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Abstract

Remote sensing and mobile devices nowadays collect a huge amount of spatial data which have
to be analysed in order to discover interesting knowledge about economical, social and scientific
problems. However, the presence of a spatial dimension adds some problems to data mining tasks.
The geometrical representation and relative positioning of spatial objects implicitly define spatial
relationships, whose efficient computation requires a tight integration of the data mining system
with the spatial DBMS. The interactions between spatially close objects introduce different forms of
autocorrelation whose effect should be considered to improve predictive accuracy of induced models
and patterns. Units of analysis are typically composed of several spatial objects with different
properties, and their structure cannot be easily accommodated by classical double entry tabular
data. In the paper it is shown how these problems can be faced when a (multi-)relational data
mining approach is considered for spatial data analysis. Moreover, the challenges that spatial data
mining poses on current relational data mining methods are presented.

1 Introduction

In a large number of application domains, such as traffic and fleet management, environmental
and ecological modeling, robotics, computer vision, and, more recently, computational biology
and mobile computing, collected data present a spatial dimension. Indeed they are measurements
on one or more attributes of objects which occupy specific locations. These (spatial) objects are
characterized by a geometry (e.g., a line or an area) which is formulated by means of a reference
system. This geometry implicitly defines both spatial properties, such as orientation, and spatial
relationships of different nature, such as topological (e.g., intersects), distance or direction (e.g.,
north-of) relations. A geographical object represents a special case of spatial object whose relative
position is specified with respect to the physical earth.

Studies in spatial data structures (Güting, 1994), spatial reasoning (Egenhofer and Franzosa,
1991), and computational geometry (Preparata and Shamos, 1985) have paved the way for the
investigation of spatial data mining, which is related to the extraction of interesting and useful but
implicit spatial patterns (Koperski et al., 1996). A spatial pattern expresses a spatial relationship
among (spatial) objects and can take different forms such as classification rules, association rules,
regression models, clusters and trends. Therefore, to extract spatial patterns from spatial data sets
it is important to identify

1. the relevant spatial objects, and

2. the properties of, and relationships between, relevant spatial objects.

This makes the spatial data mining different from traditional data mining, where objects described
in the data set are typically treated as independent observations.
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2 What’s special about spatial data mining

The main issues that characterize spatial data mining tasks are the following:

1. Spatial objects have a geometry which need to be represented. Although spatial phenomena
are often inherently continuous, their digitization requires a representation in a discrete way
by means of two types of data structures: tessellation and vector (Laurini and Thompson,
1992). The former partitions the space into a number of cells each of which is associated
with a value of a given attribute. No variation is assumed within a cell and values correspond
to some aggregate function (e.g., average) computed on original values in the cell. A grid of
square cells is a special tessellation model called raster. This model is simple but the geometry
of a spatial object is imprecise and requires large storage capabilities. In the vector model the
geometry is represented by a vector of coordinates. This is a concise and precise representation
but involved data structures are complex and the computation of spatial operations, such
as intersection, is computationally demanding. Obviously, the formulation of a spatial data
mining method cannot leave out of consideration the representation of the geometry.

2. Spatial objects have a locational property which implicitly defines spatial relationships be-
tween objects. The three main types of spatial relations are topological, distance and direction
relations. Topological relations are invariant under homomorphisms, such as rotation, trans-
lation and scaling. Their semantics is precisely defined by means of the 9-intersection model
proposed by Egenhofer and Franzosa (1991). Distance relations between points are typically
computed on the basis of the Euclidean metrics, while the distance between two geometries
(e.g., two areas) is defined by some aggregate function (e.g., the minimum distance between
two points of the areas). Distance relations can be non-metric, especially when they are de-
fined on the basis of a cost function which is not symmetric (e.g., the drive time). Directional
relations can be expressed by the angle formed by two points with respect to the origin of
the reference system, or by an extension of Allen’s interval algebra which is based on pro-
jection lines (Mukerjee and Joe, 1990). The relational nature of spatial patterns makes the
computation of these spatial relations crucial for the development of effective data analysis
methods. To complicate matters, the user is generally interested in spatial patterns where
relations are abstracted from the geometry of involved spatial objects (e.g., a river crosses a
city, whatever their geometric representations are).

3. Spatial objects involved in spatial patterns often are of different type, and hence, have com-
pletely different sets of features which describe them. For instance, a town can be described
in terms of economic and demographic factors, while a highway is described by the average
speed limit, traffic and driving safety conditions, and so on. In spatial databases, objects of
the same type are organized in layers, each of which can have its own set of attributes and
at most one geometry attribute.

4. By picturing the spatial variation of some observed variables in a map, we may observe
regions where the distribution of values is smoothly continuous with some boundaries possibly
marked by sharp discontinuities. In this case, a variable is correlated with itself through space.
Spatial autocorrelation is defined as the property of random variables taking values, at pairs
of locations a certain distance apart, that are more similar (positive autocorrelation) or less
similar (negative autocorrelation) than expected for randomly associated pairs of observations
(Legendre, 1993). In geography, spatial autocorrelation is justified by Tobler’s First law of
geography, according to which “everything is related to everything else, but near things are
more related than distant things” (Tobler, 1970). However, spatial autocorrelation occurs in
many other disparate fields, such as sociology (e.g., social relations affect social influence),
web mining (e.g., hyperlinked web pages typically share the same topic), and bioinformatics
(e.g., proteins located in the same place in a cell are more likely to share the same function
than randomly selected proteins). In statistics spatial autocorrelation is distinguished in two
primary types: spatial error (correlations across space in the error term), and spatial lag
(the dependent variable in space ‘i’ is affected by the independent variables in space ‘i’ as
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well as those, dependent or independent, in space ‘j’). Most statistical models are based
on the assumption that the values of observations in each sample are independent of one
another, but spatial autocorrelation (or spatial dependence, as typically called in statistics)
clearly indicates a violation of this assumption. As observed by LeSage and Pace (2001),
“anyone seriously interested in prediction when the sample data exhibit spatial dependence
should consider a spatial model”, since this can take into account different forms of spatial
autocorrelation. In addition to predictive data mining tasks, this consideration can also be
applied to descriptive tasks, such as spatial clustering or spatial association rule discovery.
More in general, the analysis of spatial autocorrelation is crucial and it can be fundamental
to build a spatial component into (statistical) models for spatial data. The inappropriate
treatment of sample data with spatial dependence could obfuscate important insights and
observed patterns may even be inverted when spatial autocorrelation is ignored (Kühn, 2007).

Traditional data mining algorithms offer inadequate solutions to all these issues. They do not
deal with spatial data characterized by a geometry, do not handle observations of different type,
do not naturally represent spatial relationships between observations, nor take them into account
when mining patterns.

To overcome some of these limitations, several extensions have been investigated in spatial
statistics, where spatial dependence is typically modeled by the following linear models (LeSage
and Pace, 2001):

y = Xα + βDy + DXγ + ǫ

where y is the n × 1 vector of observations of the dependent (or response) variable, α considers
the influence of the independent (or explanatory) variables observed in ‘i’ on the response variable
in ‘i’, D is a spatial weight matrix with elements Dij > 0 for observations ‘j’ sufficiently close (as
measured by some metric) to observation ‘i’ (D defines the neighborhood), β reflects the strength
of the spatial dependence on the response variable of the neighbors, γ reflects the strength of
the spatial dependence on the explanatory variables of the neighbors, and ǫ reflects “noise” or a
stochastic disturbance in the spatial dependence relation.

However, the application of these spatial models still present some problems. First, the neigh-
borhood matrix D has to be carefully defined in order to specify to what extent a spatially close
observation in space ‘j’ can affect the response observed in ‘i’. With a proper choice of D, the
residual error should, at least theoretically, have no systematic variation. Second, it is unclear how
D can express the contribution of different spatial relationships, such as a polluting industry in
an “adjacent” area and a highway “crossing” the same area. Third, spatial dependencies are all
handled in a pre-processing or feature extraction step which typically ignores the subsequent data
mining step. In principle, a data mining method which can handle spatial dependencies directly,
presents the advantage of considering only those dependencies that are really relevant for the task
at hand. Fourth, all spatial objects involved in a spatial phenomena (rows of the matrix X) are
uniformly represented by the same set of attributes. This can be a problem when spatial objects are
of different types and are characterized by different properties. Fifth, there is no clear distinction
between the reference (or target) objects, which are the main subject of analysis, and the task-
relevant objects, which are spatial objects “in the neighborhood” that can contribute to explain
the spatial variation.

3 Opportunities for a Relational Approach

Problems reported above are due to the fact that in spatial data mining the units of analysis are
typically composed of several spatial objects with different properties, and that their structure
cannot be easily accommodated into a classical double-entry table whose columns correspond to
elementary (nominal, ordinal or numeric) single-valued attributes. In fact, spatial data sets can
be naturally modeled as a set of relations R1, . . . , Rn, such that each relation Ri has a number of
elementary attributes Ai

1, . . . A
i
mi

and possibly a geometry attribute Gi (relations with geometry
attributes are the layers). Joins between relations Ri are either explicitly modeled by means of
foreign key constraints or implicitly represented by spatial joins Ri ⋊⋉θ Rj , where Ri and Rj are
two layers, and θ is a binary predicate, such as intersects, contains, northwest, adjacent, to cite
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some, which is evaluated on the geometry attributes Gi and Gj (Shashi and Chawla, 2003).

Example. To investigate the social effects of public transportation in a British city, a spatial
data set made of three relations is considered. The first relation ED contains information on enu-
meration districts, which are the smallest areal units for which census data are published in UK.
In particular ED has two attributes, the identifier of an enumeration district, and a geometry
attribute (a closed polyline) which describes the area covered by the enumeration district. The
second relation BL describes all the bus lines which cross the city. In this case, relevant attributes
are the name of a bus line, the geometry attribute (a line) representing the route of a bus and the
type of bus line (classified as main or secondary). The third relation CE contains some census data
relevant for the problem, namely, the number of households with 0, 1, or ‘> 1’ cars. This relation
also includes the identifier of the enumeration district, which is a foreign key for the table ED. A
unit of analysis corresponds to an enumeration district (the reference object), which is described
in terms of number of cars per household and crossing bus lines (bus lines are the task-relevant
objects). The relationship between reference objects and task-relevant objects is established by
means of a spatial join which computes the intersection between the two layers ED and BL. This
relationship allows us to discover truly relational patterns, such as “the enumeration districts with
a high percentage of households which own less than two cars, are served by at least two bus
lines, one of which is a main bus line.” Here the verb ‘served’ is purposely introduced, to show
that spatial patterns of interest may not necessarily be expressed in terms of the original spatial
predicates used in the spatial join operations. The most obvious interpretation of this verb can
be the topological relation ‘intersect’ between the area of an enumeration district and the bus
line, although other more sophisticated interpretations are possible (e.g., on the basis of the length
of the intersected line). However, it may well be the case that an enumeration district with few
households owning less than two cars is not actually crossed by a bus line, but rather it is spatially
surrounded by several other enumeration districts where all conditions above hold. In this case, to
take this spatial autocorrelation into account, a spatial join between ED and itself can be computed
and the relational patterns can be searched across the units of analysis.

Previous example shows that (multi-)relational data mining (MRDM) offers the most suitable
setting for spatial data mining tasks. Indeed, MRDM tools can be applied directly to data dis-
tributed on several relations to find relational patterns which involve multiple relations (Džeroski
and Lavrač, 2001). Relational patterns can be expressed in SQL, but also in first-order logic (or
predicate calculus), which explains why many MRDM algorithms originate from the field of induc-
tive logic programming (ILP) (Muggleton, 1992; De Raedt, 1992; Lavrač and Džeroski, 1994).

Upgrading a classical data mining algorithm devised for double-entry tabular data to a relational
setting is not a trivial task (Van Laer and De Raedt, 2001). For instance, it may be necessary to
extend the definition of distance measure to data distributed among several tables. Efficiency is
also very important, as even testing a given relational pattern for validity is often computationally
expensive. Moreover, for relational pattern languages, the number of possible patterns can be very
large and it is necessary to constrain the search space by means of some form of “declarative bias”.
An exhaustive list of theoretical results and techniques that have been developed to improve the
efficiency and scalability of MRDM approaches is reported in (Blockeel and Sebag, 2003).

4 Challenges for a Relational Approach

Although the MRDM setting seems the most suitable for spatial data mining, there are still several
challenges that must be overcome and issues that must be resolved before the relational approach
can be effectively applied to spatial data mining. Some of them are reported in the following:

1. Many MRDM methods do take advantage of knowledge on data model (e.g., foreign keys),
which is obtained free of charge from the database schema, in order to guide the search pro-
cess. However, this approach does not fit well spatial databases, since the database navigation
is also based on the spatial relationships which are not explicitly modeled in the schema. To
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solve this problem spatial relationships can be computed and explicitly represented during
the pre-processing step of the knowledge discovery process. This approach is typically fol-
lowed by statisticians before computing the spatial weight matrix D. It has also been adopted
in the GeoMiner system (Han et al., 1997) whose data mining algorithms, though, operate
on a single database relation obtained from the preprocessing step. Also Ester et al. (1999)
propose to precompute distance, direction and topological relations and to materialize (i.e.,
store) them into some database relations (called neighborhood indices), which are then used
by data mining algorithms to efficiently retrieve all neighbors (with respect to some spa-
tial relation) of a given spatial object. A feature extraction module is implemented into the
ARES system (Appice et al., 2005) to precompute spatial relationships which are converted
into Prolog facts used by the ILP system SPADA (Malerba and Lisi, 2001) to generate spa-
tial association rules. The precomputation is justified by the fact that spatial databases are
rather static, since there are not many updates on objects such as geographic maps. How-
ever, the number of spatial relationships between two layers can be very large and many of
them might be unnecessarily extracted. The alternative is to dynamically perform spatial
joins only for the part of the hypothesis space that is really explored during search by a data
mining algorithm. This approach has been implemented in two MRDM systems, namely Sub-
groupMiner for subgroup mining (Kloesgen and May, 2002) and Mrs-SMOTI for regression
analysis (Malerba et al., 2005). Both systems realize a tight integration with a spatial DBMS
(namely, Oracle Spatial) and have been applied to datasets where few spatial relationships
are actually computed. Spatial index structures, such as R-trees (Guttman, 1984), are used to
speed up the processing of spatial joins. However, scalability remains a problem when many
spatial predicates have to be computed. A scalability issue arises also in spatial statistics,
since the spatial weight matrix D can be very large and sparse (LeSage and Pace, 2001).

2. Although the presence of autocorrelation in spatial phenomena strongly motivates a MRDM
approach to spatial data mining, it also introduces additional challenges. It particular it
has been proven that the combined effect of autocorrelation and concentrated linkage (i.e.,
high concentration of objects linked to a common neighbor) can bias feature selection in
relational classification (Jensen and Neville, 2002). In particular, the distribution of scores
for features formed from related objects with concentrated linkage presents a surprisingly
large variance when the class attribute has a high autocorrelation. This large variance causes
feature selection algorithms to be biased in favor of these features, even when they are not
related to the class attribute, that is, they are randomly generated. Conventional hypothesis
tests, such as the χ2

−test for independence, which evaluate statistically significant differences
between proportions for two or more groups in a data set, fail to discard uninformative
features. Indeed, they are based on the i.i.d. assumption, while observations drawn from a
relational data set may not be independent. Most of MRDM algorithms do not account for
this bias, a notable exception being a relational probability tree learning algorithm that uses
a randomization test to adjust for feature selection bias (Neville et al., 2003). Pseudosamples
are generated from the relational data by retaining the linkage present in the original sample
and the autocorrelation among the class labels, and, at the same time, by destroying the
correlation between the original attributes and the class labels. Therefore, pseudosamples
are appropriately conform to the null hypothesis and can be used to estimate a p-value for
the actual data.

3. Inductive learning algorithms designed for predictive tasks may require large sets of labeled
data. However, the common situation is that only few labeled training data are available for
mining, although a very large test set must be classified. This is especially true in geographical
data mining, where large amounts of unlabeled geographical objects (e.g., map cells) are
available and manual annotation is fairly expensive. Inductive learning algorithms would
actually use only the few labeled examples to build a prediction model, thus discarding
a large amount of information potentially conveyed by the unlabeled instances. The idea
of transductive inference (or transduction) (Vapnik, 1998) is to analyze both the labeled
(training) data and the unlabeled (working) data to build a classifier and classify (only)
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the unlabeled data as accurately as possible. Transduction is based on a (semi-supervised)
smoothness assumption according to which if two points x1 and x2 in a high-density region are
close, then so should be the corresponding outputs y1 and y2 (Chapelle et al., 2006). However,
in spatial domains where closeness of points corresponds to some spatial distance measure,
this assumption is implied by (positive) spatial autocorrelation. Therefore, the transductive
setting seems especially suitable for spatial classification and regression, and more in general,
for those relational learning problems characterized by autocorrelation on the dependent
variables. Only recently, a work on the transductive relational learning has been reported in
the literature (Ceci et al., 2007), and some preliminary results on spatial classification tasks
show the effectiveness of the transductive approach (Appice et al., 2007).

4. In predictive data mining tasks the generation of patterns which express the spatial autocor-
relation of the dependent variable raises the issue of how inference on new cases should be
performed. Indeed, these patterns take the form:

yi = f(xi, xN(i), yN(i))

where yi (xi) is the value of the dependent (independent) variable in space ‘i’ while yN(i)

(xN(i)) represents the value(s) of the dependent (independent) variable for the i’s the neigh-
bor(s). For instance, the price level for a good at a retail outlet in a city depends on the price
for the same good in the nearby. In order to predict yi it is necessary to know the value(s)
of yN(i), which might be unavailable (the related values of the dependence variable are to
be inferred as well). In this case both yi and all unknown values yN(i) have to be inferred
collectively. A possible approach to collective inference combines locally-learned individual
inference models with a joint inference procedure (e.g., relaxation labeling) to make an infer-
ence. An example is represented by iterative classification (Neville and Jensen, 2000), which
dynamically updates the attributes of some objects as inferences are made about related ob-
jects. Inferences made with high confidence in initial iterations are fed back into the data and
are used to inform subsequent inferences about related objects. Iterative classification works
well when the classification model allows us to make initial inferences accurately, otherwise
all subsequent predictions will be misled due to a ripple effect. An alternative approach is
given by joint relational models, which first estimate the joint probability distribution over
the variables of objects both in i and in N(i) and then jointly infer the values of both yi and
yN(i). In particular, probabilistic relational models can be used to represent a joint probabil-
ity distribution over the attributes of a relational dataset (Getoor et al., 2001, Neville and
Jensen, 2003). By making inferences about multiple instances simultaneously, joint inference
can exploit autocorrelation in the data to improve predictions (Jensen et al., 2004). There-
fore, this inference procedure seems particularly suitable for spatial data sets and should be
better investigated in the context of spatial data mining.

5. Spatial objects are often organized in hierarchies. By descending/ascending through a hi-
erarchy it is possible to view the same spatial object at different levels of abstraction (or
granularity). Spatial patterns involving the most abstract spatial objects can be well sup-
ported but at the same time they are the less confident. Therefore, spatial data mining
methods should be able to explore the search space at different granularity levels in order
to find the most interesting patterns (e.g., the most supported and confident). In the case
of granularity levels defined by a containment relationship, this corresponds to exploring
both global and local aspects of the underlying phenomenon. Very few data mining tech-
niques do automatically support this multiple-level analysis. In general, the user is forced to
repeat independent experiments on different representations, and results obtained for high
granularity levels are not used to control search at low granularity levels (or viceversa). Two
noticeable exceptions are represented by Geo-associator (Koperski and Han, 1995), a module
of GeoMiner which mines spatial association rules from data represented in a single rela-
tion (table) of a relational database, and SPADA (Malerba and Lisi, 2001), which discovers
multi-level spatial association rules from relational data. SPADA has also been used in an
associative classification framework: once strong spatial association rules with only the class
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label in the consequent are extracted for each granularity level, they are used to mine either
propositional or structural spatial classifiers (Ceci et al., 2004; Ceci and Appice, 2006).

6. A large amount of knowledge is often available on spatial phenomena. This is particularly
true in the special case of geographic knowledge discovery, where relations among spatial
objects express natural geographic dependencies (e.g., a port is adjacent to a water body).
These dependences are expressed in non-novel or uninteresting patterns but with a very high
support and confidence. If this geographic knowledge were used to constrain the search for
new patterns, the scalability of the spatial data mining algorithms would greatly increase.
Actually, these dependencies are represented either in geographic database schemas through
one-to-one and one-to-many cardinality constraints or in geographic ontologies. Therefore,
their usage can be done at no additional cost in a multi-relational data mining perspective,
thus moving a step-forward toward knowledge-rich data mining (Domingos, 2007). In the
context of spatial data mining, both Appice et al. (2005) and Bogorny et al. (2006) explain
how to use knowledge to constrain the search space for spatial association rules.

7. Spatial reasoning is the process by which information about objects in space and their rela-
tionships are gathered through measurement, observation or inference, and used to arrive to
valid conclusions regarding the objects relationships. For instance, in spatial reasoning, the
accessibility of a site A from a site B can be recursively defined on the basis of the spatial re-
lationships of adjacency or contiguity. Principles of spatial reasoning have been proposed for
both quantitative and qualitative approaches to spatial knowledge representation. Quantita-
tive spatial reasoning deals with exact numerical values, such as coordinates and distances,
and are more akin to machine reasoning, while qualitative spatial reasoning (Freksa, 1991)
deals with abstract representations (e.g., ‘northwest’ and ‘far’) and is more closely related to
the way humans reason. Qualitative spatial reasoning is arguably efficient and can also deal
to some extent with imprecision, uncertainty, and incompleteness, which quantitative reason-
ing cannot. Embedding spatial reasoning in spatial data mining is crucial to make the right
inferences either when patterns are generated or when patterns are evaluated. Surprisingly,
there are few examples of data mining systems which support some form of spatial reasoning.
In SPADA, a limited form of spatial inference is supported if rules of spatial reasoning are
encoded in the background knowledge (Malerba et al., 2002). In particular SPADA applies an
ILP technique, known as “saturation”, to make explicit those pieces of information that are
implicit in the spatial units of analysis, given the background knowledge. However, although
a general-purpose theorem prover for predicate logic can be used for spatial reasoning (as in
SPADA), constraints which characterize the spatial problem solving have to be explicitly for-
mulated in order to make the semantics consistent with the target domain ‘space’. Therefore,
embedding specialized spatial inference engines in the spatial data mining systems seems to
be the most promising, but still unexplored, solution.

Obviously, this list of challenges is not exhaustive, but rather it is indicative of the possible
synergies between two research fields, namely spatial data analysis and multi-relational data min-
ing, which have been developed independently in the communities of statisticians and computer
scientists, but which share surprisingly many research issues. It is hard to envisage whether the
multi-relational approach represents the next step in spatial data mining. The author’s hope is
to contribute bridging the understanding between the fields by providing some references to work
already done by the different communities. Que sera, sera.
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