational definitions of some 
geographic objects are strongly dependent on the data model adopted for the GIS. 
Finding relationships between density of vegetation and climate is easier with a raster 
data model, while determining the usual orientation of some morphological elements 
is simpler in a topological data model [15]. Third, different applications of a GIS will 
require the recognition of different geographic elements in a map. Providing the sys-
tem in advance with all the knowledge required for its various application domains 
is simply illusory, especially in the case of wide-ranging projects like those set up by 
governmental agencies. 

The solution to these difficulties can be found in spatial data mining [22], which 
investigates how interesting, but not explicitly available, knowledge (or pattern) can 
be extracted from spatial data. This knowledge may include classification rules, 
which describe the partition of the database into a given set of classes [22], clusters of 
spatial objects [19, 42], patterns describing spatial trends, that is, regular changes of 
one or more non-spatial attributes when moving away from a given start object [26], 
and subgroup patterns, which identify subgroups of spatial objects with an unusual, 
an unexpected, or a deviating distribution of a target variable [21]. 

Following the mainstream of research in spatial data mining, there have been 
several atttempts to enhance the applicability of GIS technology by leveraging the 
power of spatial data mining [6, 16, 18, 32, 34]. In all these cases, the GIS users 
are not interested in processing the geometry of geographic objects collected in 
spatial database, but in working at higher conceptual levels, where human-inter-
pretable properties and relationships between geographic objects are expressed.1 To 
bridge the gap between geometrical representation and conceptual representation of  

1	 A typical example is represented by the possible relations between two roads, which either cross each 
other, or run parallel, or can be confluent, independently of the fact that they are geometrically repre-
sented as “lines” or regions in a map.
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geographic objects, GISs are provided with facilities to compute the properties and 
relationships (features), which are implicit in the geometry of data. In most cases, 
these features are then stored as columns of a single double entry data table (or 
relational table), such that a classical data mining algorithm can be applied to trans-
formed data within the GIS platform. Unfortunately, the representation in a single 
double entry data table offers inadequate solutions with respect to spatial data anal-
ysis requirements. Indeed, information on the original heterogeneous structure of 
geographic data is partially lost: for each unit of analysis, a single row is constructed 
by considering the geographic objects which are spatially related to the unit of analy-
sis. Properties of objects of the same type are aggregated (e.g., by sum or mode) to 
be represented in a single value.

In this chapter, we present a prototype of GIS, called INGENS 2.0, that differs 
from most existing GISs in the fact that the data mining engine works in a first-order 
logic, thus providing functionalities to navigate relational structures of geographic 
data and generate potentially new forms of evidence. Originally built around the 
idea of applying the classification patterns induced from georeferenced data to the 
task of topographic map interpretation [31], INGENS 2.0 now extends its predeces-
sor INGENS [32] by combining several technologies, such as spatial DBMS, spatial 
data mining, and GIS within an open extensible Web-based architecture. Vectorized 
topographic maps are now stored in a spatial database [40], where mechanisms for 
accessing, filtering, and indexing spatial data are available free of charge for the GIS 
requests. Data mining facilities include the possibility of discovering operational 
definitions of geographic objects (e.g., fluvial landscape) not directly stored in the 
GIS database, as well as regularities in the spatial arrangement of geographic objects 
stored in the GIS database. The former are discovered in the form of classification 
rules, while the latter are discovered in the form of association rules. The opera-
tional definitions can then be used for predictive purpose, that is, to query a new 
map and recognize instances of geographic objects not directly modeled in the map 
itself. Efficient procedures are implemented to model spatial features not explicitly 
encoded in the spatial database. Such features are associated with clear semantics 
and represented in a first-order logic formalism. In addition, INGENS 2.0 integrates 
a spatial data mining query language, called SDMOQL [28], which interfaces users 
with the whole system and hides the different technologies. The entire spatial data 
mining process is condensed in a query written in SDMOQL and run on the server 
side. The query is graphically composed by means of a wizard on the client side. The 
GUI (graphical user interface) is a Web-based application that is designed to support 
several categories of users (administrators, map managers, data miners, and casual 
users) and allows them to acquire, update, or navigate vectorized maps stored in the 
spatial database, formulate SDMOQL queries, explore data mining results, and so 
on. Logging data and the history of users are maintained in the database. 

The chapter is organized as follows. In the next section, we discuss issues and 
challenges of leveraging the power of spatial data mining to enhance the applicabil-
ity of GIS technology. We present the architecture and data model of INGENS 2.0 
in Section 10.3 and the spatial data mining process in Section 10.4. The syntax of 
SDMOQL is described in Section 10.5. An application of INGENS 2.0 is reported 
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and discussed in Section 10.6. Finally, Section 10.7 gives conclusions and presents 
ideas for further work.

10.2	S patial Data Mining and GIS

Empowering a GIS with spatial data mining facilities presents some difficulties, 
since the design of a spatial data mining module depends on several aspects. The first 
aspect is the representation of spatial objects. In the literature, there are two types 
of data representations for the spatial data, that is, tessellation and vector [39]. They 
differ in storage, precision, and complexity of the spatial relation computation. The 
second aspect is the implicit definition of spatial relationships among objects. The 
three main types of spatial relationships are topological, distance, and directional 
relationships, for which several models have been proposed for the definition of their 
semantics (e.g., “9-intersection model” [14]). The third aspect is the heterogeneity of 
spatial objects. Spatial patterns often involve different types of objects (e.g., roads 
or rivers), which are described by completely different sets of features. The fourth 
aspect is the interaction between spatially close objects, which introduces different 
forms of spatial autocorrelation: spatial error (correlations across space in the error 
term), and spatial lag (the dependent variable in space i is affected by the indepen-
dent variables in space i, as well as those, dependent or independent, in space j ).

Classical data mining algorithms, such as those implemented in Weka [45], offer 
inadequate solutions with respect to these aspects. In fact, they work under the single 
table assumption [46], that is, units of analysis are represented as rows of a classical 
double-entry table (or database relation), where columns correspond to elementary 
(nominal, ordinal, or numeric) single-valued attributes. In any case, this represen-
tation neither deals with geographic data characterized by geometry, nor handles 
observations belonging to separate relations, nor naturally represents spatial relation-
ships, nor takes them into account when mining patterns. Differently, geographic (or 
spatial) data are naturally modeled as a set of relations R1,...,Rn, such that each Ri has 
a number of elementary attributes and possibly a geometry attribute (in which case 
a relation is a layer). In this perspective, a (multi-)relational data mining approach 
seems the most suitable for spatial data mining tasks, since (multi)relational data 
mining tools can be applied directly to data distributed on several relations and since 
they discover relational patterns [13].

Example. To investigate the social effects of public transportation in a British city, 
a geographic data set composed of three relations is considered (see Figure 10.1). 
The first relation, ED, contains information on enumeration districts, which are the 
smallest areal units for which census data are published in the U.K. In particular, ED 
has two attributes, the identifier of an enumeration district and a geometry attribute 
(a closed polyline), which describes the area covered by the enumeration district. 
The second relation, BL, describes all the bus lines which cross the city. In this case, 
relevant attributes are the name of a bus line, the geometry attribute (a line) repre-
sents the route of a bus and the type of bus line (classified as main or secondary). The 
third relation, CE, contains some census data relevant for the problem, namely, the 
number of households with 0, 1, or “more than 1” cars. This relation also includes 
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the identifier of the enumeration district, which is a foreign key for the table ED. A 
unit of analysis corresponds to an enumeration district (the target object), which is 
described in terms of the number of cars per household and crossing bus lines (bus 
lines are the task-relevant objects). The relationship between reference objects and 
task-relevant objects is established by means of a spatial join, which computes the 
intersection between the two layers ED and BL.

Although several spatial data mining methods have already been designed by 
resorting to the multi-relational approach [4, 7, 21, 29, 30], most GISs which inte-
grate data mining facilities [6, 16, 18] continue to frame the requests made by the 
spatial dimension within the classical data mining solution. Spatial properties and 
relationships of geographic objects are computed and stored as columns of a classical 
double-entry table, such that a classical data mining algorithm can be applied to the 
transformed data table.

At present, only two of the GISs reported in the literature integrate spatial data 
mining algorithms designed according to the multi-relational approach. They are 
SPIN! [34] and INGENS [32]. SPIN! is the spatial data mining platform developed 
within the EU research project of the same name. SPIN! assumes an object-relational 
data representation and offers facilities for multi-relational sub-group discovery and 
multi-relational association rule discovery. Subgroup discovery [21] is approached 
by taking advantage of a tight integration of the data mining algorithm with the 
database environment. Spatial relationships and attributes are then dynamically 
derived by exploiting spatial DBMS extension facilities (e.g., packages, cartridges, 
or extenders) and used to guide the subgroup discovery. Association rule discovery 
[4] works in first-order logic and is only loosely integrated with a spatial database by 
means of some middle layer module that extracts spatial attributes and relationships 
independently of the mining step and represents these features in a first-order logic 
formalism. INGENS is our first attempt to empower a GIS with inductive learn-
ing capabilities. Indeed, it integrates the inductive learning system, ATRE, which 
can induce first-order logic descriptions of some concepts from a set of training 
examples. INGENS assumes an object-oriented representation of data organized 
in topographic maps. The geographic data collection is organized according to an 
object-oriented data model and is stored in the object store object oriented DBMS. 
Since object store does not provide automatic facilities for storing, indexing, and 

FIGURE 10.1  Representation of geographic data on the social effects of public transporta-
tion in a British city.
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retrieving geographic objects, these facilities are completely managed by the GIS.  
In addition, INGENS integrates a Web-based GUI, where the user is simply asked to 
provide a set of (counter-) examples of geographic concepts of interest and a number 
of parameters that define the classification task more precisely. First-order descrip-
tions learned by ATRE are only visualized in a textual format. The data mining pro-
cess is condensed in a query written in SDMOQL [28], but the textual composition 
of the query is completely managed by the user.

10.3	 INGENS 2.0 architecture and spatial data model

The architecture of INGENS 2.0 is illustrated in Figure 10.2. It is designed as an 
open, highly extensible, Web-based architecture, where spatial data mining services 
are integrated within a GIS environment. The GIS functionalities are distributed 
among the following software components:

a Web-based •	 GUI for supporting users in all activities, that is, user log-in 
and log-out, acquisition and editing of a topographic map, visualization 
and exploration of a topographic map, execution of a data mining request 
formulated by means of a spatial data mining query;
the•	  User Management module for managing the access to the GIS (user 
creation, authentication, and history) for the different categories of users;
the•	  Map Management module for managing requests of map creation, 
acquisition, update, delete, visualization, and exploration;
the •	 Query Interpreter module for running user-composed SDMOQL que-
ries and performing a spatial data mining task of classification or associa-
tion rule discovery;
the •	 Feature Extractor module for automatically generating concep-
tual descriptions (in first-order logic) of geographic objects, by making 

FIGURE 10.2  INGENS 2.0 software architecture.
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explicit (spatial) properties and relationships, which are implicit in the 
spatial dimension of data;
the •	 Data Mining Server for running data mining algorithms;
the •	 Spatial Database for storing both map data and information on the 
user history (logging user identifier and password, privileges, and spatial 
data mining queries executed in the past).

The GUI can be accessed by four categories of users, namely, the GIS adminis-
trators, the map maintenance users, the data miners, and the casual end users. User 
profiles (e.g., authentication information, list of privileges) are stored in the database. 
The profile lists the topographic maps and the GIS functionalities to be accessed by 
the user. The administrator is the only user authorized to create, delete, or modify 
profiles of all other users of the GIS. The map maintenance user is in charge of 
upgrading the map repository stored in the spatial database by creating, updating, 
or deleting a map. The data miner can ask the GIS to discover either the operational 
definition of a geographic object or a spatial arrangement of geographic objects that 
are frequent on the topographic map under analysis. Finally, the casual end user is 
provided with geo-processing functionalities to navigate the topographic map, visu-
alize geographic objects, belonging to one or more map layers (roads, parcels, and so 
on), and perform zooming operations.

The user management module is in charge of the activities of creating, modifying, 
or deleting a user profile. Users are authorized to use only the GIS functionalities 
that match the privileges provided in their profiles.

The map management module executes the requests of the map maintenance 
users. This component interfaces with the spatial database in order to create or drop 
an instance of a topographic map, as well as retrieve and display geographic objects 
belonging to one or more layers of a map.

The query interpreter runs the SDMOQL queries composed by data miners. 
A query refers to one of the topographic maps accessible to the data miner and 
specifies the set of objects relevant to the task at hand, the kind of knowledge 
to be discovered (classification or association rules), the set of descriptors to be 
extracted from the map, the set of descriptors to be used for pattern description and 
optionally the background knowledge to be used in the discovery process, the geo-
graphic hierarchies, and the interestingness measures for pattern evaluation. The 
query interpreter’s responsibility is to ask the feature extractor to generate con-
ceptual descriptions of the geographic objects extracted from the spatial database 
and then to invoke the inference engine of the data mining server. The conceptual 
descriptions are conjunctive formulae in a first-order logic language, involving 
both spatial and non-spatial descriptors specified in the query. SDMOQL queries 
are maintained in the user workspace and can be reconsidered in a new data min-
ing process. Due to the complexity of the SDMOQL syntax, a user-friendly wizard 
is designed on the GUI side to graphically support data miners in formulating 
SDMOQL queries.

The data mining server provides a suite of data mining systems that can be run 
concurrently by multiple users to discover previously unknown, useful patterns in 
geographic data. Currently, the data mining server provides data miners with two 
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systems, ATRE [27] and SPADA [24]. ATRE is an inductive learning system that 
generates models of geographic objects from a set of training examples and counter- 
examples. SPADA is a spatial data mining system to discover multi-level spatial 
association rules, that is, association rules involving spatial objects at different gran-
ularity levels. In both cases, discovered patterns are returned to the GUI to be visual-
ized and interpreted by data miners.

The spatial database (SDB) can run on a separate computational unit, where topo-
graphic maps are stored according to an object-relational data model. The object-
relational DBMS used to store data is a commercial one (Oracle 10g) that includes 
spatial cartridges and extenders, so that full use is made of a well-developed, techno-
logically mature spatial DBMS. Moreover, the object-relational technology facilitates 
the extension of the DBMS to accommodate management of geographic objects.

At a conceptual level, the geographic information is modeled according to an 
object-based approach [41], which sees a topographic map as a surface littered with 
distinct, identifiable, and relevant objects that can be punctual, linear, or surfacic. 
Interactions between geographic objects are then described by means of topologi-
cal, directional, and distance-based operators. In addition, geographic objects are 
organized in a three-level hierarchy expressing the semantics of geographic objects 
independently of their physical representation (see Figure 10.3). The entity object is 
a total generalization of eight distinct entities, namely, hydrography, orography, land 
administration, vegetation, administrative (or political) boundary, ground transpor-
tation network, construction, and built-up area. Each of these is in turn a generaliza-
tion, for example, administrative boundary generalizes the entity’s city, province, 
county, or state.

At a logical level, geographic information is represented according to a hybrid 
model, which combines both a tessellation and a vector model [39]. The tessellation 

FIGURE 10.3  Hierarchical representation of geographic objects at different levels of 
granularity.
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model partitions the space into a number of cells, each of which is associated with 
a value of a given attribute. No variation is assumed within a cell and values corre-
spond to some aggregate function (e.g., average) computed on the original values in 
the cell. A grid of square cells is a special tessellation model called raster. In the vec-
tor model the geometry is represented by a vector of coordinates, which define points, 
lines, or polygons. Both data structures are used to represent geographic information 
in INGENS 2.0. The partitioning of a map into a grid of square cells simplifies the 
localization and indexing process. For each cell, the raster image in GIF format is 
stored, together with its coordinates and component geographic objects. These are 
represented by a vector of coordinates stored in the field Geometry of the database 
relation PHYSICAL OBJECT (see Figure 10.4), while their semantics are defined 
in the field LogicalObject of the database relation LOGICAL OBJECT. A foreign 
key constraint relates each tuple of PHYSICAL OBJECT to one tuple of LOGICAL 
OBJECT. Type inheritance is exploited to represent the conceptual hierarchy in 
Figure 10.3 at the logical level. Indeed, the type of the attribute LogicalObject 
(LOGICAL_OBJECT_TY) has eight subtypes, namely, HYDROGRAPHY_
TY, OROGRAPHY_TY,  LAND_ADMINISTRATION_TY,  VEGETATION_TY, 
ADMINISTRATIVE_BOUNDARY_TY, GROUND_TRANSPORTATION_TY, 
CONSTRUCTION_TY, and BUILDUP_AREA_TY. Each of these is in turn a gen-
eralization of new types according to the conceptual hierarchy.

Spatial and non-spatial features can be extracted from geographic objects stored 
in the SDB. Feature extraction requires complex data transformation processes to 
make spatial properties and relationships explicit. This task is performed by the fea-
ture extractor module, which makes possible a loose coupling between data mining 
services and the SDB. The feature extractor module is implemented as an Oracle 
package of PL/SQL functions to be used in the spatial SQL queries.

FIGURE 10.4  Spatial data schema.
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10.4	S patial data mining process in INGENS 2.0

In INGENS 2.0 the spatial data mining process is activated and controlled by means 
of a query expressed in SDMOQL (see Figure 10.5). Initially, the query is syntacti-
cally and semantically validated. Then the feature extractor generates the conceptual 
representation of the geographic objects selected by the query. This representation, 
which is in a first-order logic language, is input to multi-relational data mining sys-
tems, which return spatial classification rules or association rules. Finally, the results 
of the mining process are presented to the user.

10.4.1	 Conceptual Description Generation

A set of descriptors used in INGENS 2.0 is reported in Table 10.1. They are either 
spatial or non-spatial. According to their nature, spatial descriptors can be classified 
as follows:

	 1.	 Geometrical, if they depend on the computation of some metric/distance. 
Their domain is typically numeric, for example, “extension.” 

	 2.	 Topological, if they are invariant under the topological transformations 
(translation, rotation, and scaling). The type of their domain is nominal, 
for example, “region_to_region” and “point_to_region.” 

	 3.	 Directional, if they concern orientation. The type of their domain can be 
either numerical or nominal, for example, “geographic direction.” 

	 4.	 Locational, if they concern the location of objects. Locations are repre
sented by numeric values that express coordinates. There are no examples 
of locational descriptors in Table 10.1.

Some spatial descriptors are hybrid, in the sense that they merge properties of 
two or more of the above categories. For instance, the descriptor “line_to_line” that 

FIGURE 10.5  Spatial data mining process in INGENS 2.0.

DATA MINING
ENGINE

CONCEPTUAL
DESCRIPTIONS

FEATURE
EXTRACTOR

VISUALIZATION

DISCOVERED
KNOWLEDGE

GDBMS

MAP REPOSITORY

QUERY OF
SPATIAL DATA

MINING

C3974_C010.indd   267 11/17/08   7:13:45 PM



268	 Geographic Data Mining and Knowledge Discovery

expresses conditions of parallelism and perpendicularity is both topological (it is 
invariant with respect to translation, rotation, and scaling) and geometrical (it is 
based on the angle of incidence). 

In INGENS 2.0, geographic objects can also be described by two non-spatial 
descriptors, namely “type_of” and “color.” The former describes the type of a geo-
graphic object, according to the layer (street, parcel, river, and so on) it belongs to, 
while the latter describes the color (blue, black, or brown) used in the visualization 
of a geographic object. The descriptor “part_of” describes the structure of complex 
geographic objects, i.e., a geographic object can be formed by physical component 
objects, represented by separate geometries. 

There is no common mechanism to express the semantics of such different fea-
tures. The semantics of topological relationships are based on the 9-intersection 
model [14], while the semantics of other features are based on mathematical methods 
of 2D-graphics [37] as described in [23]. 

Example (Geographic Direction). Let o be a geographic object associated with a 
line, that is, 

	 o : {P1  = (x1, y1), …, Pn  = (xn, yn)}. 

Table 10.1
Set of Descriptors Extracted by the Feature Extractor

Feature Meaning Value 

contain(C,L) Cell C contains a logical  
object L

{true, false}

part_of(L,F) Logical object L is composed of 
physical object F

{true, false}

type_of(L) Type of L 33 nominal values (e.g.,  river, road, ...)

color(L) Color of L {blue, brown, black}

area(F)  
extension(F) 

Area of F  
Extension of F 

[0..MAX_AREA]  
[0..MAX_EXT] 

geographic_direction(F) Geographic direction of F {north-east, north-west, east, north}

line_shape(F) Shape of the linear object F {straight, curvilinear, cuspidal}

altitude(F) Altitude of F [0.. MAX_ALT]

line_to_line(F1,F2)  Spatial relation between lines  
F1 and F2

{almost parallel, al most perpendicular} 

distance(F1,F2) Distance between lines   
F1 and F2

[0..MAX_DIST] 

region_to_region(F1,F2) Spatial relation between regions 
F1 and F2

{disjoint, contains, in side, equal, meet,  
covers, covered by, over lap}

line_to_region(F1,F2) Spatial relation between a line 
F1 and a region F2

{along edge, intersect}

point_to_region(F1, F2) Spatial relation between  
a point F1 and a region F2

{inside, outside, on  boundary, vertex  
(i.e., F1 is a vertex of F2)}
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If a is the angle defined by the straight line L connecting P1 and Pn, that is: 

	
α =

−
−

arctg
x x

y y
n

n

1

1

,

then the geographic direction of o is computed as follows:

	

north if

north eas

α π π α π π> −





∨ ≤ − −








2 8 2 8

tt if

east if

nort

α π π α π

α π α π

≤ −





∧ > −

≤ ∧ > −

2 8 8

8 8

hhwest if α π α π π≤ − ∧ > − −







8 2 8
.

This feature is computed only for geographic objects physically represented as 
lines. 

10.4.2	 Classification Rule Discovery

Classification of geographic objects is a fundamental task in spatial data mining 
and GIS, where training data consist of multiple target geographic objects (reference 
objects), possibly spatially related with other non-target geographic objects (task- 
relevant objects). The goal is to learn the concept associated with each class on the 
basis of the interaction of two or more spatially referenced objects or space-depen-
dent attributes [22].

While a lot of research has been conducted on classification, only a few works 
deal with geographic classification. GISs empowered with classification facilities are 
reported in [6, 18]. These systems allow the learning of a classifier from data stored in 
a classical double-entry table (single-table assumption [46]). This is a severe restric-
tion in GIS applications, where different geographical objects have different features 
(properties and relationships), which are properly modeled by as many data relations 
as the number of object types. To map the natural multi-relational form of geographic 
data into a single double-entry data table, GISs must integrate a transformation  
module that is in charge of computing the spatial features of geographic objects 
(e.g., a street crosses a river) and store them as columns of the double-entry table. 
This table can then be input to a wide range of robust and well-known classification 
methods which operate on a single table. This transformation (known as proposi-
tionalization) presents some drawbacks. In fact, the full equivalence between the 
original and the transformed training sets is possible only in special cases. However, 
even when possible, the output table size is unacceptable in practice [10] and some 
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form of feature selection is required. Therefore, the transformed problem is different 
from the original one, for pragmatic reasons [7].

On the other hand, INGENS 2.0 overcomes the limitations of single table assump-
tion by integrating a classification system, named ATRE [27], which resorts to a 
multi-relational data mining approach [13] to classify geographic objects. Indeed, a 
multi-relational approach to data mining (or MRDM) looks for patterns that involve 
multiple relations of a relational data representation. Thus, data taken as input by these 
approaches typically consist of several relations and not just a single one, as is the case 
in most existing data mining approaches. Patterns found by these approaches are called 
relational and are typically stated in a more expressive language than patterns defined 
in a single data table. Typically, subsets of first-order logic, which is also called predi-
cate calculus or relational logic, are used to express relational patterns. In this way, the 
expressive power of predicate logic is exploited to represent both spatial relationships 
and background knowledge, thus providing functionalities to navigate relational struc-
tures of geographic data and generate potentially new forms of evidence, not readily 
available in flattened single double entry data table representation. 

The problem solved by ATRE is formalized as follows: 

Given 

a set of concepts •	 C1, C2, …, Cr  to be learned; 
a set of units of analysis (or observations) •	 O described in a language LO; 
a background knowledge •	 BK described in a language LBK ; 
a language of hypotheses •	 LH that defines the space of hypotheses SH ; 
a user’s preference criterion •	 PC. 

Find a logical theory T ∈ SH , defining the concepts C1, C2,…, Cr, such that T is 
complete and consistent with respect to the set of observations and satisfies the pref-
erence criterion PC. 

The logical theory T is a set of first-order definite clauses [25], such as: 

cell(X1)=fluvial_landscape ← 
	 contain(X1,X2)=true, type_of(X2)=river, part_of(X2,X3)=true, 
	 line_to_line(X4,X3)=almost_parallel, part_of(X5,X4), type_of(X5)=street 

This clause can be interpreted easily as follows: If a cell X1 contains a river X2 
with X2 represented by the line X3 and X3 almost parallel to the line X4 that rep-
resents a street X5, then the cell X1 can be classified as a “fluvial landscape.” This 
clause contains an operational definition of the fluvial landscape morphology. This 
definition can be used to recognize the unknown morphology for the cells of a new 
topographic map. 

The units of analysis are represented by means of a ground clause2 called objects. 
For example, if the units of analysis are the cells (reference objects) of a topographic 
map, then the body of an object describes the spatial arrangement of the geographic 
objects (task-relevant objects) within the cell, while the head may describe the land-
scape morphology (class) associated with the cell. The literal in the head of the clause 
is an example (either positive or negative) of the concepts C1, C2,…, Cr. 

2	 A ground clause contains no variables.
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An instance of an object is reported in Figure 10.6, where the constant c8 denotes 
the whole cell, while the remaining constants (e.g., rv1_8, pc473_0, x20_8,…) denote 
the logical (river, street, parcel) or geometrical (line, point or polygon) component 
of the geographic objects in the cell. The descriptor cell(X) in the head denotes the 
known value of the morphology of the territory covered by the cell. 

The background knowledge BK can be defined in the form of first-order definite 
clauses, which allow the definition of new descriptors not explicitly encoded in a 
conceptual description of objects. An example of a clause that is part of a BK is the 
following: 

parcel_to_parcel(A,B)=C ← type_of(A)=parcel, 
	 type_of(B)=parcel, part_of(A,D)=true, 
	 part_of(B,E)=true, region_to_region(D,E)=C 

This clause allows the relationship C between two regions D and E to be auto-
matically renamed as “parcel_to_parcel,” when D and E are parts of two parcels A 
and B. 

The completeness property of the output theory T holds when T explains all 
observations in O of the r concepts Ci, while the consistency property holds when T 
explains no counter-example in O of any concept Ci. The satisfaction of these prop-
erties guarantees the correctness of the induced theory with respect to O, but not 
necessarily with respect to new unseen observations. The selection of the clause in T 
is made on the grounds of an inductive bias [35], expressed in the form of preference 
criterion (PC). For example, clauses that explain a high number of positive examples 
and a low number of negative examples can be preferred to others. 

At the high-level, the learning strategy implemented in ATRE is sequential cov-
ering (or separate-and-conquer) [35], that is, one clause is learned (conquer stage), 
covered examples are removed (separate stage), and the process is iterated on the 

FIGURE 10.6  Raster and vector representation (above) and symbolic description of a cell 
(below). The cell is an example of a territory where there is a fluvial landscape. The cell is 
extracted from a topographic chart (Canosa di Puglia 176 IV SW—Series M891) produced by 
the Italian Geographic Military Institute (IGMI) at scale 1:25,000 and stored in INGENS 2.0.
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remaining examples. The conquer stage of this algorithm aims to generate a clause 
that covers a specific positive example, called seed. The most important novelty of 
the learning strategy implemented in ATRE is embedded in the design of the conquer 
stage. Indeed, the separate-and-conquer strategy is traditionally adopted by single 
concept learning systems that generate clauses with the same literal in the head at 
each step. In ATRE, clauses generated at each step may have different literals in 
their heads. In addition, the body of the clause generated at the i-th step may include 
all literals corresponding to those target concepts C1, C2,…, Cr for which at least a 
clause has been added to the partially learned theory in previous steps. In this way, 
dependencies between target concepts can be automatically discovered. An example 
of a logical theory, where the dependency between concepts “downtown” and “resi-
dential” is handled, is reported in the following:

class(X)=downtown ← 
on_the_sea(X)=true, business_activity(X)=high. 

class(X)=residential ← 
contain(X,Y)=true, type_of(Y)=kindergarten, shopping_activity(X)=high. 

class(X)=residential ←
 close to(X,Y)=true, class(Y)=downtown, business_activity(X)=low. 

The order in which clauses of distinct target concepts have to be generated is not 
known in advance. This means that it is necessary to generate clauses with different  
literals in the head and then to pick one of them at the end of each step of the  
separate-and-conquer strategy. Since the generation of a clause depends on the cho-
sen seed, several seeds have to be chosen, such that at least one seed per incomplete 
concept definition is kept. Therefore, the search space is actually a forest of as many 
search-trees (called specialization hierarchies) as the number of chosen seeds. A 
directed arc from a node (clause) C to a node C′ exists if C′ is obtained from C by 
adding a literal (single refinement step). 

The forest can be processed in parallel by as many concurrent tasks as the number 
of search-trees (hence, the name of separate-and-parallel-conquer for this search 
strategy). Each task traverses the specialization hierarchy top-down (or general-to-
specific), but synchronizes traversal with the other tasks at each level. Initially, some 
clauses at depth one in the forest are examined concurrently. Each task is actually 
free to adopt its own search strategy, and to decide which clauses are worth testing. 
If none of the tested clauses is consistent, clauses at depth two are considered. The 
search proceeds toward deeper and deeper levels of the specialization hierarchies 
until at least a user-defined number of consistent clauses is found. Task synchroniza-
tion is performed after all “relevant” clauses at the same depth have been examined. 
A supervisor task decides whether the search should carry on or not, on the basis 
of the results returned by the concurrent tasks. When the search is stopped, the 
supervisor selects the “best” consistent clause according to the user’s preference  
criterion. This separate-and-parallel-conquer search strategy provides us with a 
solution to the problem of interleaving the induction process for distinct concept 
definitions. It has the advantage that simpler consistent clauses are found first, 
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independently of the predicates to be learned. Moreover, the synchronization allows 
tasks to save much computational effort when the distribution of consistent clauses 
in the levels of the different search-trees is uneven. A more detailed description of 
the search strategy implemented in ATRE and its optimization through caching tech-
niques is reported in [5, 27]. 

10.4.3	A ssociation Rule Discovery 

Association rules are a class of regularities introduced by Agrawal and Srikant [1], 
which can be expressed by an implication of the form: 

	 A ⇒ C (s, c), 

where A (antecedent) and C (consequent) are sets of atoms, called items, with A ∩ B    = f.  
s is called support and estimates the probability p(A ∪ C), while c is called confidence 
and estimates the probability p(C|A). A pattern P (s%) is frequent if s ≥ minsup. An 
association rule A ⇒ C (s%, c%) is strong if the pattern A ∪ C (s%) is frequent and 
c ≥ minconf. We call an association rule A ⇒ C spatial, if A ∪ C is a spatial pattern, 
that is, it expresses a spatial relationship among spatial objects. 

The problem of mining spatial association rules was originally tackled by  
Koperski [22], who implemented the module geo-associator of the spatial data min-
ing system GeoMiner [18]. Similar to the classification task, the method implemented 
in geo-associator suffers from the limitations due to adapting the restrictive single-
table data representation to the case geographic data. Weka-GPDM [6] is a further 
example of a GIS that includes facilities to discover spatial association rules. Once 
again, spatial features are extracted in a preprocessing step and stored as features 
of a single double-entry data table. Association rules are discovered in another step 
by applying the conventional association rule discovery algorithm included in Weka 
[45] to the single double-entry data table. 

Similar to the classification case, INGENS 2.0 overcomes limitations of single 
table assumption by integrating an association rule discovery system, named SPADA 
[24], which exploits the expressive power of a predicate logic to deal with spatial 
relationships in the original relational form. In addition, SPADA automatically sup-
ports a multiple-level analysis of geographic data. Indeed, geographic objects are 
organized in hierarchies of classes. By descending or ascending through a hierarchy, 
it is possible to view the same geographic object at different levels of abstraction (or 
granularity). Confident patterns are more likely to be discovered at low granularity 
levels. On the other hand, large support is more likely to exist at higher granular-
ity levels. In general, the discovery of multi-level patterns (e.g., the most supported 
and confident) can be performed by forcing users to repeat independent experiments 
on different representations. In this way, results obtained for high granularity levels 
are not used at low granularity levels (or vice versa). Conversely, SPADA is able to 
explore altogether the search space at different granularity levels, such that patterns 
obtained for high granularity levels are used to control search at low granularity 
levels. 
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The problem solved by SPADA is formalized as follows: 
Given 

a set •	 S of reference objects, which is the main subject of the analysis, 
some sets •	 Rk, 1 ≤ k ≤ m of task-relevant objects, 
a background knowledge •	 BK including spatial hierarchies Hk on objects 
in Rk, 
M •	 granularity levels in the descriptions (1 is the highest, while M is the 
lowest), 
a set of granularity assignments •	 ψk, which associate each object in Hk with 
a granularity level to deal with several hierarchies at once, 
a couple of thresholds •	 minsup[l] and minconf[l] for each granularity level l, 
a language bias •	 LB which constrains the search space. 

Find strong spatial association rules for each granularity level. 
The reference objects are the main subject of the description, while task-relevant 

objects are geographic objects that are relevant for the task at hand and are spatially 
related to the reference objects. For example, the cells may be the reference objects of 
our analysis, while the geographic objects within the cells are the task-relevant objects. 
In this case, properties and relationships of task relevant objects within each cell are 
computed by the feature extractor and stored as ground atoms, e.g., the spatial perpen-
dicularity between the geographic objects g1 and g2 is represented by the ground atom 
almost_perpendicular(g1, g2). If g is a task-relevant object of the set Rk, then is_a(g, nj) 
establishes the association between a geographic object g and corresponding objects at 
the level j (j  = 1, …, M) of the hierarchy Hk. Finally, for each cell c, the ground atom 
cell(c) identifies the unique reference object in the units of analysis. 

The task of spatial association rule discovery performed by SPADA is split into 
two sub-tasks: find frequent spatial patterns and generate highly confident spatial 
association rules. The discovery of frequent patterns is performed according to the 
levelwise method described in [33], that is, a breadth-first search in the lattice of pat-
terns spanned by a generality order between patterns. In SPADA the generality order 
is based on q substitution [38]. The pattern space is searched one level at a time, start-
ing from the most general patterns and iterating between candidate generation and 
evaluation phases. Once large patterns have been generated, it is possible to generate 
strong spatial association rules. For each pattern P, SPADA generates antecedents 
suitable for rules being derived from P. The consequent, corresponding to an anteced-
ent, is simply obtained as the complement of atoms in P and not in the antecedent. 
Rule constraints are used to specify literals which should occur in the antecedent or 
consequent of discovered rules. In a more recent release of SPADA (3.1) [3], new pat-
tern (rule) constraints have been introduced in order to specify exactly both the mini-
mum and maximum number of occurrences for a literal in a pattern (antecedent or 
consequent of a rule). An additional rule constraint has been introduced to eventually 
specify the maximum number of literals to be included in the consequent of a rule. In 
this way, we are able to constrain the consequent of a rule requiring the presence of 
only the literal representing the class label and obtain useful patterns for classification 
purposes. Finally, the generation of patterns also takes into account a BK expressed in 

C3974_C010.indd   274 11/17/08   7:13:46 PM



Leveraging the Power of Spatial Data Mining	 275

the form of first-order definite clauses. In this way, it is possible to simulate inferential 
mechanisms defined within a spatial reasoning theory. Moreover, by specifying both 
a BK and some suitable pattern constraints, it is possible to change the representation 
language used for spatial patterns, making it more abstract (human-comprehensible) 
and less tied to the physical representation of geographic objects. 

An example of a spatial pattern discovered by SPADA is the following: 

cell(A), contain(A,B), contain(A,C), is a(B,object), 
is_a(C,object), extension(C,[100..200.5]) (40%), 

which expresses a spatial containment relation between a cell A and some geographic 
objects B  and C, where C   is represented by a line with an extension between 100 and 
200.5 m. This pattern occurs in 40% of the cells. The following spatial association rule: 

cell(A), contain(A,B), contain(A,C), is_a(B,object), 
	 is_a(C,object) ⇒ extension(C,[100..200.5]) (40%, 60%), 

states that “in 60% of the cells (A), containing two geographic objects B and C, C is 
a line whose extension is between 100 and 200.5.” Since SPADA, like many other 
association rule mining algorithms, cannot process numerical data properly, these 
are discretized in equal-width intervals which are treated as ground terms. 

By taking into account hierarchies on task-relevant objects, we obtain descrip-
tions at different granularity levels. For instance, by considering a portion of the logi-
cal hierarchy on geographic objects, in which both hydrography and administrative 
boundary are considered, specialization of objects is as follows: 

A finer-grained spatial association rule can be the following: 

cell(A), contain(A,B), contain(A,C),
	 is_a(B,administrativeBoundary), is_a(C,hydrography) 
	 ⇒ extension(C,[100..200.5]) (35%, 70%), 

which provides better insight into the nature of the geographic objects B and C. 

10.5	SD MOQL 

The syntax of SDMOQL is designed according to a set of data mining primitives 
designed to facilitate efficient, fruitful spatial data mining in INGENS 2.0. Seven 
primitives have been considered as guidelines for the design of SDMOQL. They 
are: 

	 1.	 the set of geographic objects relevant to a data mining task, 
	 2.	 the kind of knowledge to be discovered, 
	 3.	 the set of descriptors to be extracted from a digital map (primitive 

descriptors), 

hydrography		  �
				    object
administrative boundary �
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	 4.	 the set of descriptors to be used for pattern description (pattern descrip
tors), 

	 5.	 the background knowledge to be used in the discovery process, 
	 6.	 the concept hierarchies, 
	 7.	 the interestingness measures and thresholds for pattern evaluation. 

These primitives correspond directly to as many non-terminal symbols of the 
definition of an SDMOQL statement, according to an extended BNF grammar. 
Indeed, the SDMOQL top-level syntax is the following: 

<SDMOQL> ::= <SDMOQLStatement>; 
	 {<SDMOQLStatement>;}

<SDMOQLStatement> ::= <SDMStatement>¥
	 |<BackgroundKnowledge> 
	 |<Hierarchy> 

<SDMStatement> ::= <ObjectQuery> 
	 mine <KindOfPattern> 
	 analyze <PrimitiveDescriptors> 
	 with descriptors <PatternDescriptors> 
	 [<BackgroundKnowledge>] 
	 {<Hierarchy>}
	 [with <InterestingnessMeasures>], 

where “[]” represents 0 or one occurrence and “{}” represents 0 or more occurrences, 
and words in bold type represent keywords. In Sections 10.5.1 to 10.5.5 the detailed 
syntax for each data mining primitive is both formally specified and explained 
through various examples of possible mining problems. 

10.5.1	 Data Specification 

The first step in defining a spatial data mining task is the specification of the geographic 
objects on which mining is to be performed. Geographic objects are selected by 
means of a query with a SELECT-FROM-WHERE structure, that is: 

<Object_Query> ::= <Query_Statement> 
	 {UNION <Query_Statement>} 

<Query_Statement> ::= 
	 SELECT <Object> {, <Object>}
	 FROM <Class> {, <Class>}
	 [WHERE <Conditions>] 

The SELECT clause should return a cell or objects of a layer (hydrography, orog-
raphy, and so on), or logical objects of a specific type (river, street, and so on). Hence, 
the selected geographic objects must belong to the same symbolic level, namely, cell, 
layer, or logic object. More formally the FROM clause can contain either a group of 
cells, a set of layers, or a set of logic objects, but never a mixture of them. Whenever 
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the generation of the descriptions of objects belonging to different symbolic levels 
is necessary, the user can obtain it by means of the UNION operator. The following 
are examples of valid data queries: 

Example (Cell-level query). The user selects cell 26 from the topographic map of 
Canosa (Apulia) and the feature extractor generates the description of all the geo-
graphic objects in this cell. 

SELECT x 
FROM x in Cell 
WHERE x->num_cell = 26 AND x->part map->map_name = “Canosa” 

Example 2 (Layer-level query). The user selects the orography layer from the topo-
graphic map of Canosa and the construction layer from any map. The feature extrac-
tor generates the description of the objects in these layers for all cells of the map of 
Canosa. 

SELECT x, y 
FROM x in Orography, y in Construction 
WHERE x->part_map->map_name = “Canosa” 

Example 3 (Logical object-level query). The user selects the objects of the logic 
type river, from cell 26 of the topographic map of Canosa. The feature extractor 
generates the description of the rivers in this cell. 

SELECT x 
FROM x in River 
WHERE x->part_map->map_name = “Canosa” 
	 AND x->log_incell->num_cell = 26 

10.5.2	T he Kind of Knowledge to be Mined 

The kind of knowledge to be discovered determines the data mining task in hand. 
Currently, SDMOQL supports the generation of either classification rules or associa-
tion rules. The former are used for a predictive task, while the latter are used for a 
descriptive task. The top-level syntax is defined as follows: 

<KindOfPattern> ::= <ClassificationRules>|<AssociationRules> 

<ClassificationRules> ::= classification as <PatternName> 
	 for <ClassificationConcept> 
	 {, <ClassificationConcept>} 

<AssociationRules> ::= association as <PatternName> 
	 key is <Descriptor> 

The <PatternName> denotes the name to be associated to the set of (classification or 
association) patterns to be discovered in the data mining task formulated within the 
SDMOQL statement. In a classification task, the user may be interested in inducing 
a set of classification rules for a subset of the classes (or concepts) to which training 
examples belong. In this case, the subset of interest for the user is specified in the 
<ClassificationConcept> list. 
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As pointed out, spatial association rules define spatial patterns involving both ref-
erence objects and task-relevant objects [4]. For instance, a user may be interested in 
describing a given area by finding associations between large towns (reference objects) 
and geographic objects in the road network, hydrography, and administrative boundary 
layers (task-relevant objects). The atom denoting the reference objects is called the key 
atom. The predicate name of the key atom is specified in the key is clause. 

10.5.3	S pecification of Primitive and Pattern Descriptors 

The analyze clause specifies which descriptors, among those automatically gener-
ated by the feature extractor, can be used to describe the geographic objects extracted 
by means of the first primitive. The syntax of the analyze clause is the following: 

analyze <PrimitiveDescriptors>, 

where:

<PrimitiveDescriptors> ::= <Descriptor>{, <Descriptor>}
	 parameters <ParameterSpecs>{, <ParameterSpecs>} 

<Descriptor> ::= <Predicate>/<Arity> 
<ParameterSpecs> ::= <ParameterName> threshold <Integer>. 

The specification of a set of parameters is required by the feature extractor to 
automatically generate some primitive descriptors. The language used to describe 
generated patterns is specified by means of the following clause: with descriptors 
<PatternDescriptors> where: 

<PatternDescriptors> ::= <DescriptorSpecification>{; <DescriptorSpecification>}
<DescriptorSpecification> ::= <Descriptor> [cost <Integer>] | <Descriptor> 
	 [with <TermsSpec>] 
<TermsSpec> ::= <TermSpec>{, <TermSpec>} 
<TermSpec> ::= <ConstantType> | <VariableType> 
<ConstantType> ::= constant [<Value>] 
<VariableType> ::= variable mode <VariableMode> role <VariableRole> 
<VariableMode> ::= old | new | diff 
<VariableRole> ::= ro | tro 

The specification of descriptors to be used in the high-level conceptual descrip-
tions can be of two types: either the name of the descriptor and its relative cost, or 
the name of the descriptor and the full specification of its arguments. The former is 
appropriate for classification. 

The (classification or association) rules are expressed by means of descriptors 
specified in the with descriptors list. They are specified by Prolog programs on the 
basis of descriptors generated by the feature extractor. For instance, the descriptor 
“font_to_parcel/2” has two arguments which denote two logical objects, a font and a 
parcel. The topological relation between the two logical objects is defined by means 
of the clause: 
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font_to_parcel(Font,Parcel) = TopographicRelation :-
	 type_of(Font) = font, part_of(Font,Point) = true, 
	 type_of(Parcel) = parcel, part_of(Parcel,Region) = true, 
	 point_to_region(Point,Region) = TopographicRelation. 

In association rule mining tasks, the specification of pattern descriptors corresponds 
to the specification of a collection of atoms: “predicateName(t1, …, tn),” where the 
name of the predicate corresponds to a <Descriptor>, while <TermSpec> describes 
each term ti, which can be either a constant or a variable. When the term is a variable, 
the mode and role clauses indicate, respectively, the type of variable to add to the atom 
and its role in a unification process. Three different modes are possible: old when the 
introduced variable can be unified with an existing variable in the pattern, new when it 
is not already present in the pattern, or diff when it is a new variable but its values must 
be different from the values of a similar variable in the same pattern. Furthermore, 
the variable can fill the role of reference object (ro) or task-relevant object (tro) in a 
discovered pattern during the unification process. The is key clause specifies the atom 
that has the key role during the discovery process. The first term of the key object must 
be a variable with mode new and role ro. The following is an example of specification 
of pattern descriptors defined by an SDMOQL statement: 

with descriptors
	 contain/2 with variable mode old role ro, 
		  variable mode new role tro; 
	 type_of/2 with variable mode old role tro, 
		  constant; 
	 fluvial_landscape/1 with is key with variable mode new role ro; 

This specification helps to select only association rules where the descriptors 
fluvial_landscape/1, contain/2, and type_of/2 occur. The argument of “cell” is a new 
variable that plays the role of ro. The argument of the predicate “fluvial landscape” 
is always a new variable that plays the role of ro. The predicate “contain” links the ro 
with other geographic objects contained in the “fluvial_landscape.” Finally, the first 
argument of the predicate “type_of” is always an old variable, denoting a geographic 
object that plays the role of tro, whereas the second argument is a constant value that 
denotes the type of object (e.g., river, street, parcel). The following association rule:

fluvial_landscape(X), contain(X,Y), type_of(Y,river), X≠Y ⇒
contain(X,Z), type_of(Z,font), X≠Z, Y≠X 

satisfies the constraints of the specification and expresses the co-presence of both a 
river and a font in a cell classified as a fluvial landscape. 

10.5.4	S yntax for Background Knowledge and 
Concept Hierarchy Specification 

Many data mining algorithms use background knowledge or concept hierarchies to 
discover interesting patterns. Background knowledge is provided by a domain expert 
on the domain to be discovered. This can be useful in the discovery process. 
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The SDMOQL syntax for background knowledge specification is the following: 

<BackgroundKnowledge> ::= [<NewKnowledge>] {<UseKnowledge>} 
<NewKnowledge> ::= define knowledge <Clause> {; <Clause>} 
<UseKnowledge> ::= use background knowledge of users <User> {, <User>}
	 on <Descriptor> {, <Descriptor>} 

In INGENS 2.0, the user can define a background knowledge expressed as a set 
of definite clauses; alternatively, the user can specify a set of rules explicitly stored 
in a deductive database and possibly discovered in a previous step. An example of a 
background knowledge definition is reported in the following: 

Example (Definition of close_to).
close_to(X,Y)=true :_region_to_region(X,Y)=meet. 
close_to(X,Y)=true :_close_to(Y,X)=true. 

while an example of the use of this background knowledge is reported in the 
following: 

Example (Import of close_to). 
use background knowledge of users UserName1 on close_to/2.

Concept hierarchies allow knowledge mining at multiple abstraction levels [17]. 
In SDMOQL, a specific syntax is defined for the hierarchy: 

<Hierarchy> ::= [<NewHierarchy>] [<UseHierarchy>] 
<NewHierarchy> ::= define hierarchy <Schema_Hierarchy> |
define hierarchy for <SetGroupingHierarchy> 
<UseHierarchy> ::= use hierarchy <NameHierarchy> of user <User>. 

The following example shows how to define some hierarchies in SDMOQL: 

Example (Logical hierarchy on geographic objects). 
define hierarchy LogicalObject as 
	 level1: {Hydrography,Orography, ...} < level0: Object; 
	 level2: {River,Lake,See,Font,Canal...} <level1:Hydrography; 
	 level1: {Slope,Contour slope, Level Point ...} < level0: Orography; 
	 …
In INGENS 2.0, this hierarchy is automatically extracted from the GIS data model 

and used to discover multi-level spatial association rules. 

10.5.5	S yntax for Interestingness Measure Specification

The user can control the data mining process by specifying interestingness measures 
for data patterns and their corresponding thresholds. The SDMOQL syntax is the 
following:

<InterestingnessMeasures> ::= [<Criteria>] [<Settings> 
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<Criteria> ::= criteria 
	 (intermediate | final)(minimize | maximize) <Parameter> 
	 with tolerance <Value> {,(intermediate | final) 
	 (minimize | maximize) <Parameter> with tolerance <Value>} 

<Settings> ::= <Parameter> := <StringValue> 

Interestingness measures may include: threshold values, weights, search biases 
in the hypotheses space, and algorithm-specific parameters. In particular the user 
can bias the search in the hypotheses space by a number of preference criteria, such 
as the maximization of the number of covered examples or the minimization of the 
number of variables in the body of a learned clause. The user can also set thresholds 
such as confidence, support, or number of learned concepts. Finally, the user can set 
the value of a generic input parameter of a data mining algorithm. 

10.6	 Mining Spatial Patterns: A case study 

To show the potential of the integration of spatial data mining tools with GIS tech-
nology, we extend and elaborate on the case study on topographic map interpreta-
tion reported in [31]. The goal is to characterize and recognize some morphologies, 
which are not explicitly represented in the GIS data model. 

The area considered in this application covers 90 km2 in the surrounding area of 
the Ofanto River of Apulia, Italy (see Figure 10.7). The map of this area, stored in 
INGENS 2.0, is produced at a scale of 1:25000 by the Italian Military Geographic 

FIGURE 10.7  Surroundings of the Ofanto River. The boundary of fluvial landscape cells is 
blue.
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Institute (IGMI). The map is segmented into 90 square observation units of 1 km2. 
A map maintenance user has created the vectorized map and stored it in the SDB, 
according to the data model reported above. 

The geomorphology considered in the following sections is the fluvial landscape, 
which is characterized by the presence of waterways, fluvial islands, and embank-
ments. The classification rule provides an operational definition which can be used to 
retrieve this geomorphology in other similar topographic maps, while spatial asso-
ciation rules can be used to describe the area and support the implementation of an 
environmental policy. 

10.6.1	 Mining Classification Rules 

The data miner user graphically composes an SDMOQL query to mine the concept 
of a fluvial landscape, by using, as training data, all the cells of the map. The query 
interpreter analyzes the SDMOQL query and verifies its syntactic and semantic 
correctness. The feature extractor generates a symbolic description for each cell by 
computing descriptors listed in the analyze clause. In this study, all descriptors in 
Table 10.1 are extracted. The data miner then associates the conceptual description 
of each cell with a concept (fluvial landscape or others), thus completely defining the 
training data. Association is made by binding variable terms of one of the concepts 
to be discovered to the constants that represent the cells. This binding function is 
supported by the GUI of the system (see Figure 10.8). 

The classification rules induced by the learning system ATRE are reported as 
follows: 

R1: class(X1)=fluvial_landscape ← type_of(X1)=cell, 
	 contain(X1,X2)=true, color(X2)=blue, 
	 type_of(X2)=river, part_of(X2,X3)=true, 
	 extension(X3)∈[653.495..1642.184], 
	 line_to_line(X4,X3)=almost_perpendicular, 
	 extension(X4)∈[325.576..1652.736]. 

R2: class(X1)=fluvial_landscape ← type_of(X1)=cell, 
	 contain(X1,X2)=true, type_of(X2)=province, 
	 part_of(X2,X3)=true, 
	 line_to_line(X4,X3)=almost_parallel, 
	 part_of(X5,X4)=true, type of(X5)=contour_slope. 

R1 covers 10 examples, while R2 covers 5 examples, two of which are different from 
those covered by R1. 

According to R1, a cell is an instance of fluvial landscape if it contains geographic 
objects in blue classified as river, which is represented as a line (X3) with an exten-
sion between 653.495 and 1642.184 m. This line is almost perpendicular to another 
line (X4) with an extension between 325.576 and 1652.736 m. Unfortunately, the 
logical type of X4 is not specified by the rule. This is because the representation 
of a cell is related to the physical objects that it contains. To move from a physical 
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to a logical level in the conceptual descriptions of the cells, some new descriptors 
are defined as background knowledge (see Figure 10.9). For example, the following 
<BackgroundKnowledge> statement: 

parcel_to_parcel(A,B)=C ← type_of(A)=parcel, 
	 type_of(B)=parcel, part_of(A,D)=true, 
	 part_of(B,E)=true, region_to_region(D,E)=C 

describes the topological relation between the regions that physically represent the 
“parcels” here referred to as the variables A and B, respectively. This BK state-
ment can be stored in the GIS repository and re-used in a new data mining task. By 
defining other similar descriptors and then constraining the search space only to 
the definite clauses including these new descriptors, it is possible to discover a more 
abstract, human-interpretable operational definition of a fluvial landscape: 

R3: class(X1)=fluvial_landscape ← 
	 contain(X1,X2)=true, 
	 river_extension(X2)∈[653.495..1642.184], 
	 river direction(X2)=north east. 

FIGURE 10.8  Associating a cell with a concept in INGENS 2.0.
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R4: class(X1)=fluvial_landscape ← 
	 contain(X1,X2)=true, 
	 road_to_province(X2,X3)= almost_perpendicular, 
	 road_to_river(X2,X4)= almost_perpendicular, 
	 river_extension(X4) in [653.495..1642.184]. 

Rule R3 covers eight examples, while R4 covers five examples, four of which are differ-
ent from those covered by R1. Both rules capture the presence of a river as a character-
izing geographic object. In addition, rule R4 describes the spatial arrangement of other 
logical objects (road and administrative boundary) in the surroundings. The presence 
of an administrative boundary in this rule is not surprising because the River Ofanto 
partially overlaps the boundary between the provinces of Bari and Foggia in Apulia. 

A different analysis is done by randomly selecting only four positive examples (8, 
16, 17, 53) and nine negative examples (5, 11, 15, 27, 29, 34, 84, 88, 89 ) of the fluvial 
landscape concept and using only this training data to discover an operational definition 
of a fluvial landscape. By ignoring the BK, the following rule is discovered: 

R5: class(X1)=fluvial_landscape ← type_of(X1)=cell, 
	 contain(X1,X2)=true, type_of(X2)=river, 

FIGURE 10.9  Specifying a new pattern descriptor in INGENS 2.0. 
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	 part_of(X2,X3)=true, 
	 line_to_line(X4,X3)=almost_perpendicular, 
	 part_of(X5,X4)=true, type_of(X5)=road, 

while considering new descriptors defined in the BK, the following rule is dis
covered: 

R6: class(X1)=fluvial_landscape ← 
	 contain(X1,X2)=true, 
	 road_to_river(X2,X3)= almost_perpendicular, 
	 river_extension(X3) in [141.623..1642.184]. 

Discovered rules are used to query the entire map and recognize fluvial landscape 
cells. Several statistics are collected in Table 10.2. “TP” is the number of true posi-
tives (correctly classified cells). “FP” is the number of false positives. “FN” is the 
number of false negatives. “Prec” is the precision of the concept (Prec = TP/(TP + 
FP)). “Recall” is the recall of concepts (Recall = TP/(TP + FN)). 

10.6.2	A ssociation Rules 

A purely descriptive analysis of the fluvial landscape is performed when the data 
miner extracts the frequent spatial association rules which compactly describe the 
morphology of the fluvial landscape cells in the topographic map. Similar to the 
classification case, INGENS 2.0 GUI offers facilities to graphically compose the 
SDMOQL query. In addition, INGENS 2.0 allows users to visualize the portion of the 
logical hierarchy matching at least one of the geographic objects extracted within the 
<¥ObjectQuery> ¥ statement (see Figure 10.10) and to translate it in a <¥NewHierarchy>¥ 
statement to be added to the user-composed SDMOQL query. The logical hierarchy 
is then exploited to discover association rules at multiple levels of granularity with-
out forcing data miners to repeat independent experiments on different representa-
tions. Once again, the BK is defined to move from a physical description to a logical 
description of the reference objects. 

SPADA is run by setting min_sup=0.9 and min_conf = 0.9 for each granularity 
level, and the maximum pattern length is set to eight. 

Table 10.2 
Classification of the Surroundings of the Ofanto River Map 
(90 cells)

Rule Time (sec) TP FP FN Prec Recall 

R5 832 12 5 1 0.706 0.923 

R6 68 12 4 1 0.750 0.923 

Note: The experiments are performed on Intel Pentium 4 -2.00 GHz CPU RAM 
532Kb running Windows Professional 2000.
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Despite the above constraints, SPADA generates 25830 confident rules from a set 
of 15048 candidate patterns, in 1819 sec. Confident rules and frequent patterns are 
visualized to data miners in separate views: one view for each hierarchy level and 
pattern length. 

An association rule discovered by SPADA at the second level of granularity is 
the following: 

fluvial_landscape(A) ⇒ 
	 contain(A,B), is_a(B,administration_boundary), 
	 almost_perpendicular(B,C), C\=B ,is_a(C,hydrography) 
								        (92.3%, 92.3%) 

At a granularity level 3, SPADA specializes the task-relevant objects B and C by 
generating the following rule, which preserves both support and confidence values: 

fluvial_landscape(A) ⇒ 
	 contain(A,B), is a(B,province), 
	 almost_perpendicular(B,C), C\=B, is_a(C,river) 
								        (92.3%, 92.3%) 

FIGURE 10.10  A portion of logical hierarchy that is automatically derived from a database. 
The hierarchy is visualized in the GUI of INGENS 2.0.
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The rule states that A is an instance (a cell) of a fluvial landscape, then A is crossed 
by a province boundary B that is almost perpendicular to a river C. Once again, the 
frequent pattern underlying this rule suggests a correlation between a fluvial land-
scape and a province boundary. 

10.7 	 Concluding remarks and directions 
for further research 

Empowering a GIS with spatial data mining capabilities is not a trivial task. First, 
the geometrical representation and relative positioning of geographic objects implic-
itly define spatial properties and relationships, whose efficient computation requires 
an integration of the data mining system with the GDBMS. Second, the interactions 
between spatially close objects introduce different forms of autocorrelation, whose 
effect should be considered to improve predictive accuracy of induced models and 
patterns. Third, the units of analysis are typically composed of several geographic 
objects with different properties, and their structure cannot be easily accommo-
dated by classical double entry tabular data. In INGENS 2.0, these challenges have 
been dealt with by integrating (multi-)relational data mining systems, which are 
able to navigate the relational structure of data and to generate relational patterns 
expressed in first-order logic or expressively equivalent formalisms. In particular, 
INGENS 2.0 integrates the MRDM systems ATRE and SPADA, which discover 
spatial classification rules and association rules, respectively. Different technologies, 
such as spatial database, data mining, and GIS, are hidden from users by means of 
a spatial data mining query language, SDMOQL, that permits condensing a data 
mining task in a query. Some constraints on the query language are identified by the 
particular mining task. 

Although resorting to MRDM enables the INGENS 2.0 users to perform a sophis-
ticated topographic map process, there are still several challenges that must be over-
come and issues that must be resolved before the relational approach can effiectively 
enhance GIS applicability. 

First, several MRDM methods exploit knowledge on the data model (e.g.,  
foreign keys), which is obtained free of charge from the database schema, in order 
to guide the search process. However, this approach does not fit spatial databases 
well, because the database navigation is also based on the spatial relationships which 
are not explicitly modeled in the schema. To solve this problem, a feature extrac-
tion module is implemented in INGENS 2.0 to precompute spatial properties and 
relationships which are converted into Prolog facts used by ATRE and SPADA. The 
pre-computation is justified by the fact that geographic maps are rarely updated. 
However, the number of spatial relationships between two layers can be very large 
and many of them might be unnecessarily extracted. The alternative is to dynami-
cally perform spatial joins only for the part of the hypothesis space that is really 
explored during the search by a data mining algorithm. This approach has been 
implemented in two MRDM systems, namely SubgroupMiner for subgroup mining  
[21] and Mrs-SMOTI for regression analysis [30]. Both systems realize a tight 
integration with a spatial DBMS (namely, Oracle Spatial), but have been applied to 
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datasets where few spatial relationships are actually computed. Hence, scalability 
remains a problem when many spatial predicates have to be computed. 

Second, the presence of autocorrelation in spatial phenomena strongly motivates 
an MRDM approach to spatial data mining. In any case, it also introduces additional 
challenges. In particular, it has been proven that the combined effect of autocorrela-
tion and concentrated linkage (i.e., high concentration of objects linked to a common 
neighbor) can bias feature selection in relational classification [20]. In fact, the distri-
bution of scores for features formed from related objects with concentrated linkage 
presents a surprisingly large variance when the class attribute has a high autocor-
relation. This large variance causes feature selection algorithms to be biased in favor 
of these features, even when they are not related to the class attribute, that is, they 
are randomly generated. Most MRDM algorithms, such as ATRE, do not account 
for this bias. A solution to be investigated in INGENS 2.0 is the generation of pseudo 
samples from the relational data by retaining the linkage present in the original 
sample and the autocorrelation among the class labels, and, at the same time, by 
destroying the correlation between the original attributes and the class labels [36]. 

Third, an inductive learning algorithm designed for the predictive tasks typically 
requires large sets of labeled data. However, a common situation in geographic data 
mining is that many unlabeled geographic objects (e.g., map cells) are available and 
manual annotation is fairly expensive. Inductive learning algorithms would actu-
ally use only the few labeled examples to build a prediction model, thus discarding 
a large amount of information potentially conveyed by the unlabeled instances. The 
idea of transductive inference (or transduction) [44] is to analyze both the labeled 
(training) data and the unlabeled (working) data to build a classifier and classify 
(only) the unlabeled data as accurately as possible. Transduction is based on a (semi-
supervised) smoothness assumption, according to which if two points in a high- 
density region are close, then the corresponding outputs should also be so [9]. In spatial 
domains, where closeness of points corresponds to some spatial distance measure, this 
assumption is implied by (positive) spatial autocorrelation. Therefore, the transductive 
setting seems especially suitable for classification and regression in GIS, and more in 
general, for those relational learning problems characterized by autocorrelation on the 
dependent variables. Only recently, a work on the transductive relational learning has 
been reported in the literature [8], and some preliminary results on spatial classification 
tasks show the effectiveness of the transductive approach [2]. No results are available 
on another class of predictive tasks, namely spatial regression. 

Fourth, a large amount of knowledge is available in the case of geographic knowl-
edge discovery, where relationships among geographic objects express natural geo-
graphic dependencies (e.g., a port is adjacent to a water body). These dependencies 
are expressed in non-novel or uninteresting patterns but with a very high level of 
support and confidence. If this geographic knowledge were used to constrain the 
search for new patterns, the scalability of the spatial data mining algorithms would 
greatly increase. Actually, these dependencies are represented either in geographic 
database schema, through one-to-one and one-to-many cardinality constraints, or 
in geographic ontologies. Therefore, their usage can be done at no additional cost in 
MRDM perspective, thus moving a step forward toward knowledge-rich data min-
ing [12]. In INGENS 2.0, SPADA uses knowledge to constrain the search space for 
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spatial association rules. In any case, the use of background knowledge can be inves-
tigated in several data mining tasks. 

A final consideration on spatial reasoning can be made on spatial data mining meth-
ods in general. Spatial reasoning is the process by which information about objects in 
space and their relationships is gathered through measurement, observation, or infer-
ence, and is used to reach valid conclusions regarding the objects’ relationships. For 
instance, in spatial reasoning, the accessibility of a site A from a site B can be recursively 
defined on the basis of the spatial relationships of adjacency or contiguity. Principles of 
spatial reasoning have been proposed for both quantitative and qualitative approaches to 
spatial knowledge representation. Embedding spatial reasoning in spatial data mining is 
crucial to make the right inferences, either when patterns are generated or when patterns 
are evaluated. Surprisingly, there are few examples of data mining systems that support 
some form of spatial reasoning. In INGENS 2.0, SPADA supports a limited form of 
spatial inference if rules of spatial reasoning are encoded in the background knowledge. 
However, although a general-purpose theorem prover for predicate logic can be used for 
spatial reasoning (as in SPADA), constraints that characterize spatial problem solving 
have to be explicitly formulated in order to make the semantics consistent with the target 
domain space. Therefore, embedding specialized spatial inference engines in the GIS 
seems to be the most  promising, but still unexplored, solution.
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