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Abstract. This paper deals with learning in AL-log, a hybrid language
that merges the function-free Horn clause language Datalog and the de-
scription logic ALC. Our application context is descriptive data mining.
We introduce O-queries, a rule-based form of unary conjunctive queries
in AL-log, and a generality order �B for structuring spaces of O-queries.
We define a (downward) refinement operator ρO for �B-ordered spaces
of O-queries, prove its ideality and discuss an efficient implementation
of it in the context of interest.

1 Introduction

Hybrid systems are a special class of knowledge representation systems which
are constituted by two or more subsystems dealing with distinct portions of a
knowledge base and specific reasoning procedures [11]. The characterizing feature
of hybrid systems is that the whole system is in charge of a single knowledge base,
thus combining knowledge and reasoning services of the different subsystems in
order to answer user questions. Indeed the motivation for building hybrid systems
is to improve on two basic features of knowledge representation formalisms,
namely representational adequacy and deductive power. Among hybrid systems,
languages such as Carin [14] and AL-log [8] are particularly interesting because
they bridge the gap between description logics (DLs) and Horn clausal logic
(notoriously incomparable with respect to expressive power [3]). E.g., AL-log
combines Datalog [5] and ALC [23]. Whereas learning pure DLs has been quite
widely investigated [6,13,1], there are very few attempts at learning in DL-based
hybrid languages. In [22] the chosen language is Carin-ALN , therefore example
coverage and subsumption between two hypotheses are based on the existential
entailment algorithm of Carin. Following [22], Kietz studies the learnability
of Carin-ALN , thus providing a pre-processing method which enables ILP
systems to learn Carin-ALN rules [12]. Closely related to DL-based hybrid
systems are the proposals arising from the study of many-sorted logics, where a
first-order language is combined with a sort language which can be regarded as
an elementary DL [9]. In this respect the study of sorted downward refinement
[10] can be also considered a contribution to learning in hybrid languages.

In this paper we deal with learning in AL-log. This language merges Data-
log [5] and ALC [23] by using concept assertions essentially as type constraints
on variables. For constrained Datalog clauses we have defined the relation of
B-subsumption and the subsequent generality order �B, and provided a decid-
able procedure to check �B on the basis of constrained SLD-resolution [17].
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This work presents a case study for B-subsumption in the context of descriptive
data mining. As opposite to prediction, description focuses on finding human-
interpretable patterns describing a data set r. Among descriptive tasks, frequent
pattern discovery aims at the extraction of all patterns whose cardinality exceeds
a user-defined threshold. Indeed each pattern is considered as an intensional de-
scription (expressed in a given language L) of a subset of r. We propose a variant
of this task which takes concept hierarchies into account during the discovery
process, thus yielding descriptions of r at multiple granularity levels. More for-
mally, given

– a data set r including a taxonomy T where a reference concept and task-
relevant concepts are designated,

– a set {Ll}1≤l≤maxG of languages
– a set {minsupl}1≤l≤maxG of support thresholds

the problem of frequent pattern discovery at l levels of description granularity,
1 ≤ l ≤ maxG, is to find the set F of all the patterns P ∈ Ll frequent in r,
namely P ’s with support s such that (i) s ≥ minsupl and (ii) all ancestors of P
w.r.t. T are frequent. An ILP approach to this problem requires the specification
of a language L of hypotheses and a generality relation � for L. To this aim we
introduce O-queries, a rule-based form of unary conjunctive queries in AL-log,
and study �B-ordered spaces of O-queries. Descriptive data mining problems are
characterized by hypothesis spaces with high solution density. Ideal refinement
operators are usually suggested to search spaces of this kind [2]. Unfortunately for
clausal languages ordered by θ-subsumption or stronger orders, ideal operators
have been proven not to exist [20]. Yet they can be defined in some restricted
yet meaningful cases. The main contribution of this paper is the definition of
an ideal downward refinement operator ρO for �B-ordered spaces of O-queries
in the context of frequent pattern discovery at multiple levels of description
granularity.

The paper is organized as follows. Section 2 introduces the basic notions
of AL-log. Section 3 defines the space of O-queries organized according to B-
subsumption. Section 4 presents the refinement operator ρO, proves its ideality
and discusses an efficient implementation of it in the context of interest. Section
5 concludes the paper with final remarks.

2 AL-Log in a Nutshell

The language AL-log [8] combines the representation and reasoning means of-
fered by Datalog and ALC . Indeed it embodies two subsystems, called re-
lational and structural. We assume the reader to be familiar with Datalog,
therefore we focus on the structural subsystem and hybridization of the rela-
tional subsystem.
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2.1 The Structural Subsystem

The structural subsystem of AL-log allows for the specification of structural
knowledge in terms of concepts, roles, and individuals. Individuals represent ob-
jects in the domain of interest. Concepts represent classes of these objects, while
roles represent binary relations between concepts. Complex concepts can be de-
fined by means of constructs, such as � and �. The structural subsystem is itself
a two-component system. The intensional component T consists of concept hier-
archies spanned by is-a relations between concepts, namely inclusion statements
of the form C � D (read ”C is included in D”) where C and D are two arbitrary
concepts. The extensional componentM specifies instance-of relations, e.g. con-
cept assertions of the form a : C (read ”the individual a belongs to the concept
C”) and role assertions of the form aRb (read ”the individual a is related to the
individual b by means of the role R”).

In ALC knowledge bases, an interpretation I = (∆I , ·I) consists of a set ∆I

(the domain of I) and a function ·I (the interpretation function of I). E.g., it
maps concepts to subsets of ∆I and individuals to elements of ∆I such that
aI �= bI if a �= b (see unique names assumption [21]). We say that I is a model
for C � D if CI ⊆ DI , for a : C if aI ∈ CI , and for aRb if (aI , bI) ∈ RI .

The main reasoning mechanism for the structural component is the satisfia-
bility check. The tableau calculus proposed in [8] starts with the tableau branch
S = T ∪M and adds assertions to S by means of propagation rules such as

– S →� S ∪ {s : D} if
1. s : C1 � C2 is in S,
2. D = C1 and D = C2,
3. neither s : C1 nor s : C2 is in S

– S →∀ S ∪ {t : C} if
1. s : ∀R.C is in S,
2. sRt is in S,
3. t : C is not in S

– S →� S ∪ {s : C′ �D} if
1. C � D is in S,
2. s appears in S,
3. C′ is the NNF concept equivalent to ¬C
4. s : ¬C �D is not in S

– S →⊥ {s : ⊥} if
1. s : A and s : ¬A are in S, or
2. s : ¬� is in S,
3. s : ⊥ is not in S

until either a contradiction is generated or an interpretation satisfying S can be
easily obtained from it.



218 Francesca A. Lisi and Donato Malerba

2.2 Hybridization of the Relational Subsystem

The relational part of AL-log allows one to define Datalog programs enriched
with constraints of the form s : C where s is either a constant or a variable,
and C is an ALC-concept. Note that the usage of concepts as typing constraints
applies only to variables and constants that already appear in the clause. The
symbol & separates constraints from Datalog atoms in a clause.

Definition 1. A constrained Datalog clause is an implication of the form
α0 ← α1, . . . , αm&γ1, . . . , γn where m ≥ 0, n ≥ 0, αi are Datalog atoms and
γj are constraints. A constrained Datalog program Π is a set of constrained
Datalog clauses.

An AL-log knowledge base B is the pair 〈Σ,Π〉 where Σ is an ALC knowledge
base and Π is a constrained Datalog program. For a knowledge base to be
acceptable, it must satisfy the following conditions:

– The set of Datalog predicate symbols appearing in Π is disjoint from the
set of concept and role symbols appearing in Σ.

– The alphabet of constants in Π coincides with the alphabet O of the indi-
viduals in Σ. Furthermore, every constant in Π appears also in Σ.

– For each clause in Π , each variable occurring in the constraint part occurs
also in the Datalog part.

These properties allow for the extension of terminology and results related to the
notion of substitution from Datalog to AL-log in a straightforward manner.

Example 1. As a running example, we consider an AL-log knowledge base B
obtained from the Northwin

traders
D database. The structural subsystem Σ should re-

flect the E/R model underlying the Northwin
traders

D database. To serve our illustrative
purpose we focus on the concepts (entities) Order, Product and Customer. The
intensional part of Σ encompasses inclusion statements such as DairyProduct �
Product and EuroCustomer=Customer�∃LivesIn.EuroCountry that define two
taxonomies, one for Product and the other one for Customer. The extensional
part ofΣ contains assertions like order10248:Order,product11:DairyProduct,
’VINET’LivesIn’France’ and ’France’:EuroCountry. The relational subsys-
tem Π expresses the Northwin

traders
D database as a constrained Datalog program.

We restrict ourselves to the relations Order and OrderDetail. The extensional
part of Π consists of facts such as order(order10248,’VINET’,. . .) whereas
the intensional part defines two views on order and orderDetail:

item(OrderID,ProductID)← orderDetail(OrderID,ProductID, , , )
& OrderID:Order, ProductID:Product

purchaser(OrderID,CustomerID)← order(OrderID,CustomerID, ,. . ., )
& OrderID:Order, CustomerID:Customer

that, when triggered on B, can deduce facts such as item(order10248,
product11) and purchaser(order10248,’VINET’).
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The interaction between the structural and the relational part of an AL-log
knowledge base is also at the basis of a model-theoretic semantics for AL-log. We
call ΠD the set of Datalog clauses obtained from the clauses of Π by deleting
their constraints. We define an interpretation J for B as the union of an O-
interpretation IO for Σ (i.e. an interpretation compliant with the unique names
assumption) and an Herbrand interpretation IH for ΠD. An interpretation J is
a model of B if IO is a model of Σ, and for each ground instance ᾱ′&γ′

1, . . . , γ
′
n

of each clause ᾱ&γ1, . . . , γn in Π , either there exists one γ′
i, i ∈ {1, . . . , n}, that

is not satisfied by J , or ᾱ′ is satisfied by J . The notion of logical consequence
paves the way to the definition of answer set for queries. Queries to AL-log
knowledge bases are special cases of Definition 1. An answer to the query Q is
a ground substitution σ for the variables in Q. The answer σ is correct w.r.t. a
AL-log knowledge base B if Qσ is a logical consequence of B (B |= Qσ). The
answer set of Q in B contains all the correct answers to Q w.r.t. B.

Reasoning forAL-log knowledge bases is based on constrained SLD-resolution
[8], i.e. an extension of SLD-resolution to deal with constraints. In particular, the
constraints of the resolvent of a query Q and a constrained Datalog clause E
are recursively simplified by replacing couples of constraints t : C, t : D with the
equivalent constraint t : C � D. The one-to-one mapping between constrained
SLD-derivations and the SLD-derivations obtained by ignoring the constraints is
exploited to extend known results for Datalog to AL-log. Note that in AL-log
a derivation of the empty clause with associated constraints does not represent
a refutation. It actually infers that the query is true in those models of B that
satisfy its constraints. Therefore in order to answer a query it is necessary to
collect enough derivations ending with a constrained empty clause such that
every model of B satisfies the constraints associated with the final query of at
least one derivation.

Definition 2. Let Q(0) be a query ← β1, . . . , βm&γ1, . . . , γn to a AL-log knowl-
edge base B . A constrained SLD-refutation for Q(0) in B is a finite set
{d1, . . . , ds} of constrained SLD-derivations for Q(0) in B such that:

1. for each derivation di, 1 ≤ i ≤ s, the last query Q(ni) of di is a constrained
empty clause;

2. for every model J of B, there exists at least one derivation di, 1 ≤ i ≤ s,
such that J |= Q(ni)

Constrained SLD-refutation is a complete and sound method for answering
ground queries. An answer σ to a query Q is a computed answer if there ex-
ists a constrained SLD-refutation for Qσ in B (B # Qσ). The set of computed
answers is called the success set of Q in B. Furthermore, given any query Q,
the success set of Q in B coincides with the answer set of Q in B. This provides
an operational means for computing correct answers to queries. Indeed, it is
straightforward to see that the usual reasoning methods for Datalog allow us
to collect in a finite number of steps enough constrained SLD-derivations for Q
in B to construct a refutation - if any. Derivations must satisfy both conditions
of Definition 2. In particular, the latter requires some reasoning on the structural
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component of B. This is done by applying the tableau calculus as shown in the
following example.

Example 2. Following Example 1, we compute a correct answer to

Q = ← purchaser(order10248,Y) & order10248:Order, Y:EuroCustomer

w.r.t. B. A refutation for Q = Q(0) consists of the following single constrained
SLD-derivation. Let E(1) be

purchaser(OrderID,CustomerID)← order(OrderID,CustomerID, ,. . ., )
& OrderID:Order, CustomerID:Customer

A resolvent for Q(0) and E(1) with substitution σ(1) = {OrderID/ order10248,
CustomerID/ Y} is the query

Q(1) = ← order(order10248,Y, ,. . ., )
& order10248:Order, Y:EuroCustomer

Let E(2) be order(order10248,’VINET’, ,. . ., ). A resolvent for Q(1) and
E(2) with substitution σ(2) = {Y/ ’VINET’} is the constrained empty clause

Q(2) = ← & order10248:Order, ’VINET’:EuroCustomer

What we need to check is that Σ ∪ {order10248:Order, ’VINET’:
EuroCustomer} is satisfiable. This check amounts to two unsatisfiability checks
to be performed by applying the tableau calculus. The first check operates on the
initial tableau S(0) = Σ ∪ {order10248:¬Order}. The application of the prop-
agation rule →⊥ to S(0) produces the tableau S(1) = {order10248:⊥}. Com-
putation stops here because no other rule can be applied to S(1). Since S(1) is
complete and contains a clash, the initial tableau S(0) is unsatisfiable. The second
check operates on the initial tableau S(0) = Σ ∪ {’VINET’:¬EuroCustomer}=Σ
∪ {’VINET’:¬Customer�∀ LivesIn.(¬EuroCountry)}. By applying→� w.r.t.
∀LivesIn.(¬EuroCountry) to S(0) we obtain S(1)=Σ ∪ {’VINET’:∀ LivesIn.
(¬EuroCountry)}. The only propagation rule applicable to S(1) is →∀ which
yields the tableau S(2) = Σ ∪ {’VINET’:(¬EuroCountry)}. It presents a con-
tradiction. Indeed the application of →⊥ to S(2) produces the final tableau S(3)

= {’VINET’:⊥}.
These two results together prove the satisfiability ofΣ ∪ {order10248:Order,

’VINET’:EuroCustomer}, then the correcteness of σ={Y/ ’VINET’} as an an-
swer to Q w.r.t. B.

3 The �B-Ordered Space of O-Queries

In this section we propose AL-log as the starting point for the definition of a
knowledge representation and reasoning framework in the context of interest.
The main feature of this framework is the extension of the unique names as-
sumption from the semantic level to the syntactic one. We would like to remind
the reader that this assumption holds in ALC. Also it holds naturally for ground
constrained Datalog clauses because the semantics of AL-log adopts Herbrand
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models for the Datalog part and O-models for the constraint part. Conversely
it is not guaranteed in the case of non-ground constrainedDatalog clauses, e.g.
different variables can be unified. In particular we resort to the bias of Object
Identity [24]: In a formula, terms denoted with different symbols must be distinct,
i.e. they represent different entities of the domain. This bias yields to a restricted
form of substitution whose bindings avoid the identification of terms: A substitu-
tion σ is an OI-substitution w.r.t. a set of terms T iff ∀t1, t2 ∈ T : t1 �= t2 yields
that t1σ �= t2σ. From now on, we assume that substitutions are OI-compliant.
See [16] for an investigation of OI in the case of Datalog queries.

In this framework descriptions are represented as O-queries, a rule-based
form of unary conjunctive queries whose answer set contains individuals of an
ALC concept Ĉ of reference.

Definition 3. Given a reference concept Ĉ, an O-query Q to an AL-log knowl-
edge base B is a constrained Datalog clause of the form

Q = q(X)← α1, . . . , αm&X : Ĉ, γ2, . . . , γn

where X is the distinguished variable and the remaining variables occurring
in the body of Q are the existential variables. We denote by key(Q) the key
constraint X : Ĉ of Q. A trivial O-query is a constrained empty clause of the
form q(X)← &X : Ĉ.

We impose O-queries to be linked and connected (or range-restricted) con-
strained Datalog clauses. The language L of descriptions for a given learning
problem is implicitly defined by a set A of atom templates, a key constraint γ̂,
and an additional set Γ of constraint templates. An atom template α specify
name and arity of the predicate and mode of its arguments. An instantiation
of α is a Datalog atom with predicate and arguments that fulfill the require-
ments specified in α. Constraint templates specify the concept name for concept
assertions and determine the granularity level l of descriptions.

Example 3. Following Example 1, suppose that we want to perform sales anal-
ysis by finding associations between the category of ordered products and the
geographic location of the customer within orders. Here the entity Order is the
reference concept, and the entities Product and Customer are task-relevant con-
cepts. The language L must be defined so that it can generate descriptions of
orders with respect to products and customers. To this aim let A={item(+,-),
purchaser(+,-)} and γ̂ be the key constraint built on the concept Order. Sup-
pose that we are interested in descriptions at two different granularity levels.
Thus T consists of the two layers T 1={Product, Customer} and T 2={Beverage,
Condiment, Confection, DairyProduct, GrainsCereals, MeatPoultry,
Produce, SeaFood, EuroCustomer, NorthAmericanCustomer,
SouthAmericanCustomer} from which the sets Γ 1 and Γ 2 of constraints are
derived. Examples of O-queries belonging to this language are:
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Q0= q(X) ← & X:Order
Q1= q(X) ← item(X,Y) & X:Order
Q2= q(X) ← purchaser(X,Y) & X:Order
Q3= q(X) ← item(X,Y) & X:Order, Y:Product
Q4= q(X) ← purchaser(X,Y) & X:Order, Y:Customer
Q5= q(X) ← item(X,Y), item(X,Z) & X:Order, Y:Product
Q6= q(X) ← item(X,Y), purchaser(X,Z) & X:Order, Y:Product
Q7= q(X) ← item(X,Y), item(X,Z) & X:Order, Y:Product, Z:Product
Q8= q(X) ← item(X,Y), purchaser(X,Z) & X:Order, Y:Product, Z:Customer
Q9= q(X) ← item(X,Y) & X:Order, Y:DairyProduct
Q10= q(X) ← purchaser(X,Y) & X:Order, Y:EuroCustomer
Q11= q(X) ← item(X,Y), item(X,Z) & X:Order, Y:DairyProduct
Q12= q(X) ← item(X,Y), purchaser(X,Z) & X:Order, Y:DairyProduct
Q13= q(X) ← item(X,Y), item(X,Z)

& X:Order, Y:DairyProduct, Z:GrainsCereals
Q14= q(X) ← item(X,Y), purchaser(X,Z)

& X:Order, Y:DairyProduct, Z:EuroCustomer

In particular, Q0 and Q1 are valid for both L1 and L2, Q3 and Q5 belong to L1,
and Q9 belongs to L2. Note that all of them are linked and connected.

An answer to an O-query Q is a ground substitution θ for the distinguished
variable of Q. The aforementioned conditions of well-formedness guarantee that
the evaluation of O-queries is sound according to the following notions of answer
set and success set.

Definition 4. Let B be a AL-log knowledge base. An answer θ to an O-query Q
is a correct (resp. computed) answer w.r.t. B if there exists at least one correct
(resp. computed) answer to body(Q)θ w.r.t. B.

Example 4. Following Example 2 and 3, the substitution θ = {X/order10248}
is a correct answer to Q10 w.r.t. B because there exists a correct answer σ={Y/
’VINET’} to body(Q10)θ w.r.t. B.

The definition of a generality order for structuring the space of O-queries can
not disregard the nature of O-queries as a special case of constrained Datalog
clauses as well as the availability of an AL-log knowledge base with respect to
which these O-queries are to be evaluated. For constrained Datalog clauses we
have defined the relation of B-subsumption [17]. It adapts generalized subsump-
tion [4] to the AL-log framework.
Definition 5. Let P , Q be two constrained Datalog clauses and B an AL-log
knowledge base. We say that P B-subsumes Q, P �B Q, if for every model J
of B and every ground atom α such that Q covers α under J , we have that P
covers α under J .
We have proved that �B is a quasi-order for constrained Datalog clauses and
provided a decidable procedure to check �B on the basis of constrained SLD-
resolution [15]. Note that the underlying reasoning mechanism of AL-log makes
B-subsumption more powerful than generalized subsumption.
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Theorem 1. Let P , Q be two constrained Datalog clauses, B an AL-log
knowledge base and σ a Skolem substitution for Q with respect to {P} ∪ B. We
say that P �B Q iff there exists a substitution θ for P such that (i) head(P )θ =
head(Q) and (ii) B ∪ body(Q)σ # body(P )θσ where body(P )θσ is ground.

Theorem 2. Checking �B in AL-log is decidable.

Example 5. Following Example 3, we illustrate the test procedure of Theorem
1 on the pair Q8, Q14 of O-queries to check whether Q8 �B Q14 holds. Let
σ = {X/a, Y/b, Z/c} a Skolem substitution for Q14 with respect to B ∪ {Q8}
and θ the identity substitution for Q8. The condition (i) is immediately veri-
fied. It remains to verify that (ii) B∪ {item(a,b), purchaser(a,c) & a:Order,
b:DairyProduct, c:EuroCustomer}|= item(a,b), purchaser(a,c)& a:Order,
b:Product, c:Customer. We try to build a constrained SLD-refutation for

Q(0) = ← item(a,b), purchaser(a,c) & a:Order, b:Product, c:Customer

in B′ = B∪{item(a,b), purchaser(a,c), b:DairyProduct, c:EuroCustomer,
a:Order}. Once the constrained empty clause has been obtained by means of
classical SLD-resolution, we need to check whether Σ′ ∪ {a:Order, b:Product,
c:Customer} is satisfiable. The first unsatisfiability check operates on the ini-
tial tableau S(0) = Σ′ ∪ {a:¬Order}. The application of the propagation rule
→⊥ to S(0) produces the tableau S(1) = {a:⊥}. Computation stops here be-
cause no other rule can be applied to S(1). Since S(1) is complete and con-
tains a clash, the initial tableau S(0) is unsatisfiable. The second unsatisfia-
bility check operates on the initial tableau S(0) = Σ′ ∪ {b:¬Product}. The
only propagation rule applicable to S(0) is →� with respect to the assertion
DairyProduct�Product. It produces the tableau S(1) = Σ ∪ {b:¬Product,
b:¬DairyProduct�Product}. By applying →� to S(1) with respect to the con-
cept Product we obtain S(2) = Σ ∪ {b:¬Product, b:Product} which presents
an evident contradiction. Indeed the application of→⊥ to S(2) produces the final
tableau S(3) = {b:⊥}. The third unsatisfiability check operates on the initial
tableau S(0) = Σ′ ∪ {b:¬Customer}. Remember that Σ′ contains the assertion
c:Customer�∃ LivesIn.EuroCountry. By applying →� to S(0) we obtain S(1)

which encompasses the contradiction {c:¬Customer, c:Customer}. Indeed the
application of →⊥ to S(1) produces the final tableau S(2) = {b:⊥}.

Having proved the satisfiability of Σ′ ∪ {a:Order, b:Product, c:Customer},
we have proved the existence of a constrained SLD-refutation for Q(0) in B′.
Therefore we can say that Q8 �B Q14.

4 The Refinement Operator ρO

The space (L,�B) is a quasi-ordered set, therefore it can be searched by re-
finement operators [20]. In the application context of interest, the refinement
operator being defined must enable the search through multiple spaces, each of
which corresponds to a different level of description granularity. Furthermore we
restrict our investigation to downward refinement operators because the search
towards finer-grained descriptions is more efficient.



224 Francesca A. Lisi and Donato Malerba

Definition 6. Let γ1 = t1 : C and γ2 = t2 : D two ALC constraints. We say
that γ1 is at least as strong as γ2, denoted as γ1 � γ2, if and only if t1 = t2 and
C � D. Furthermore γ1 is stronger than γ2, denoted as γ1 $ γ2, if and only if
t1 = t2 and C � D.

Definition 7. Let L = {Ll}1≤l≤maxG be a language of O-queries. A (down-
ward) refinement operator ρO for (L,�B) is defined such that, for a given O-
query P = q(X) ← α1, . . . , αm&X : Ĉ, γ2, . . . , γn in Ll, l < maxG, the set
ρO(P ) contains all Q ∈ L that can be obtained by applying one of the following
refinement rules:

〈Atom〉 Q=q(X) ← α1, . . . , αm, αm+1&X : Ĉ,γ2, . . . , γn where αm+1 is an in-
stantiation of an atom template in A such that αm+1 �∈ body(P ).

〈Constr〉 Q = q(X) ← α1, . . . , αm&X : Ĉ, γ2, . . ., γn, γn+1 where γn+1 is an
instantiation of a constraint template in Γ l such that γn+1 constrains an
unconstrained variable in body(P ).

〈∀C〉 Q = q(X) ← α1, . . . , αm&X : Ĉ, γ′
2, . . . , γ

′
n where each γ′

j, 2 ≤ j ≤ n, is
an instantiation of a constraint template in Γ l+1 such that γ′

j � γj and at
least one γ′

j $ γj.

The rules 〈Atom〉 and 〈Constr〉 help moving within the space Ll (intra-space
search) whereas the rule 〈∀C〉 helps moving from Ll to Ll+1 (inter-space search).
Both rules are correct, i.e. the Q’s obtained by applying any of these rules to
P ∈ Ll are such that P �B Q. This can be proved intuitively by observing
that they act only on body(P ). Thus condition (i) of Theorem 1 is satisfied.
Furthermore, it is straightforward to notice that the application of ρO to P
reduces the number of models of P in both cases. In particular, as for 〈∀C〉, this
intuition follows from the definition of O-model. So condition (ii) also is fulfilled.

From now on we call k-patterns those patterns Q ∈ ρk
O(P ) that have been

generated after k refinement steps starting from the trivial O-query P̂ in Ll and
applying either 〈Atom〉 or 〈Constr〉.

Example 6. Each edge in Figure 1 indicates the application of only one of the
rules defined for ρO to O-queries listed in Example 3. E.g., ρO(Q1) is the set

Q′
1= q(X) ← item(X,Y), item(X,Z) & X:Order

Q′
2= q(X) ← item(X,Y), purchaser(X,Z) & X:Order

Q′
3= q(X) ← item(X,Y) & X:Order, Y:Product

Q′
4= q(X) ← item(X,Y) & X:Order, Y:Customer

Q′
5= q(X) ← item(X,Y) & X:Order, Y:Beverage

Q′
6= q(X) ← item(X,Y) & X:Order, Y:Condiment

Q′
7= q(X) ← item(X,Y) & X:Order, Y:Confection

Q′
8= q(X) ← item(X,Y) & X:Order, Y:DairyProduct

Q′
9= q(X) ← item(X,Y) & X:Order, Y:GrainsCereals

Q′
10= q(X) ← item(X,Y) & X:Order, Y:MeatPoultry

Q′
11= q(X) ← item(X,Y) & X:Order, Y:Produce

Q′
12= q(X) ← item(X,Y) & X:Order, Y:SeaFood
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Fig. 1. Portion of the refinement graph of ρO in L.

Q′
13= q(X) ← item(X,Y) & X:Order, Y:EuroCustomer

Q′
14= q(X) ← item(X,Y) & X:Order, Y:NorthAmericanCustomer

Q′
15= q(X) ← item(X,Y) & X:Order, Y:SouthAmericanCustomer

where Q′
1 and Q′

2 are generated by means of 〈Atom〉, Q′
3 and Q′

4 by means of
〈Constr〉, and the O-queries from Q′

5 to Q′
15 also by means of 〈Constr〉 (but

consideringQ1 as belonging to L2). Note thatQ′
4,Q′

13,Q′
14, andQ′

15 will turn out
to be infrequent. Yet they are generated. What matters while searching (L,�B)
is to find patterns that are more specific than a given P under B-subsumption.
Conversely, ρO(Q3) is the set

Q′′
1= q(X) ← item(X,Y), item(X,Z) & X:Order, Y:Product

Q′′
2= q(X) ← item(X,Y), purchaser(X,Z) & X:Order, Y:Product

Q′′
3= q(X) ← item(X,Y) & X:Order, Y:Beverage

Q′′
4= q(X) ← item(X,Y) & X:Order, Y:Condiment

Q′′
5= q(X) ← item(X,Y) & X:Order, Y:Confection

Q′′
6= q(X) ← item(X,Y) & X:Order, Y:DairyProduct

Q′′
7= q(X) ← item(X,Y) & X:Order, Y:GrainsCereals

Q′′
8= q(X) ← item(X,Y) & X:Order, Y:MeatPoultry

Q′′
9= q(X) ← item(X,Y) & X:Order, Y:Produce

Q′′
10= q(X) ← item(X,Y) & X:Order, Y:SeaFood

where the O-queries Q′′
1 and Q′′

2 are generated by means of 〈Atom〉, and the
O-queries from Q′′

3 to Q′′
10 by means of 〈∀C〉. Note that the query Q9 can be

obtained by applying either 〈Constr〉 to Q1 (here Q1 is considered as belonging
to L2) or 〈∀C〉 to Q3. Actually each node in L2 can be reached starting from
either another node in L2 or a node in L1. This can be exploited to speed up
the search at levels of finer granularity as shown later.



226 Francesca A. Lisi and Donato Malerba

4.1 Reaching Ideality

Descriptive data mining problems are characterized by hypothesis spaces with
dense solutions. Ideal refinement operators are usually suggested to search spaces
of this kind [2]. They satisfy the following properties.

Definition 8. Let ρ a downward refinement operator for a quasi-ordered set
(L,�). Denoted with ρ∗ the transitive closure of ρ:

• ρ is locally finite iff ∀P ∈ L : ρ(P ) is finite and computable;
• ρ is proper iff ∀P ∈ L∀Q ∈ ρ(P ) : Q �∼ P ;
• ρ is complete iff ∀P,Q ∈ L if P $ Q then ∃Q′ ∈ ρ∗(P ) : Q′ ∼ Q.

Unfortunately, for clausal languages ordered by θ-subsumption or stronger orders
such as generalized subsumption, ideal operators have been proven not to exist
[20]. They can be approximated by dropping the requirement of properness or
by bounding the language. We choose to follow the latter option. It guarantees
that, if (L,�) is a quasi-ordered set, L is finite and � is decidable, then there
always exists an ideal refinement operator for (L,�). In our case, since �B is a
decidable quasi-order, we only need to bound L in a suitable manner.

The expressive power of AL-log requires several bounds to be imposed on L
in order to guarantee its finiteness. First, it is necessary to set a maximum level
maxG of description granularity, so that the problem of finiteness of L can be
boiled down to the finiteness of each Ll, 1 ≤ l ≤ maxG. Second, it is necessary
to introduce a complexity measure for O-queries, as a pair of two different coor-
dinates. Note that the complexity of an O-query resides in its body. Therefore,
given an O-query P , the former coordinate is the size of the biggest literal in
body(P ), while the latter is the number of literals in body(P ). Constraints do
count as literals.

Definition 9. Let L be either a Datalog atom or an ALC constraint. Then
size(L) is equal to the difference between the number of symbol occurrences in L
and the number of distinct variables in L.

Example 7. Let L1, L2 be the literals item(X,Y) and X:DairyProduct. Then
size(L1) = 3− 2 = 1 and size(L2) = 2− 1 = 1.

Definition 10. Let P an O-query, maxsize(P ) the maximum of {size(L)|L ∈
body(P )}, and |P | the number of literals in P . We call O − size(P ) the pair
(maxsize(body(P )), |P |).

Definition 11. Let P an O-query, and maxS,maxD be natural numbers. We
say that P is bounded by (maxS,maxD) if maxsize(body(P )) ≤ maxS and
|body(P )| ≤ maxD.

Example 8. The language L = L1 ∪ L2 partially reported in Example 3 and
illustrated in Example 6 contains (1, 5)-bounded O-queries. Note that the bound
maxS = 1 derives from the fact that A contains only binary predicates and Γ
contains only assertions of primitive concepts.
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Proposition 1. Given a language L of O-queries and two integers maxS,
maxD > 0, the set {P ∈ L|P is bounded by (maxS,maxD)} is finite up to
variants.

Proof. We will only sketch the idea behind this. The language L has finitely many
constants and predicate symbols because it is built starting from the alphabets
A and Γ . Furthermore it has no functors because it is a fragment of AL-log.
Suppose we are given (maxS,maxD). It is not difficult to see that the set of
literals (either Datalog atoms or constraints) with size ≤ maxS is finite up to
variants. Let v be the maximum of the set {n| there is a literal L ∈ P with size ≤
maxS that contains n distinct variables}. Because a (maxS,maxD)-bounded O-
query can contain at most maxD literals in the body, each of which can contain at
most v distinct variables, a (maxS,maxD)-bounded O-query can contain at most
maxDv distinct variables. Let us fix distinct variables X1, . . . , XmaxDv. Now let
K be the finite set of all literals of size ≤ maxS that can be constructed from the
predicate symbols and constants in A, the concept symbols in Γ and variables
X1, . . . , XmaxDv. Since each O-query that is bounded by (maxS,maxD) must be
(a variant of) a subset of K, there are only finitely many such O-queries, up to
variants.

We can prove that ρO is an ideal refinement operator for (L,�B) that
maps reduced (maxS,maxD)-bounded O-queries into reduced (maxS,maxD)-
bounded O-queries under the OI bias.
Theorem 3. Let (maxS,maxD) be a pair of natural numbers, and L be the lan-
guage {Ll}1≤l≤maxG such that each Ll contains reduced (maxS,maxD)-bounded
O-queries. The downward refinement operator ρO is ideal for (L,�B).

Proof. Let P,Q ∈ L.
Local Finiteness. Suppose P ∈ Ll. The alphabets A and Γ underlying L are

finite sets. Furthermore, each of the three refinement rules consists of instruc-
tions that can be completed in a finite number of steps. Therefore ρO(P ) is
finite and computable.

Properness. Suppose P ∈ Ll. In the case of either 〈Atom〉 or 〈Constr〉, Q is
strictly longer than P because the OI bias avoids the identification of literals.
Therefore P $ Q. In the case of 〈∀C〉, the occurrence of a strictly stronger
constraint in Q assures that P $ Q.

Completeness. Suppose P $B Q. Then either Q is a downward cover of P ,
in which case there is an R ∈ ρO(P ) such that Q ∼B R, or there is an
R ∈ ρO(P ) such that P $B R $B Q. In the latter case, we can find an
S ∈ ρO(R) such that P $B R $B S �B Q, etc. Since L is finite and ρO
is proper, we must eventually find a ρ-chain from P to a member of the
equivalence class of Q, so ρO is complete.

Ideal refinement operators are mainly of theoretical interest, because in prac-
tice it is often very inefficient to find downward (resp. upward) covers for every
P ∈ L. Thus more constructive - though possibly improper - refinement opera-
tors are usually to be preferred over ideal ones. In the following we show that
efficient algorithms can be designed to implement ρO in the context of interest.
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4.2 Making Ideality Something Real

The operator ρO has been implemented in AL-QuIn (AL-log Query Induction)
[15], an ILP system that - according to Mannila’s levelwise method [19] for fre-
quent pattern discovery - searches the space (L,�B) breadth-first by alternating
candidate generation and candidate evaluation phases. In particular, candidate
generation consists of a refinement step followed by a pruning step. The former
applies one of the three rules of ρO to patterns previously found frequent by
preserving the properties of linkedness and safety. The pruning step allows some
infrequent patterns to be detected and discarded prior to evaluation thanks to
the following property [15]: Under the assumption that minsupl ≤ minsupl−1,
1 < l < maxG, a k-patternQ in Ll is infrequent if it is B-subsumed w.r.t. anAL-
log knowledge base B by either (i) an infrequent (k − 1)-pattern in Ll or (ii) an
infrequent k-pattern in Ll−1. Note that (i-ii) require a high number of subsump-
tion checks to be performed. This makes candidate generation computationally
expensive. Appropriate complementary data structures can help mitigating the
computational effort. Our implementation of ρO uses a graph of backward point-
ers to be updated while searching in order to keep track of both intra-space and
inter-space search stages. Figure 2 gives an example of such graph for the portion
of space reported in Figure 1. Here nodes, dotted edges and dashed edges repre-
sent patterns, intra-space parenthood and inter-space parenthood, respectively.
We shall illustrate the benefits of using this data structure by going into details
of the procedure generateCandidates() reported in Figure 3.
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Fig. 2. Graph of backward pointers.

For a given level l of description granularity, 1 ≤ l ≤ maxG, procedure
generateCandidates() builds the set Cl

k of candidate k-patterns starting from the
set F l

k−1 of frequent (k−1)-patterns and the language Ll by taking the set Il of
infrequent patterns into account. It consists of two computation branches. The
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Procedure generateCandidates(F l
k−1, Ll, var Il)

1. Cl
k ← ∅;

2. if l = 1 then /* search in L1 */
3. foreach pattern P in F l

k−1 do

4. Q ← intraRefine(P , Ll);
5. Q ← prune(Q, Il);
6. foreach pattern Q in Q do

/* set the intra-space edge from Q to P */
7. setIntraSpaceEdge(Q, P )
8. endforeach
9. Cl

k ← Cl
k ∪Q

10. endforeach
11. else /* search in Ll, l > 1*/

12. foreach pattern P in F l
k−1 do

13. P ′ ← getInterSpaceParent(P );
14. Q′ ← getIntraSpaceChildren(P ′);
15. foreach pattern Q′ in Q′ do
16. Q ← interRefine(Q′);
17. Q ← prune(Q, Il);
18. foreach pattern Q in Q do

/* set the inter-space edge from Q to Q′ */
19. setInterSpaceEdge(Q, Q′);

/* set the intra-space edge from Q to P
20. setIntraSpaceEdge(Q, P );
21. endforeach
22. Cl

k ← Cl
k ∪Q

23. endforeach
24. endforeach
return Cl

k

Fig. 3. Implementation of ρO in the candidate generation phase of AL-QuIn

former concerns the case of search in L1. It applies either 〈Atom〉 or 〈Constr〉
(procedure intraRefine()), performs the pruning step (procedure prune()) and
inserts an intra-space backward pointer for each retained candidate (procedure
setIntraSpaceEdge()).

Example 9. As an illustrative example of candidate generation at the first level
of description granularity we report the computation of C1

2 with reference to
Example 6. The set F1

1 contains the trivial query Q0 only. The procedure call
intraRefine(Q0, L1) returns the set of possible refinements of Q0 according to
directives of L1, namely the queries Q1 and Q2 obtained by adding the atoms
item(X,Y) and purchaser(X,Y) to the body of Q0 respectively. In both refine-
ments it is not necessary to insert inequality atoms. Furthermore the procedure
call prune(Q, I1) does affect neither Q nor I1. Before returning control to the
main procedure of AL-QuIn, generateCandidates(F1

1 , L1, I1) updates the graph
of backward pointers by inserting intra-space edges for Q1 and Q2 as shown in
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Figure 2. Assuming that F1
2 contains Q1, we carry on this example by focusing

on the generation of candidate patterns starting from Q1. Possible refinements
according to directives of L1 are the queries Q′

1, Q
′
2, Q

′
3 and Q′

4 reported in Ex-
ample 6. Since Q′

1 and Q′
2 do not fulfill the requirement on the maximum number

of unconstrained variables, they are generated then pruned. So Q′
3, namely Q3,

and Q′
4 are the only to survive the pruning step. Since Q′

4 will not pass the
candidate evaluation phase, it does not appear as child of Q1 in Figure 2.

The other branch of generateCandidates() concerns the case of search at deeper
levels of description granularity. One can expect that it is enough to simply
replace the procedure intraRefine() with a procedure interRefine() which imple-
ments the refinement rule 〈∀C〉. But things are more complicated. Let us suppose
that the current space to be searched is Ll, l > 1. On one side, searching Ll with
only 〈Atom〉 or 〈Constr〉 implies to restart from scratch. Rather we would like to
capitalize on the computational effort made when searching Ll−1 and minimize
the number of inter-space subsumption checks. On the other side, searching Ll

indirectly, i.e. by applying 〈∀C〉 to O-queries found frequent in Ll−1, implies
the loss of the useful information that could be collected if Ll was searched di-
rectly. E.g., when generating Cl

k, l, k > 1, it happens that intraRefine(F l
k−1)⊆

interRefine(F l−1
k ). This means that a blind application of 〈∀C〉 causes an in-

crement of intra-space subsumption checks. It is necessary to find a compromise
between these two apparently irreconcilable solutions. Our solution requires that
Cl

k, l, k > 1, is computed taking both F l
k−1 and F l−1

k into account. In particular,
the expansion of a node P in F l

k−1 is done as follows:

– retrieve the inter-space parent node P ′ of P by following the inter-space
backward pointer (step (13));

– retrieve the set Q′ ⊆ F l−1
k of intra-space children nodes of P ′ by navigating

intra-space backward pointers in reverse sense (step (14));
– generate the set Q of O-queries obtained by applying 〈∀C〉 to each Q′ in Q′

(step (16))

This not only avoids a blind application of the refinement rule 〈∀C〉 but also
lightens the computational load during the pruning step.

Example 10. Again with reference to Example 6 the expansion of Q1 in the case
of Q1 considered as belonging to L2 is done indirectly by accessing search stages
of success in L1 departing from Q1. In Example 9 we have seen that Q3 is the
only child of Q1. Possible refinements of Q3 by means of 〈∀C〉 are the queries Q′′

3

up to Q′′
10 listed in Example 6. Note that these are equivalent to the queries Q

′
5

up to Q′
12 in ρO(Q1). Furthermore the queries Q′

13 up to Q′
15, though possible

refinements of Q1, are not generated because their ancestor Q′
4 turned out to be

infrequent. This avoids the generation of certainly infrequent patterns in L2.

5 Conclusions

Hybrid languages supply expressive and deductive power which have no coun-
terpart in Horn clausal logic. This makes them appealing for challenging appli-
cations such as descriptive data mining in application domains that require a
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uniform treatment of both relational and structural features of data. Also this
poses several research issues to the ILP community, e.g. the definition of more
sophisticated refinement operators than the ones typically used in ILP. The main
contribution of this paper is the definition of an ideal (downward) refinement
operator ρO to search spaces of descriptions at multiple granularity levels in the
AL-log framework. In particular, ideality has been approximated by bounding
the language and assuming the OI bias. Though this result is mainly of theoreti-
cal interest, it is worthy having it because searching spaces with dense solutions
is peculiar to descriptive data mining tasks. With respect to the context of inter-
est we have provided an efficient implementation of ρO. Note that the resulting
algorithm is not an attempt at deriving an optimal operator from ρO but aims
at lightening the computational load of inter-space subsumption checks.

We would like to emphasize that the choice of an application context and
the investigation of ILP issues within the chosen context make a substantial
difference between our work and related work on learning in hybrid languages.
Indeed our broader goal is the definition of an ILP setting for mining object-
relational databases [15]. We claim that AL-log supports a simple yet signif-
icant object-relational data model. This provides - among the other things -
an application-driven motivation for assuming the OI bias and concentrating on
concept hierarchies in our AL-log framework. Differences between AL-QuIn and
the ILP system Warmr [7] for mining ”pure” relational patterns are discussed
in [18]. We intend to carry on the work presented in this paper by following this
approach of reconciling theory and practice. In particular, besides the already
investigated application to spatial data mining [15], the Semantic Web seems to
be a promising source of new interesting tasks for AL-QuIn.
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