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Abstract. In many data mining tools that support regression tasks, training data 
are stored in a single table containing both the target field (dependent variable) 
and the attributes (independent variables). Generally, only intra-tuple 
relationships between the attributes and the target field are found, while inter-
tuple relationships are not considered and (inter-table) relationships between 
several tuples of distinct tables are not even explorable. Disregarding inter-table 
relationships can be a severe limitation in many real-word applications that 
involve the prediction of numerical values from data that are naturally 
organized in a relational model involving several tables (multi-relational 
model). In this paper, we present a new data mining algorithm, named Mr-
SMOTI, which induces model trees from a multi-relational model. A model tree 
is a tree-structured prediction model whose leaves are associated with multiple 
linear regression models. The particular feature of Mr-SMOTI is that internal 
nodes of the induced model tree can be of two types: regression nodes, which 
add a variable to some multiple linear models according to a stepwise strategy, 
and split nodes, which perform tests on attributes or the join condition and 
eventually partition the training set. The induced model tree is a multi-relational 
pattern that can be represented by means of selection graphs, which can be 
translated into SQL, or equivalently into first order logic expressions. 

1 Introduction 

Prediction is arguably considered the main goal of data mining, with the greatest 
potential payoff [28]. The two principal prediction problems are classification and 
regression. Samples of past experience with known answers (labels) are examined 
and generalized in future cases. For classification labels are a finite number of 
unordered categories. For regression the answer is a number. Traditionally, in a 
regression problem sample data are described by a set of m independent variables Xi 
(both numerical and categorical) and a dependent variable Y, which normally takes 
values in ℜ. According to the data mining terminology, Xi’s are the attributes, while Y 
is the target field.  

Regression problems have been very well studied in statistics. In general, the 
model is assumed to be a linear combination of independent variables and the 
coefficients of the combination are determined by the method of the least squares [4]. 
Refinements and extensions to non-linear models are also well-known and applied in 
many real world applications. However, classical statistical methods have several 
limitations. First, (non-)linear regression models are often hard to understand. Second, 
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all these statistical models are based on the assumption that all independent variables 
are equally relevant in the whole sample space. Third, the least square method does 
not allow prior domain knowledge to be used in the construction of the regression 
model. To solve some of these problems regression tree methods have been 
developed.  

Regression trees [3] are supposed to be more comprehensible then classical 
regression models. They are built top-down by recursively partitioning the sample 
space. An attribute may be of varying importance for different regions of the sample 
space. A constant is associated to each leaf of a regression tree, so that the prediction 
performed by a regression tree is the same for all sample data falling in the same leaf.  

A generalisation of regression trees is represented by model trees, which associate 
multiple linear models with each leaf. Hence, different values can be predicted for 
sample data falling in the same leaf. Some of the model tree induction systems are M5 
[23], RETIS, [9], M5’ [27], HTL [26], TSIR [17], and SMOTI [18]. The last two 
systems are characterised by a tree structure with two types of nodes: regression 
nodes, which perform only straight-line regression, and splitting nodes, which 
partition the feature space. The multiple linear model associated to each leaf is then 
the composition of the straight-line regressions reported along the path from the root 
to the leaf. In [18] some differences between TSIR and SMOTI have been reported, 
the most important of which is that the method implemented in SMOTI is the only 
one for which the composition of straight-line regressions found along a path from the 
root to a leaf can be correctly interpreted as a multiple linear model built stepwise.  

All model-tree induction systems reported above work on data represented by m+1 
attribute-value pairs. They input training data from a file, with the exception of 
SMOTI, which interfaces a relational database and requires the data set to be stored in 
a single table. Therefore, all methods implemented in the current model tree induction 
systems are based on the single-table assumption, according to which all training 
samples are stored in a single table (or “relation” in database terminology), and that 
there is one row (or “tuple”) in this table for each object of interest [29]. In other 
words, training data can be described by a fixed set of attributes, each of which can 
only have a single, primitive value.  

The single-table assumption underlying this representation paradigm only allows 
fairly simple objects to be analysed by means of current model tree systems. More 
complex structured objects require a representation in a relational database containing 
multiple tables [12]. (Multi-)relational data mining (MRDM) algorithms and systems 
are capable of directly dealing with multiple tables or relations as they are found in 
today’s relational databases [8]. The data taken as input by MRDM systems consists 
of  several tables and not just one table (multi-relational model). Moreover, the 
patterns output by these systems are relational, that is, involve multiple relations from 
a relational database. They are typically stated in a more expressive language than 
patterns described on a single data table. For instance, subsets of first-order logic are 
used to express relational patterns.  Considering this strong link with logics, it is not 
surprising that many algorithms for MRDM originate from the field of inductive logic 
programming (ILP) [15] 

In this paper, we present a multi-relational extension of SMOTI. The new system, 
named Mr-SMOTI, induces relational model trees from structural data possibly 
described by multiple records in multiple tables. As in the case of SMOTI, induced 
relational model trees can contain both regression and split nodes. Differently from 
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SMOTI, attributes involved in both types of nodes can belong to different tables of 
the relational database. The join of these tables is dynamically determined on the 
basis of the database schema and aims to involve attributes of different relations in 
order to build a predictive model for a target field.  

In the next section we first review related works in order to clarify the innovative 
aspects of our approach. In Section 3 we briefly introduce the method implemented in 
SMOTI that operates under the single-table assumption. In Section 4 we draw on the 
multi-relational regression framework, based on an extended graphical language 
(selection graph), to mine relational model trees directly from relational databases, 
through SQL queries. In Section 5 we show how selection graphs can support the 
stepwise induction of multi-relational model trees from structural data. In Section 6 
we present some experimental results. Finally, we draw some conclusions and sketch 
possible directions of further research.  

2 Related Work 

The problem of mining patterns (e.g. prediction models) over data that reside in 
multiple tables is generally solved by moulding a relational database into a single 
table format, such that traditional attribute-value algorithms are able to work on [13]. 
This approach corresponds to the concept of propositionalization in machine learning 
and has been applied to regression tasks as well. In [7], the DINUS [15] algorithm is 
applied to transform a Datalog representation of a dynamic system into a 
propositional form (i.e., attribute-value pairs), so that a classical model tree induction 
system based on the single-table assumption (e.g. RETIS) can be applied. One way of 
performing the propositionalization is to create a single relation by deriving attributes 
from other joined tables. However, this produces an extremely large table with lots of 
data being repeated which is difficult to handle. A different approach is the 
construction of a single central relation that summarises and/or aggregates 
information which can be found in other tables. Also this approach has some 
drawbacks, since information about how data were originally structured is lost. 
Therefore, a proper way of explicitly and efficiently dealing with multiple relations is 
necessary. 

The idea of mining relational regression models from multiple relations is not new. 
In particular, the learning problem of Relational Regression [5] has been formulated 
in the normal ILP framework. So far two approaches to solve Relational Regression 
problems have been proposed in ILP. The former uses a separate-and-conquer (or 
sequential covering) strategy to build a set of Prolog clauses. The latter uses a divide-
and-conquer strategy to induce tree-based models and then translate these models into 
Prolog programs. A system that follows the first approach is FORS [10], while three 
systems that follow the second approach are SRT [14], S-CART [8], and TILDE-RT 
[2].  In contrast to DINUS/RETIS all these systems solve a Relational Regression 
problem in its original representation, and do not require transformation of the 
problem. Moreover, they can utilise relational non-determinate background 
knowledge. SRT generates a series of increasingly complex trees containing a literal 
(an atomic formulation or its negation) or a conjunction of literals in each node, and 
subsequently returns the best tree according to a criterion based on minimum 
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description length. A numerical constant value is assigned to each leaf.  Analogously, 
S-CART and TILDE-RT follow the general procedure of top-down tree induction [3]. 
In particular, S-CART recursively builds a binary tree, selecting a possible 
conjunction of one or more literals in each node as provided by user-defined schemata 
[25] until a stopping criterion is fulfilled. The value predicted in a node is simply the 
mean of values of all examples covered by the node. The algorithm keeps track of the 
examples in each node and the conjunctions of literals in each path leading to the 
respective node. This information can be turned into a clausal theory (e.g. a set of first 
order regression rules).  

All these approaches are mostly based on data stored as Prolog facts. Moreover, in 
real-world applications, where facts correspond to tuples stored on relational 
databases, some pre-processing is required in order to transform tuples into facts. 
However, much of the pre-processing, which is often expensive in terms of 
computation and storage, may be unnecessary since that part of the hypothesis space 
may never be explored. In addition, in applications where data can frequently change, 
pre-processing has to be frequently repeated. This means that little attention has been 
given to data stored in relational database and to how knowledge of a data model can 
help to guide the search process [3, 13]. A solution can be found by combining the 
achievements of the Knowledge Discovery in Database (KDD) field on the 
integration of data mining with database systems, with some results reported in the 
ILP field on how to correctly upgrade propositional data mining algorithms to multi-
relational representations. In the next sections we show how to develop a new multi-
relational data mining system by upgrading SMOTI to multi-re lational representations 
and by tightly integrating the new system with a relational DBMS, namely OracleR 9i.  

3 Stepwise Model Tree Induction 

SMOTI (Stepwise Model Tree Induction) performs the top-down induction of models 
trees by considering not only a partitioning procedure, but also by some intermediate 
prediction functions [18]1. This means that there are two types of nodes in the tree: 
regression nodes and splitting nodes (Fig. 1). The former compute straight-line 

regressions, while the latter partition the sample space. They pass dowrn training data 
to their children in two different ways. For a splitting node t, only a subgroup of the 
N(t)  training data in t is passed to each child, with no change on training cases. For a 
regression node t, all the data are passed down to its only child, but the values of both 
                                                                 
1 The work reported in [18] has been substantially extended and revisited. Details of the 

improved algorithm implemented in the data mining system KDB2000 are reported in [19]. 

   Y=a+bXi 

X’j<α 
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Y’=e+fX’v 
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Fig. 1. A model tree with both a regression node (t) and a splitting node (t’) 
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the dependent and independent numeric variables not included in the multiple linear 
model associated to t are transformed in order to remove the linear effect of those 
variables already included. Thus, descendants of a regression node will operate on a 
modified training set. Indeed, according to the statistical theory of linear regression 
[4], the incremental construction of a multiple linear model is made by removing the 
linear effect of introduced variables each time a new independent variable is added to 
the model.  

For instance, let us consider the problem of building a multiple regression model 
with two independent variables through a sequence of straight-line regressions:     

Ŷ =a+bX1 + cX2. 
We start regressing Y on X1, so that the model  Ŷ  = a1+b1X1   is built. This fitted 

equation does not predict Y exactly. By adding the new variable X2, the prediction 
might improve. Instead of starting from scratch and building a model with both X1 and 

X2, we can build a linear model for X2 given X1: 2X̂ = a2+b2X1. Then we compute the 
residuals on X2: X'2 = X2 - (a2+b2X1) and on Y: Y' = Y – (a1+b1X1). Finally, we regress 

Y' on X'2 alone: Y ′ˆ = a3 + b3X'2.  
By substituting the equations of X'2 and Y' in the last equation we have:  

Y-(a1 + b1X1)=a3+b3(X2-(a2+b2X1)). 

Since  )(ˆ)( 111111 XbaYXbaY +−=+−  we have: 

Ŷ  = (a3 + a1 – a2b3) + (b1-b2b3)X1+ b3X2. 
It can be proven that this last model coincides with the first model built, that is, 

a= a3+a1–a2b3, b= b1-b2b3 and c=b3. Therefore, when the first regression line of Y on 
X1 is built we pass down both the residuals of Y and the residuals of the regression of 
X2 on X1. This means that we remove the linear effect of the variables already 
included in the model (X1) from both the response variable (Y) and those variables to 
be selected for the next regression step (X2).  

4 Regression Problem in a Multi-relational Framework 

Traditional research for a regression task in KDD has focused mainly on propositional 
techniques involving the attribute-value paradigm. This implies that relationships 
between fields of one tuple can be found, but not relationships between several tuples 
of one or more tables. It seems that this is an important limitation, since a relational 
database consists of a set of tables and a set of associations between pairs of tables. 
Both tables and associations are known as relations. Each association describes how 
records in one table relate to records in another table. Most associations correspond to 
foreign key relations. These relations can be seen as having two directions. One goes 
from a table where the attribute is primary key to a table where the attribute is foreign 
key (one-to-many), and the other one is in the reverse way (many-to-one). An object 
in a relational database can consist of several records fragmented across several tables 
and connected by associations (Fig. 2). Although the data model can consist of 
multiple tables, there must be only a single kind of object that is central to the analysis 
(target table). The assumption is that each record in the target table will correspond to 
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a single object in the database. Any information pertaining to each object which is 
stored in other tables can be retrieved by following the associations in the data model. 
Once the target table has been selected, a particular numeric attribute of that table can 
be chosen for regression purposes (target attribute).  

Thus, a multiple regression problem in a multi-relational framework can be defined 
as follows. Given a schema of a relational database D, a target table T0, a target 
attribute Y within the target table T0, the goal is to mine a multi-relational multiple 
regression model to predict the estimated target attribute Y. Mined models not only 
involve attribute-value descriptions, but also structural information denoted by the 
associations in D.  

Relational regression models induced stepwise as in SMOTI can be expressed in 
the graphical language of selection graphs. The classical definition of a selection 
graph is reported in  [11, 12, 16]. Nevertheless, we present an extension of this 
definition in order to make the selection graphs more appropriate to our task. 
Definition of  selection graph 
A selection graph G is a directed graph (N, A), such that: 

− each node in  N  is a 4-tuple (T, C, R, s), named selection node, where:  
- T = (X1,X2, … Xn) is a table in the relational schema D. 
- C is a set of conditions on attributes in T of type T.X’i OP c, where X’i is one 

of the attributes Xi in T after the removal of the effects of some variables 
already introduced in the relational regression model through regression 
nodes. OP is one of the usual comparison operators ( <, ≥, in, not in …) 
and c is a constant value.  

- R is a set of tuples R={(RXj, α j, β j)| j=1,…,l}where RXj is a regression term 
already introduced in the multiple linear model, l is the number of such 
terms, α j = (αj1, αj2, …, αjn) and β j = (βj1, βj2, …, βjn) are the regression 
coefficients computed to remove the effect of  each term RXj from all 
numerical attributes in T: 

                X’i = Xi - ∑j=1,...,l (α ji+ βji × RXj)      ∀  i = 1,…,n and Xi  is numerical 
- s is a flag with possible values open or closed. 

− A, a set of tuples (p, q, fk, e), where: 
- p and q are selection nodes. 

Fig. 2.  The data model of an example database used in relational regression 

Target atribute 

           Order 
Det ail 

Customer 

Article 

Id:text 
… 
CreditLine:real 
Agent:Text 

Id:text 
… 
Commission:real 

1 

N 

Id: text  
Date: date 
Client: text 

Id: text  
… 
Order: text 
Article: text 

N 

N 
Id: text  
… 1 

N 

1 1 

Agent 



Annalisa Appice et al. 10

- fk  is a foreign key association between p.T and q.T in the relational schema D 
(one-to-many or many-to-one). 

- e is a flag with possible values present or absent . 
Selection graphs contain at least a node n0 that corresponds to the target table T0. 

They can be graphically represented by a directed labelled graph (Fig. 3.a). The value 
of s is expressed by the absence or presence of a cross in the node, representing the 
value open and close, respectively. Similarly the value for e is indicated by the 
presence (absent value) or absence (present value) of a cross on the corresponding 
arrow representing the labelled arc. The direction of the arrow (left-to-right and right-
to-left) corresponds to the multiplicity of the association fk (one-to-many and many-
to-one, respectively). Every arc between the nodes p and q imposes some constraints 
on how one or more records in the table q.T are related to each record in table p.T, 
according to the list of conditions in q.C. The association between p.T and q.T induces 
some grouping (Fig. 3.b) in the records in q.T, and thus selects some records in  p.T. In 
particular, a present arc selects those records that belong to the join between the tables 
and match the list of conditions.  On the other hand, an absent  arc corresponds to the 
negation of the joining condition and the representations of the complementary sets of 
objects. Intuitively, the tuples in the target table T0 that are explained by a selection 
graph G are those for which tuples exist or not in linked tables that satisfy the 
conditions defined for those tables.  

Selection graphs are more intuitive than expressions in SQL or Prolog, because 
they reflect the structure of the relational data model, and refinements of existing 
graphs may be defined in terms of addition or updating of arcs and/or nodes. The 
given definition of selection graph cannot allow to represent recursive relationships. 
Therefore a selection graph can be straightforwardly translated into either SQL or into 
first order logic expressions (Fig. 4). In this case a subgraph pointed by an absent arc 
is translated into a negated inner  sub-query. 
 

Fig. 3. (a) Example of selection graph; (b) corresponding grouping and (c) logic 
representation of objects selected from an instance of the example database 

 
a)  

Date in 
{02/09/02, 05/09/02} 

Customer Order 

begin (model (‘customer-124’)). 
   customer(‘124’,’AdamSally’,818.75, 1000,’03’). 
   order(‘12489’, ’02/09/02’, ’124’).  
   order(‘12500’,’05/09/02’, 124). 
end (model(‘customer-124’)). 
begin (model (‘customer-256’)). 
   customer(‘256’,’SadamsAnn’, 21.5, 1500,’06’).  
… 
end (model(‘customer-256’)). 
… 

… 

b) 

c) 

Order 

Customer 
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5 Multi-relational Stepwise Model Tree Induction 

Mr-SMOTI induces model trees whose nodes (regression, split or leaf) involve multi-
relational patterns that can be represented with selection graphs, that is each node of 
the tree corresponds to a selection graph . Essentially Mr-SMOTI, like the 
propositional version SMOTI, builds a tree-structured multi-relational regression 
model by adding split and/or regression nodes through a process of successive 
refinements of the current selection graph until a stopping criterion is fulfilled and a 
leaf node is introduced. Thus, the model associated to each leaf is computed by 
combining all straight-line regressions in the regression refinements along the path 
from the root to the leaf. 

5.1 The Algorithm 

Mr-SMOTI is basically a divide-and-conquer algorithm that starts with a root 
selection graph G containing only the target node n0. This graph corresponds to the 
entire set of objects of interest in the relational database D (the target table T0). At 
each step the system chooses the optimal refinement (split  or regression) according to 
a heuristic function. In particular, a split refinement corresponds to either the updating 
of an existing node by adding a new selection condition or the introduction of a new 
node and a new arc in the current selection graph. On the other hand, a regression 
refinement corresponds to the updating of regression terms in existing nodes. The 
optimal refinement (and its complement in the case of a split), are used to create the 
regression functions associated to the root of the left  (/right) branch. This procedure is 
recursively applied to each branch until a stopping criterion is fulfilled. 

Mr-SMOTI (D: database, G: selection_graph)  
begin 
GS , GR, R: selection_graph;   
T_left, T_right: model_tree; 
  GR:= optimal_regression_refinement (G, D); 

if stopping_criteria (GR, D)   then    return  leaf (GR); 
GS:= optimal_split_refinement (G, D);  
R:= best_refinement (GR, GS); 

Fig. 4.  (a) SQL and (b) first order logic translation of a selection graph G 

 
 

Orde
r 

Date in 
{02/09/02} 

Customer
Orde
r R=∅ 

G 
a) 

SELECT  n0.ID, n0.Name, n0.Adress,…, n0.Sale, n0.CreditLine, n0Agent,   
  n1.ID, n1.Date, n1.Client   

FROM Customer n0, Order n1 
WHERE  n0.ID=n1.Client and n0.ID not  in  
         (SELECT n2.Client FROM Order n2 WHERE  n2.Date in  {02/09/02})); 
 
← customer(N0_ID, …,N0_Agent),  
     order(N1_ID,N1_Date, N0_ID), 
    ¬ (order(N2_ID,N2_Date, N0_ID), N2_Date=02/09/02). 
 

 

b) 
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if(R=GR) //the optimal refinement is a regression node 
  T_left := Mr-SMOTI (D,R);  

T_right := ∅; 
else   // the optimal refinement is a split node 

T_left := Mr-SMOTI (D,R); 
T_right := Mr-SMOTI (D, comp (R)); 

return model_tree(R, T_left, T_right). 
end 

The functions optimal_split_refinement and optimal_regression_refinement take 
the current selection graph G corresponding to the current node t and consider every 
possible split and regression refinement. The choice of which refinements are 
candidates is determined by the current selection graph G, the structure of data model 
in D, and notably by the multiplicity of associations within this data model.  

The validity of either a splitting refinement (Gs) together with its complement 
(comp(GS)), or a regression refinement (GR) is based on two distinct evaluation 
measures, σ( GS, comp(GS)) and ρ(GR), respectively. Both σ( GS, comp(GS)) and 
ρ(GR), are mean square errors (MSE)  2, therefore they can be actually compared to 
choose between three different possibilities:  
− growing the model tree by adding the node 

RGt corresponding to the 
regression refinement GR;  

− growing the model tree by adding the nodes  tGS and tComp(GS) corresponding to 
the splitting refinement  GS  and its complement comp(GS)3; 

− stopping the tree’s growth at the current node t. 
Let T be the multi-relational model tree currently built stepwise, G the selection 

graph associated to the node t in T and )( )( SS GcompG tt  the left (right) child of t, 

associated to a split refinement GS (the complementary split refinement comp(GS)) of 
the selection graph G, σ(Gs, comp(Gs)) is defined as:  

)),R(comp(G
)N(t)N(t
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)R(G
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refinement GS (comp(GS)), and R(GS) ( R(comp(GS) ) is the resubstitution error of the 
left (right) child, computed as follows: 

Therefore the evaluation measure σ(Gs,  comp(Gs)) is coherently defined on the 
basis of the partially defined multiple linear regression models Ŷ  built by combining 

                                                                 
2 Mr-SMOTI minimises the square error with respect to the partially constructed  

regression model . 
3 Mr-SMOTI requires that the subsets of target objects belonging to patterns deriving from the 

same parent by applying some kind of refinement must be complementary. Because of this 
the split refinements are introduced together with their complementary refinement. 
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the best straight-line regression associated to )( )( SS GcompG tt , with all regressions 

introduced along the path from the root to )( )( SS GcompG tt . 
The evaluation of a regression step Y=a+bXi at regression refinement GR, cannot 

be naïvely based on the resubstitution error R(GR): 

∑
=

−=
)(

1

2)ˆ(
)(

1
)(

RG

R

tN

j
jj

G
R yy

tN
GR , 

where 
RGt is the node representing the regression refinement GR  and )(

RGtN  is the 

number of training tuples covered by the refinement GR. The predicted value 
jŷ  is 

computed by combining all regression lines introduced in T along the path from the 
root to 

RGt . This would result in values of ρ(GR) less than or equal to values of 

σ(GS,comp(GS)) for splitting refinement involving Xi [18]. Indeed, the splitting test 
“looks-ahead” to the best multiple linear regressions after the current split is 
performed, while the regression step does not perform such a look-ahead. A fairer 
comparison would be to grown the model tree at a further level in order to base the 
computation of ρ(GR) on the best split refinement GS, after the current regression 
refinement is performed. Therefore,  ρ(GR) is defined as follows: 

ρ(GR) = min {R(GR),σ(GS ,comp(GS))}. 
Having defined both σ(Gs, comp(Gs)) and ρ(GR), the criterion for selecting the 

best refinement is fully characterised as well. At each step of the induction process, 
Mr-SMOTI chooses the apparently most promising refinement, according to a greedy 
strategy. 

The function stopping_criteria  determines whether the current optimal refinement 
must be transformed into a leaf according to the minimal number of target objects 
(minObject) covered by the selection graph which is associated to the current node 
and the minimal threshold  for the coefficient of determination (minR) of the 
prediction function built stepwise [4]. This coefficient is a scale-free one-number 
summary of the strength of the relationship between independent variables in the 
actual multiple linear model and the dependent variable. 

The regression model built by Mr-SMOTI can be viewed as a set of SQL queries 
associated with each leaf in the tree. These queries predict an estimate of the target 
attribute according to the multiple model built stepwise. The prediction is averaged by 
means of a grouping on the target objects. The complementary nature of different 
branches of a model tree ensures that a given target object cannot be assigned a 
conflicting model. 

5.2 The Refinements 

Split refinements are an extension of the refinement operations proposed in [11] to 
perform a split test in a multi-relational decision tree. Whenever a split is  introduced 
in a model tree, Mr-SMOTI is in fact refining the selection graph associated to the 
current node, by adding either a condition  or an open node linked by a present arc.  
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Given a selection graph G, the add condition refinement returns the refined 
selection graph Gs by simply adding a split condition to an open node ni ∈G.N 
without changing the structure of G. The split condition can be a test on either a 
continuous or a discrete attribute of the table associated to the node ni. The first is in 
the form Xi≤α. The value of α is one of the cut points found by an equal frequency 
discretization of the ordered distinct values of Xi. A discrete test is in the form Xi in 
Ui, with Ui a subset of the range of Xi. A greedy strategy as suggested by [20] is used 
to identify Ui. Initially Ui = ∅ is considered, the possible refinement is obtained by 
moving one discrete value from the range of Xi to Ui, such that the move results in a 
better split. The evaluation measure σ( GS, comp(GS)) is computed, therefore a better 
split decreases σ(Gs, comp(GS)). The process is iterated until there is no improvement 
in the splits.  

The add linked node refinement instantiates an association of the data model D by 
means of a present arc, together with its corresponding table, represented as an open 
node, and adds these to the selection graph G. Knowledge of the nature and 
multiplicity is used to guide and optimise this search. Since the investigated 
associations are foreign key associations, the proposed refinements can have two 
directions: backward or forward . The former correspond to many-to-one associations, 
while the latter describe one-to-many associations in the data model. This means that 
a backward refinement of the selection graph G does not partition the set of target 
objects covered by G but extends their descriptions (training data) by considering 
tuples joined in the table which are represented by the new added node.  

Each split refinement of type add condition  or add linked node is introduced 
together with its complementary refinement. Let G be the selection graph associated 
to the current node t and GS a split refinement of G associated to the left sub-tree of t. 
The first order logic expression translating GS is: 

← QG, conj (
SGQ ), 

where QG is the translation of G and conj is the condition corresponding to the split 
refinement. The complementary refinement (comp(GS)) associated with the right sub-
tree could not be the expression ←QG,¬conj. Indeed, the selection graphs (queries) of 
the left and right sub-tree must be complementary: for each object into the current 
node (QG succeeds) exactly one of both queries should succeed. Consider in Figure 5 
the refinement GS of the selection graph G, obtained by adding a condition on the 
table Order that is not a target table. In this case the complementary of adding a literal 
(Date in {02/09/02}) is not equivalent to adding its negation (¬(Date in {02/09/02})), 
while at the same time switching the branches of T. This is an important difference 
compared with the propositional case, where a test and its simple negation generate a 
partition of the training data. The complementary set associated to the complementary 
refinement of GS must contain the target objects in G (and the linked information in 
connected nodes) that are associated with none of the tuples in Order satisfying the 
refinement condition.  

In [11], Knobbe et al. propose a complementary refinement named add negative 
condition  that should solve the problem of mutual exclusion between an add 
condition refinement and its complement. If the node that is being refined does not 
represent the target table, comp(GS)  is built from G by introducing an absent arc from 
the parent of ni to the clone of the entire sub-graph of G that is rooted in ni. The 
introduced sub-graph has a root (a clone of the node to be refined) that is a closed 
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node updated with the refinement condition that is not negated. In this way the 
complementary operation builds a selection graph that negates an entire inner sub-
query and not simply a condition. As was observed in [16], this approach fails to build 
complementary refinements when the node to be refined is not directly connected to 
the target node. 

The example in Figure 6 proves that the proposed mechanism could build a 
refinement GS and a complementary refinement comp(GS) that are not mutually 
exclusive. To overcome this problem the complementary refinement comp(GS) should 
be obtained by adding an absent arc from the target node n0  to the clone of the sub-
graph containing the entire join path from n0 to the node to be refined. The introduced 
sub-graph has a root (a clone of n0) that is a closed node and is updated with the 
refinement condition that is not negated. A new absent arc is also introduced between 
the target node and its closed clone. This arc is an instance of the implicit relationship 
between the primary key of the target table and the own itself (Figure 7).   

Similarly, when we consider the complementary refinement for an add linked node 
refinement we make the same considerations as when a negated condition is going to 
be added. This means that when the closed node to be added is not directly connected 
to the target node in G, a procedure similar to that described when an add condition 
refinement is complemented must be followed. 

Customer 

Fig. 5.  Explanation of (a) the partitioning of training objects according to (b) a split 
refinement GS and its complement comp(GS) 

Date not in {02/09/02} 

Date in 
{02/09/02} 

… 

Order 
a) 

Order 

Date in  
{02/09/02} 

 

Customer 
Order 

Order Customer 
G 

G S 
Comp(G S) Order Customer

Date in   
{02/09/02} 

 

b) 
(First order expression)  Q G  ←customer(N0_ID, ,N0_Agent),  

              order(N1_ID,N1_Date, N0_ID). 
(SQL query)             QG   SELECT  n0.ID, …, n0Agent,   

                                      n1.ID, n1.Date, n1.Client   
                             FROM Customer n0, Order  n1 

        WHERE  n0.ID=n1.Client 
 

First order expression  

SGQ ← customer(N0_ID, …,N0_Agent), 

order(N1_ID,N1_Date, N0_ID).  
N2_Date=02/09/02. 

SQL query 
      SELECT  n0.ID, …, n0Agent,             

    n1.ID,n1.Date,n1.Client                         
FROM Customer  n0, Order  n1 
WHERE  n0.ID=n1.Client AND  

     n1.Date =02/09/02 

First order expression  

)( SGcompQ ← customer(N0_ID,…,N0_Agent),   

        order(N1_ID,N1_Date, N0_ID). 
     ¬(order(N2_ID, N2_Date, N0_ID),  
        N2_Date=02/09/02). 

SQL query 
SELECT  n0.ID,.., n0Agent,  

 n1.ID,n1.Date,n1.Client                     
FROM Customer n0, Order  n1 
WHERE  n0.ID=n1.Client AND                                       

    n0.ID not in (select  n2.Client from  
   Client n2 where n2.Date =02/09/02) 
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Finally, a regression refinement GR (Figure 8) corresponds to performing a regression 
step (Y’=αY+βY×ni.T.Xj’) on the residual of a continuous attribute (ni.T.Xj’) not yet 
introduced in the model currently built. Regression coefficients (αY and βY) are 
estimated according to the values of Y’ and ni.T.Xj’ of each single tuple selected by 
the current selection graph G. The regression attribute must belong to a table 
represented by a node in the parent graph G. For each node, the list of regressions R is 
updated by adding the regression term (ni.T.Xj’) introduced in the model and the 
coefficients α and β computed to update the residuals of all continuous attributes in 

Fig. 6.  Example of  (a) refinement (GS) by adding  a condition on a node not directly connected 
to the target node and  (b) the corresponding complementary refinement, proposed by Knobbe 
et al., that does not satisfy the mutual exclusion 

Order Customer Detail 

price≤15 

SELECT  n0.ID, …, n0Agent,                       
                  n1.ID,n1.Date,n1.Client, 

            n2.Id,…n2.Order, n2.Article                    
FROM Customer n0, Order  n1,  Detail  n2 
WHERE  n0.ID=n1.Client AND  

           n1.ID=n2.Order AND  
           n2.Price≤15 

begin (model (‘customer-124’)). 
   customer(‘124’,’Adam Sally’, …,’03’).  
   order(‘12489’, ’02/09/02’, ’124’).  
    detail(‘D123, 12,80,’12489’,’A1’), 
   detail(‘D124’, 15,22,12489’,’A2’) 
end (model(‘customer-124’)). 
begin (model (‘customer-256’)). 
   customer(‘256’,’Sadams Ann’, …,’06’).  
     . . . 
end (model(‘customer-256’)). 
     . . . 

 

SELECT  n0.ID, …, n0Agent,                       
                  n1.ID,n1.Date,n1.Client, 

            n2.Id,…n2.Order, n2.Article                      
FROM Customer  n0, Order  n1, Detail  n2 
WHERE  n0.ID=n1.Client AND  
                 n1.ID=n2.Order AND  

          n1.ID not in ( select n3. Order from   
                Order  n3 where n3.Price≤15)  

 
begin (model (‘customer-124’)). 

customer(‘124’,’Adam Sally’, …,’03’). 
order(‘12500’,’05/09/02’, 124). 

   detail(‘D125’, 16,25,12500’,’A3’) 
end (model(‘customer-124’)). 

… 

GS 

Customer 

Order Detail 

Detail 

Detail 

 Order Customer 

price≤15 

Comp(GS) 
 

Detail Order Customer 

price≤15 

Order Customer Detail 

SELECT  n0.ID, …, n0Agent,                       
                  n1.ID,n1.Date,n1.Client, 

            n2.Id,…n2.Order, n3.Article                      
FROM Customer  n0, Order  n1, , Detail  n2 
WHERE  n0.ID=n1.Client AND  
                 n1.ID=n2.Order AND  

          n0.ID not in ( select n0. ID  from   
                   Customer  n3, Order  n4, , Detail  n5 

             where n3.ID=n4.Client and            
              n4.ID=n5.Order  and  n5.Price≤15)  
 

Fig. 7.  Example of correct complementary refinement when adding a condition on a node not 
 directly connected to the target node 
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the node. According to the evaluation function ρ(GR), a regression refinement 
includes a look-ahead capability. The complementary refinement of a regression step 
is empty. 

 

6 Experimental Evaluation  

Mr-SMOTI has been applied to the biological problems of predicting both the 
mutagenic activity of molecules [21] and the biodegradability of chemical compounds 
in water [6]. A mutagenesis dataset consists of 230 molecules divided into two 
subsets: 188 molecules for which linear regression yields good results and 42 
molecules that are regression-unfriendly. In our experiments we used the atom and 
bond structure of regression-friendly molecules by adding boolean indicators Ind1 
and Ind2 as one setting (B1) and adding Lumo and Logp properties to get a second 
setting (B2). Similarly biodegradability dataset consists of 328 chemical molecules 
structurally described in terms of atom and bond. In all the experimental results 
reported below the thresholds for stopping criteria are fixed as follows: the minimum 
number of target objects falling in each internal node must be greater than the square 
root of the number of target objects in the entire training set and the determination 
coefficient in each internal node must be below 0.80. 

Each dataset is analysed by means of a 10-fold cross-validation. Figure 9 shows the 
test set performance of Mr-SMOTI and TILDE-RT in both domains, as measured by 
the Pearson correlation coefficient. The Pearson correlation coefficient (PCC), which 
is computed as follows: 
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Rn0={(n0.Commission, α1, β1)} 
Rn1={(n1.Commission, α1, β1)} 

 

Rn0=∅  
Rn1=∅ 

CreditLine = n0.R.α1CreditLine+ n0.R.β1CreditLineCommission 

Regression step 

SELECT n0.Id,avg(n0.R.α1CreditLine+β1CreditLine n0.Commision)  
FROM Customer n0, Agent n1 WHERE n0.Agent=n1.Id  
GROUP BY n0.ID 
 

Customer Agent 
n0 n1 

G 

Customer Agent 
n0 n1 

GR 

Model currently built 

Fig. 8.  Example of a regression refinement GR that performs a regression step on the attribute 
Agent.Commission. The nodes n0 and n1 are updated with the vectors of coefficients α and β
in order to remove the effect of the regression attribute from the continuous attributes in n0.T
and n1.T, respectively 
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is a measure of how much the value of a target attribute ( jy ) in test objects 
correlates with the value ( jŷ ) predicted by the induced model. 

Since the Pearson correlation coefficient does not measure the quantity error of a 
prediction, we include several other measures as proposed by Quinlan [24]. We have 
evaluated the predictive accuracy on the basis of the average mean square error 
(Avg.MSE), which is computed as follows:  
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where V={V1, .., Vk} is a k-cross-validation partition of the training data V (i.e., 10), 

)( iVN is the number of target objects in Vi, and )(ˆ ij VVy −  is the value predicted 

for the j-th target object in Vi by the prediction model built from V-Vi . 
The predictive accuracy is also estimated according to the average error (AE) 

averaged on a 10 fold cross-validation: 
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Fig. 9. Pearson correlation coefficient (Y axis) for multi-relational prediction models induced 
from the 10-fold cross validated datasets (X axis) of Mutagenesis (B1, B2) and 
Biodegradability datasets. The comparison concerns two systems: TILDE-RT (black squares) 
vs. Mr-SMOTI (purple diamonds) 
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 For pairwise comparison with TILDE-RT the non-parametric Wilcoxon two-
sample paired signed rank test is used [22], since the number of folds (or 
“independent” trials) is relatively low and does not justify the application of 
parametric tests, such as the t-test. To perform the test, we assume that the 
experimental results of the two compared methods are independent pairs of sample 
data {(u1,  v1), (u2,  v2), . . ., (un,  vn)}. We then rank the absolute value of the 
differences ui - vi. The Wilcoxon test statistics W+ and W- are the sum of the ranks 
from the positive and negative differences, respectively. We test the null hypothesis 
H0: “no difference in distributions” against the two-sided alternative Ha: “there is a 
difference in distributions”. More formally, the hypotheses are: H0: “µu=µv” against 
Ha: “µu≠µv”. Intuitively, when W+ >> W- and viceversa, H0 is rejected. Whether W+ 
should be considered “much greater than” W- depends on the significance level α. 
The basic assumption of the statistical test is that the two populations have the same 
continuous distribution (and no ties occur). Since, in our experiments, ui and vi are 
MSE, W+ >> W - implies that the second method (V) is better than the first one (U).  

The results of the Wilcoxon signed rank test on the accuracy of the induced multi-
relational prediction model are reported in Table 1. The Wilcoxon test statistics W+ 
(W-) is the sum of the ranks from the positive (negative) differences between TILDE-
RT and Mr-SMOTI. Therefore, the smaller W+ (W-), the better for Mr-SMOTI 
(TILDE-RT). Differences are considered statistically significant when the p-value is 
less than or equal to α/2.          

Table 1. Results of the Wilcoxon signed rank test on the accuracy of the induced models. The 
best value is in boldface, while the statistically significant values (p≤α/2,α=0.05) are in italics 

Dataset Accuracy Mr-SMOTI TILDE-RT W+ W- P 
Avg.MSE 1.165 1.197 23 32 0.69 

B1 
Avg.AE 0.887 0.986 12 43 0.13 
Avg.MSE 1.118 1.193 15 40 0.23 

M
ut

ag
en

e
si

s 

B2 
Avg.AE 0.845 0.985 11 44 0.10 
Avg.MSE 0.337 0.588 0 55 0.0019 

Biodegradability 
Avg.AE 0.186 0.363 0 55 0.0019 

 

Table 2. Number of leaves comparison for the 188 regression friendly elements of Mutagenesis 
(B1 and B2 setting) and the 328 elements of Biodegradability 

System Mutagenesis – B1 Mutagenesis – B2 Biodegradability 
Mr-SMOTI 14.4 9.2 2 
TILDE-RT 11.7 14.9 4.7 

 
Experimental results on tree size are reported in Table 2. Results show that in 

the case of both mutagenesis dataset (B2 setting) and biodegradability dataset Mr-
SMOTI builds simpler models (in number of leaves) without loosing accuracy. 
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7 Conclusions  

This paper presents a novel approach to mining relational model trees. The proposed 
algorithm can work effectively when training data are stored in multiple tables of a 
relational DBMS. Information on the database schema is used to reduce the search 
space of patterns. Induced relational models are represented by selection graphs 
whose definition has been extended in order to describe mo del trees with either split 
nodes or regression nodes. The proposed algorithm has been implemented as a 
module of the system MURENA that is tightly coupled to the Oracle Database. As 
future work, we plan to extend the comparison of Mr-SMOTI to other multi-relational 
data mining systems on a larger set of benchmark datasets. In particular, we plan to 
apply Mr-SMOTI in the spatial task of supporting quantitative interpretation of maps 
and in the analysis of geo-referenced census data [1]. Moreover, we intend to use 
SQL primitives and parallel database servers to speed up the stepwise construction of  
multi-relational model trees from data stored in a large database. 
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