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Abstract. This paper focuses on inductive learning of recursive logical 
theories from a set of examples. This is a complex task where the learning of 
one predicate definition should be interleaved with the learning of the other 
ones in order to discover predicate dependencies. To overcome this problem 
we propose a variant of the separate-and-conquer strategy based on parallel 
learning of different predicate definitions. In order to improve its efficiency, 
optimization techniques are investigated and adopted solutions are described. 
In particular, two caching strategies have been implemented and tested on 
document processing datasets. Experimental results are discussed and 
conclusions are drawn. 

1   Introduction 

Learning a single predicate definition from a set of positive and negative examples is 
a classical problem in ILP. In this paper we are interested into the more complex case 
of learning multiple predicate definitions, provided that both positive and negative 
examples of each concept/predicate to be learned are available. Complexity stems 
from the fact that the learned predicates may also occur in the antecedents of the 
learned clauses, that is, the learned predicate definitions may be interrelated and 
depend on one another, either hierarchically or involving some kind of mutual 
recursion. For instance, to learn the definitions of odd and even numbers, a multiple 
predicate learning system will be provided with positive and negative examples of 
both odd and even numbers, and may generate the following recursive logical 
theory: 

odd(X) ← succ(Y,X), even(Y) 
even(X) ← succ(Y,X), odd(Y) 

even(X) ← zero(X) 
where the definitions of odd and even are interdependent. This example shows that the 
problem of learning multiple predicate definitions is equivalent, in its most general 
formulation, to the problem of learning recursive logical theories. 

There has been considerable debate on the actual usefulness of learning recursive 
logical theories in knowledge acquisition and discovery applications. It is a common 
opinion that very few real life concepts seem to have recursive definitions, rare 
examples being “ancestor” and natural language [4, 14]. Despite this scepticism, in 
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the literature it is possible to find several ILP applications in which recursion has 
proved helpful [10]. Moreover, many ILP researchers have shown some interest in 
multiple predicate learning [9], which presents the same difficulty of recursive 
theory learning in its most general formulation.  

To formulate the recursive theory learning problem and then to explain its main 
theoretical issues, some basic definitions are given below. 

Generally, every logical theory T can be associated with a directed graph 
γ(T)=<N,E>, called the dependency graph of T, in which (i) each predicate of T is a 
node in N and (ii) there is an arc in E directed from a node a to a node b, iff there 
exists a clause C in T, such that a and b are the predicates of a literal occurring in the 
head and in the body of C, respectively. 

A dependency graph allows representing the predicate dependencies of T, where a 
predicate dependency is defined as follows: 

Definition 1 (predicate dependency). A predicate p depends on a predicate q in a 
theory T iff (i) there exists a clause C for p in T such that q occurs in the body of C; 
or (ii) there exists a clause C for p in T with some predicate r in the body of C that 
depends on q. 

Definition 2 (recursive theory). A logical theory T is recursive if the dependency 
graph γ (T) contains at least one cycle. 

In simple recursive theories all cycles in the dependency graph go from a 
predicate p into p itself, that is, simple recursive theories may contain recursive 
clauses, but cannot express mutual recursion.  

Definition 3 (predicate definition). Let T be a logical theory and p a predicate 
symbol. Then the definition of p in T is the set of clauses in T that have p in their 
head. Henceforth, δ(T) will denote the set of predicates defined in T and π (T) will denote 
the set of predicates occurring in T, then δ(T)⊆π (T). 

In a quite general formulation, the recursive theory learning task can be defined as 
follows: 

Given 
• A set of target predicates p1, p2, …, pr to be learned 
• A set of positive (negative) examples Ei

+ ( Ei

- ) for each predicate pi, 
1≤i≤r 

• A background theory BK 
• A language of hypotheses LH  that defines the space of hypotheses SH 

Find 
a (possibly recursive) logical theory T∈SH defining the predicates p1, p2, …, pr  

(that is, δ(T)={p1, p2, …, pr})  such that for each i, 1≤i≤r, BK∪ T |= Ei

+ (completeness 
property) and BK∪T |≠ Ei

- (consistency property). 
Three important issues characterize recursive theory learning. First, the generality 

order typically used in ILP, namely θ-subsumption [17], is not sufficient to guarantee 
the completeness and consistency of learned definitions, with respect to logical 
entailment [16]. Therefore, it is necessary to consider a stronger generality order, 
which is consistent with the logical entailment for the class of recursive logical 
theories we take into account. 
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Second, whenever two individual clauses are consistent in the data, their conjunction 
need not be consistent in the same data [8]. This is called the non-monotonicity 
property of the normal ILP setting, since it states that adding new clauses to a theory 
T does not preserve consistency. Indeed, adding definite clauses to a definite 
program enlarges its least Herbrand model (LHM), which may then cover negative 
examples as well. Because of this non-monotonicity property, learning a recursive 
theory one clause at a time is not straightforward. 

Third, when multiple predicate definitions have to be learned, it is crucial to 
discover dependencies between predicates. Therefore, the classical learning strategy 
that focuses on a predicate definition at a time is not appropriate. 

To overcome these problems some solutions have been proposed in [12] and 
implemented in the learning system ATRE (www.di.uniba.it/∼malerba/software/atre). 
This approach differs from related works for at least one of the following three 
aspects: the learning strategy, the generalization model, and the strategy to recover 
the consistency property of the learned theory when a new clause is added. 

In this paper we focus on the main problem of the interleaving of the learning of 
one (possible recursive) predicate definition with the learning of the other ones. In 
particular, different aspects of the adopted strategy for the automated discovery of 
predicate dependencies, namely the separate-and-parallel-conquer strategy, are 
presented. Efficiency problems due to the computational complexity of the search 
space are also discussed and some solutions implemented in a new version of the 
system ATRE are described. 

The paper is organized as follows. Section 2 illustrates details on the learning 
strategy. Section 3 introduces efficiency problems and related works. Section 4 
presents optimization approaches adopted in ATRE. The application of ATRE on 
real-world documents and results on efficiency gain are reported in Section 5. 
Finally, some conclusions are drawn. 

2   The Learning Strategy 

2.1   The Separate-and-Parallel-Conquer Search  

The high-level learning algorithm in ATRE belongs to the family of sequential 
covering (or separate-and-conquer) algorithms [13] since it is based on the strategy 
of learning one clause at a time, removing the covered examples and iterating the 
process on the remaining examples. Indeed, a recursive theory T is built step by step, 
starting from an empty theory T0, and adding a new clause at each step. In this way 
we get a sequence of theories  

T0 =∅, T1, …, Ti, Ti+1, …, Tn = T, 
such that Ti+1 = Ti  ∪ {C} for some clause C. If we denote by LHM(Ti) the least 
Herbrand model of a theory Ti, the stepwise construction of theories entails that 
LHM(Ti) ⊆ LHM(Ti+1), for each i∈{0, 1, …, n-1}, since the addition of a clause to a 
theory can only augment the LHM. Henceforth, we will assume that both positive 
and negative examples of predicates to be learned are represented as ground atoms 



On the Effect of Caching in Recursive Theory Learning         47 

with a + or - label. Therefore, examples may or may not be elements of the models 
LHM(Ti). Let pos(LHM(Ti)) and neg(LHM(Ti)) be the number of positive and 
negative examples in LHM(Ti), respectively. If we guarantee the following two 
conditions: 

1. pos(LHM(Ti)) < pos(LHM(Ti+1)) for each i∈{0, 1, …, n-1}, and  
2. neg(LHM(Ti)) = 0 for each i∈{0, 1, …, n},  

then after a finite number of steps a theory T, which is complete and consistent, is 
built. 

In order to guarantee the first of the two conditions it is possible to proceed as 
follows. First, a positive example e+ of a predicate p to be learned is selected, such 
that e+ is not in LHM(Ti). The example e+ is called seed. Then the space of definite 
clauses more general than e+ is explored, looking for a clause C, if any, such that 
neg(LHM(Ti ∪ {C})) = ∅. In this way we guarantee that the second condition above 
holds as well. When found, C is added to Ti giving Ti+1. If some positive examples are 
not included in LHM(Ti+1) then a new seed is selected and the process is repeated.  

The second condition is more difficult to guarantee because of the second issue 
presented in the introduction, namely, the non-monotonicity property. The approach 
followed in ATRE to remove inconsistency due to the addition of a clause to the 
theory consists of simple syntactic changes in the theory, which eventually creates 
new layers, just as the stratification of a normal program creates new strata [1]. 
Details on the layering approach and on the computation method are reported in [12]. 
The layering of a theory introduces a first variation of the classical separate-and-
conquer strategy sketched above, since the addition of a locally consistent clause 
generated in the conquer stage is preceded by a global consistency check.  

As explained above, in recursive theory learning it is necessary to consider a 
generality order that is consistent with the logical entailment for the class of 
recursive logical theories. The main problem with the well-known θ-subsumption is 
that the objects of comparison are two clauses and no additional source of knowledge 
(e.g., a theory T) is considered. Instead, we are only interested in those relative 
generality orders that compare two clauses relatively to a given theory T. In ATRE, a 
new generalization order named generalized implication is adopted [12], since both 
Buntine's generalized subsumption [5] and Plotkin’s [17,18] notion of relative 
generalization are not appropriate (they are either too strong or too weak).  

A solution to the problem of automated discovery of dependencies between target 
predicates p1, p2, …, pr is based on another variant of the separate-and-conquer 
learning strategy. Traditionally, this strategy is adopted by single predicate learning 
systems that generate clauses with the same predicate in the head at each step. In 
multiple/recursive predicate learning, clauses generated at each step may have 
different predicates in their heads. In addition, the body of the clause generated at the 
i-th step may include all target predicates p1, p2, …, pr for which at least a clause has 
been added to the partially learned theory in previous steps. In this way, 
dependencies between target predicates can be generated.  

Obviously, the order in which clauses of distinct predicate definitions have to be 
generated is not known in advance. This means that it is necessary to generate 
clauses with different predicates in the head and then to pick one of them at the end 
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of each step of the separate-and-conquer strategy. Since the generation of a clause 
depends on the chosen seed, several seeds have to be chosen such that at least one 
seed per incomplete predicate definition is kept. Therefore, the search space is 
actually a forest of as many search-trees (called specialization hierarchies) as the 
number of chosen seeds. A directed arc from a node C to a node C' exists if C' is 
obtained from C by a single refinement step. Operatively, the (downward) 
refinement operator considered in this work adds a new literal to a clause.1 

 
 

even(X) ←

even(X) ← zero(X) even(X) ← succ(X,Y) 

odd(X) ←

odd(X) ← succ(Y,X) odd(X) ← succ(X,Y) 

even(X) ←zero(X) 
    succ(X,Y) 

even(X) ←succ(X,Y)
    succ(Y,Z)

odd(X) ← succ(Y,X) 
   zero(Y) 

odd(X) ← succ(Y,X) 
   succ(X,Z) 

even(0) odd(1) seeds 

Level 0 

Level 1 

Level 2 

even(X) ←

even(X) ← succ(Y,X) even(X) ← succ(X,Y) 

odd(X) ←

odd(X) ← succ(Y,X) odd(X) ← succ(X,Y) 

even(X) ← succ(Y,X) 
    succ(Z,Y) 

even(X) ←succ(X,Y)
    succ(Y,Z)

odd(X) ← succ(Y,X) 
   zero(Y) 

odd(X) ← succ(Y,X) 
   even(Y) 

even(2) odd(1) seeds 

Level 0 

Level 1 

Level 2 

 
 
Fig. 1. Two steps (up and down) of the parallel search for the predicates odd and even. 
Consistent clauses are reported in italics. 

 
The forest can be processed in parallel by as many concurrent tasks as the number 

of search-trees (hence the name of separate-and-parallel-conquer for this search 
strategy). Each task traverses the specialization hierarchy top-down (or general-to-
specific), but synchronizes traversal with the other tasks at each level. Initially, some 
clauses at depth one in the forest are examined concurrently. Each task is actually 
free to adopt its own search strategy, and to decide which clauses are worth to be 
tested. If none of the tested clauses is consistent, clauses at depth two are considered. 
Search proceeds towards deeper and deeper levels of the specialization hierarchies 
until at least a user-defined number of consistent clauses is found. Task 
synchronization is performed after that all “relevant” clauses at the same depth have 
been examined. A supervisor task decides whether the search should carry on or not 
on the basis of the results returned by the concurrent tasks. When the search is 
stopped, the supervisor selects the “best” consistent clause according to the user’s 
preference criterion. This strategy has the advantage that simpler consistent clauses 

                                                           
1 A discussion on properties of this operator is beyond the scope of this paper. A thorough 

description of upward and downward refinement operators can be found in [16]. 
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are found first, independently of the predicates to be learned.2 Moreover, the 
synchronization allows tasks to save much computational effort when the distribution 
of consistent clauses in the levels of the different search-trees is uneven. The parallel 
exploration of the specialization hierarchies for odd and even is shown in Fig. 1. 

2.2   Some Refinements 

The learning strategy reported in the previous section is quite general and there is 
room for several distinct implementations. In particular, the following some points 
have been left unspecified: 1) how seeds are selected; 2) what is the search strategy 
adopted by each task. In this section, solutions adopted in the last release of the 
learning system ATRE are illustrated.  

Seed selection is a critical point. In the example of Fig. 1, if the search had started 
from even(2) and odd(1), the first clause added to the theory would have been   
odd(X) ← succ(Y,X), zero(Y), thus resulting in a less compact, though still correct, 
theory for odd and even numbers. Therefore, it is important to explore the 
specialization hierarchies of several seeds for each predicate. According to the 
classical ILP learning setting, the set of training examples is a set of ground atoms. 
In this case, the choice of seeds should be stochastic because of the large number of 
candidate seeds. However, a random choice does not guarantee that the right seeds 
are chosen for the generation of the base clauses of the recursive definition. For this 
reason ATRE adopts a variant of the learning interpretation setting, where training 
examples of target predicates p1, p2, …, pr are partitioned into training objects, each 
of which also includes a set of ground facts from the extensional BK. As observed by 
[3] within the setting of learning from interpretations, it is possible to develop more 
efficient learning algorithms than the classical ILP setting. This is especially true for 
recursive theory learning. Indeed, the object-centered representation adopted by 
ATRE has the advantage of reducing the number of candidate seeds. The main 
assumption made in this approach is that each object contains examples explained by 
some base clauses of the underlying recursive theory.3 Therefore, by choosing as 
seeds all examples of different concepts represented in one training object, it is 
possible to induce some of the correct base clauses. Since in many learning problems 
the number of positive examples in an object is not very high, a parallel exploration 
of all candidate seeds is feasible. Mutually recursive concept definitions will be 
generated only after some base clauses have been added to the theory. 

Seeds are chosen according to the textual order in which objects are input to 
ATRE. If a complete definition of the predicate pj is not available yet at the i-th step 

                                                           
2 Apparently, some problems might occur for those recursive definitions where the recursive 

clause is syntactically simpler than the base clause. However, the proposed strategy does 
not allow the discovery of the recursive clause until the base clause has been found, 
whatever its complexity is. 

3 Problems caused by incomplete object descriptions violating the above assumption are not 
investigated in this work, since they require the application of abductive operators, which 
are not available in the current version of the system. 
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of the separate-and-conquer search strategy, then there are still some uncovered 
positive examples of pj. The first (seed) object Ok in the object list that contains 
uncovered examples of pj is selected to generate seeds for pj.  

The second undefined point of the search strategy concerns the search strategy 
adopted by each task. ATRE applies a variant of the beam-search strategy. The 
system generates all candidate clauses at level l+1 starting from those filtered at level 
l in the specialization hierarchy. During task synchronization, which occurs level-by-
level, the best m clauses are selected from those generated by all tasks. The user 
specifies the beam of the search, that is m, and a set of preference criteria for the 
selection of the best m clauses.  

3   Improving Efficiency in ATRE 

Considering the separate-and-parallel-conquer search sketched in Section 2.1, it 
presents some efficiency problems and leaves a large margin for optimization. One 
of the reasons is that every time a clause is added to the partially learned theory, the 
specialization hierarchies are reconstructed for a new set of seeds, which may 
intersect the set of seeds explored in the previous step. Therefore, it is possible that 
the system explores the same specialization hierarchies several times, since it has no 
memory of the work done in previous steps. This is particularly evident when 
concepts to learn are neither recursively definable nor mutually dependent. 
Intuitively, caching the specialization hierarchies explored at a certain step of the 
separate-and-conquer strategy and reusing part of them at the following step, seems 
to be a good strategy to decrease the learning time while keeping memory usage 
under acceptable limits. Furthermore, clause evaluation requires a number of 
generalized implication tests, one for each positive or negative example. Although 
the generalized implication test is optimized in ATRE, when the number of tests to 
perform is high, the clause evaluation leads to efficiency problems anyway. To 
reduce the number of tests, a caching method on the list of positive and negative 
examples of each clause has been investigated. 

In this section we present the novel caching strategy implemented in ATRE to 
solve efficiency problems above. Generally speaking, caching aims to save useful 
information that would be repeatedly recomputed otherwise, with a clear waste of 
time. In particular, the proposed strategy affects the two most computationally 
expensive phases of the learning process, namely the clause generation step and the 
clause evaluation step.  

3.1   Caching for Clause Generation  

To prevent the exploration of the same specialization hierarchies several times, we 
propose a caching mechanism that aims to save the specialization hierarchies 
explored at the i-th step of the separate-and-conquer strategy so to reuse part of them 
at the (i+1)-th step.  
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First of all, we observe that a necessary condition for reusing a specialization 
hierarchy between two subsequent learning steps is that the associated seed remains 
the same. This means that if the seed of a specialization hierarchy is no longer 
considered at the (i+1)-th step, then the corresponding clauses cached at the i-th step 
can be discarded. 

However, even in the case of same seed, not all the clauses of the specialization 
hierarchy will be actually useful. For instance, the cached copies of a clause C added 
to Ti can be removed from all specialization hierarchies including it. Moreover, all 
clauses that cover only positive examples already covered by C can be dropped, 
according to the separate-and-conquer learning strategy. These examples explain 
why a cached specialization hierarchy has to be pruned before considering it at the 
(i+1)-th step of the learning strategy.  

 

 

Fig. 2. An example of search-tree pruning effect on beam search width. 

In order to maintain unchanged the width of the search beam, some grafting 
operations are necessary after pruning. Indeed, by removing the clauses that will be 
no more examined, the exploration beam decreases. Grafting operations aim to 
consider previous unspecialized clauses in order to restore the beam width, as shown 
in Fig.2. 

Grafting operations are also necessary to preserve the generation of recursive 
clauses. For instance, by looking at the two specialization hierarchies of the predicate 
odd in Fig. 1, it is clear that once the clause even(X) ← zero(X) has been added to the 
empty theory (step 1), the consistent clause odd(X) ← succ(Y,X), even(Y) can be a 
proper node of the specialization hierarchy, since a base clause for the recursive 
definition of the predicate even is already available. Therefore, the grafting 
operations also aim to complete the pruned specialization hierarchy with new clauses 
that take predicate dependencies into account.  

3.2   Caching for Clause Evaluation  

To clarify the caching technique proposed for the clause evaluation phase, we need 
to distinguish between dependent clauses, that is, clauses with at least one literal in 
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the body whose predicate symbol is a target predicate pi, and independent clauses (all 
the others).  

In independent clauses, the lists of negative examples remain unchanged between 
two subsequent learning steps. Indeed, the addition of a clause C to a partially 
learned theory Ti does not change the set of consequences of an independent clause, 
whose set of negative examples can neither increase nor decrease. Therefore, by 
caching the list of negative examples, the learning system can prevent its 
computation. 

A different observation concerns the list of positive examples to be covered by the 
partially learned theory. For the same reason reported above it cannot increase, while 
it can decrease since some of the positive examples might have been covered by the 
added clause C. Actually, the set of positive examples of a clause C' generated at the 
(i+1)-th step can be calculated as intersection of the cached set computed at the i-th 
step of the learning strategy and the set of positive examples covered by the parent 
clause of C' in the specialization hierarchy computed at the (i+1)-th step (see Fig. 3). 
In the case of dependent clauses, both lists of the positive and negative examples can 
increase, decrease or remain unchanged, since the addition of a clause C to a partially 
learned theory Ti might change the set of consequences of a dependent clause. 
Therefore, caching the set of positive/negative examples covered by a dependent 
clause is useless.  

 

 

Fig. 3. An example of the positive examples list computation as intersection of the positive 
examples list of the same clause in the previous learning, step (i), and the positive examples 
list of the parent clause in the current learning, step (i+1). 

It is noteworthy that, differently from the caching technique for clause generation, 
caching for clause evaluation does not require additional memory resources since all 
requested information are kept from the current learning step (see Section 5.1.3). 

4   Related Work 

Efficiency of ILP systems is strongly dependent on the strategy adopted while 
searching the space of candidate hypotheses. Different techniques have been 
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investigated to improve efficiency. A common approach is to reduce the number of 
hypotheses to evaluate during the search. Language bias specification to constraint 
the number of hypotheses [15] and branch-and-bound as well as heuristic searches 
have been widely employed in this perspective. 

The caching of information on clauses coverage seems instead to be a convenient 
solution when exhaustive search is carried out. Indeed, [7] implements in Progol the 
caching of positive and negative cover of clauses during the search. Results show an 
improvement expressed by a 15.75 speed up factor. This approach is very similar to 
the caching strategy adopted in the clause evaluation phase of ATRE. Nevertheless, 
it presents some differences due to the additional difficulties raised by recursive 
theory learning. Indeed, as explained in Section 3.2, ATRE has to take into account 
the distinction between dependent/independent clauses in order to decide whether 
caching strategy should be applied or not. In addition, Progol implements a prune 
cache method that aims to cache clauses representing points of the hypothesis space 
where the search should be pruned. 

Other approaches focusing on clause evaluation phase have been investigated by 
[6] whose work has been later extended by [2] in the particular ILP setting that 
considers examples of predicate definition to be learned as composing a database to 
repeatedly query. In this context, a query (clause) is a conjunction of goals (literals) 
to refine in order to generate a predicate definition. In particular, [6] propose a 
method to reduce the number of literals in clause bodies in order to optimize the 
number of predicate calls. The method is based on redundant literal reduction by 
means of a subsumption relation test. They also propose an optimisation of the 
number of clause coverage tests by grouping dependent body literals in equivalence 
classes and adding a cut predicate between literals of different equivalence classes. 
This method based on the cut introduction has been generalized by [2], which also 
implement a strategy to remove literals whose success is known and that will not 
influence the success of the examined clause. 

[19] propose a method to minimize clause evaluation costs that is based on the 
reordering of dependent literals. In particular, they look for clause transformations 
with the shortest execution time. The idea is inspired by relational database 
management systems area and it is based on the observation that first order clauses 
are more efficient if “selective” literals are placed first.  

All these last approaches address the goal of minimizing the number of theorem-
proving for clauses to evaluate. In ATRE, the problem of managing redundancy or 
ordering of literals has never been tackled but it suggests interesting directions for 
further improvement.  

5   Experimental Results 

To evaluate the efficacy of the implemented caching strategies we performed 
extensive comparisons on the document understanding domain which is a source of 
interesting data sets for multiple predicate learning [11]. For this purpose, release of 
ATRE with caching has been also integrated in WISDOM++ 
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(www.di.uniba.it/~malerba/wisdom++), an intelligent document processing system 
that uses logical theories learned by ATRE to perform automatic classification and 
understanding of document images. We show experimental results for the document 
image understanding task alone.  

A document is characterized by two different structures representing both its 
internal organization and its content: the layout structure and the logical structure. 
The former associates the content of a document with a hierarchy of layout 
components, while the latter associates the content of a document with a hierarchy of 
logical components. Here, the term document understanding denotes the process of 
mapping the layout structure of a document into the corresponding logical structure. 
The document understanding process is based on the assumption that documents can 
be understood by means of their layout structures alone. The mapping of the layout 
structure into the logical structure can be performed by means of a set of rules which 
can be automatically learned from a set of training objects. Each training object 
describes the layout of a document image and the logical components associated to 
layout components.  

In our empirical study on the effect of the proposed caching strategies, we 
selected twenty-one papers, published as either regular or short, in the IEEE 
Transactions on Pattern Analysis and Machine Intelligence (tpami), in the January 
and February issues of 1996. Each paper is a multi-page document; therefore, the 
dataset is composed by 197 document images in all. Since in the particular 
application domain, it generally happens that the presence of some logical 
components depends on the order page (e.g. author is in the first page), we have 
decomposed the document understanding problem into three learning subtasks, one 
for the first pages of scientific papers, another for intermediate pages and the third 
for the last pages. Target predicates are only unary and concern the following logical 
components of a typical scientific paper published in a journal: abstract, affiliation, 
author, biography, caption, figure, formulae, index_term, page_number, references, 
running_head, table, title.  

By running ATRE on a document understanding dataset obtained from scientific 
papers, a set of  theories is learned. Some examples of learned clauses follow: 

  
author(X1)  alignment(X1,X2)=only_middle_col, abstract(X2), 

   height(X1)∈[7..13] 
figure(X1)  type_of(X1)= image, width(X1)∈[12..227], 

   x_pos_centre(X1)∈[335..570] 
references(X1)  to_right(X1,X2), biography(X2), 

 width(X2)∈[261..265] 
 

They can be easily interpreted. For instance, the first clause states that if a quite 
short layout component (X1), whose height is between 7 and 13, is centrally aligned 
with another layout component (X2) labelled as the abstract of the scientific paper, 
then it can be classified as the author of the paper. These clauses show that ATRE 
can automatically discover meaningful dependencies between target predicates. 
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5.1   Settings and Results 

Experiments have been conducted in order to compare running time of the standard 
version of the system (ATRE) against the running time of ATRE with caching 
(ATRE-cache). Three different experiments have been performed to investigate 
different factors affecting the use of caching varying the dataset setting. In particular, 
we evaluate the caching effect in the following settings: the set of 21 documents are 
divided into 5 folds according to a 5-fold cross-validation; the training set is 
incrementally built by adding 3 documents each time until all the 21 documents are 
taken into account; the learning parameters that affect the size of the search space are 
set to different values. 

5.1.1   Experiment 1 
In the first experiment, the 21 tpami documents have been divided in five folds 
removing some documents in turn (Table 1). 

Table 1. Distribution of pages and examples per document grouped by 5 folds. 

Number of positive examples Fold 
number 

List of documents 
Number of 

pages First pages Last pages 
Tpami1 13 27 13 

Tpami13 3 12 5 
Tpami14 10 26 14 

1 

Tpami 16 14 34 19 
Tpami8 5 16 6 

Tpami15 15 35 20 
Tpami18 10 24 12 

2 

Tpami24 6 16 7 
Tpami3 15 34 17 
Tpami7 6 16 6 

Tpami12 6 14 6 
3 

Tpami20 14 34 16 
Tpami9 5 15 7 

Tpami11 6 15 7 
Tpami19 20 45 24 

4 

Tpami21 11 25 16 
Tpami4 14 31 15 
Tpami6 1 6 2 

Tpami10 3 11 3 
Tpami17 13 31 17 

5 

Tpami23 7 18 9 

 
For each fold, the two versions of ATRE have been run on the four remaining 

folds. Besides, only the two learning tasks of first and last document pages have been 
examined. Execution time of each learning task, efficiency gain rates and caching 
rates are reported in Table 2 and Table 3. The caching rate is computed as the 
average on the percentages of cached clauses over the total number of clauses at each 
learning step. In particular, the caching rate estimates the caching effort in the clause 
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generation phase. Running times refer to executions performed on a 1.4 Ghz IBM 
Centrino notebook equipped with 512 Mb of RAM. 

Table 2. Running times, efficiency gain rates and caching rates for the first page learning task. 

First pages ATRE ATRE-cache 

Fold No Execution time Execution time Caching rate Time gain rate 

1 3095,470 1203,706 65,240% 61,114% 

2 3096,785 1282,777 68,888% 58,577% 

3 2545,410 1156,807 70,292% 54,553% 

4 2790,321 1206,513 73,645% 56,761% 

5 2851,612 1238,228 68,286% 56,578% 

Mean values 2875,920 1217,606 69,270% 57,662% 

Table 3. Running times, efficiency gain rates and caching rates for the last page learning task. 

Last pages ATRE ATRE-cache 

Fold No Execution time Execution time Caching rate Time gain rate 

1 2199,972 1381,098 31,726% 37,222% 

2 1681,480 1317,043 34,102% 21,674% 

3 1817,711 1254,341 35,878% 30,993% 

4 1641,837 1117,979 44,403% 31,907% 

5 2016,882 1299,936 35,286% 35,547% 

Mean values 1871,576 1274,079 36,279% 31,925% 

 

Results reported in the Table 2 and 3 show that the running time gain as well as 
the caching rates vary with respect to the training fold because it may happen that 
some folds are composed by more complex training objects than others. Moreover, 
the above tables show that the two rates are not so proportional as one can expect. 
This is because the caching rate is only related to the clause generation phase, while 
the time gain rate is related to both the clause generation and evaluation phases. 
Interesting observations can arise relating trends on caching and time gain rates. 

 

Performance of caching methods

0,000%
20,000%
40,000%
60,000%
80,000%

0,000% 20,000% 40,000% 60,000% 80,000%

Caching rate

T
im

e 
ga

in
 r

at
e

first pages

last pages

 
Fig. 4. Time gain rates on the varying of the caching rate. 
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Fig. 4 shows that the two tasks generate two distinct clusters. No definite 
relationship seems to characterize the use of caching with respect to the efficiency 
gain inside each cluster. In addition, we observe that the cluster generated for the last 
pages task is further down positioned with respect to the cluster generated for the 
first pages task. This means that the employment of caching strongly improves the 
running time in first pages task while does not significantly affect the last pages task. 
This is because in the case of first page documents, the system has more target 
predicate definitions to learn than in the case of last pages documents. Consequently, 
the search space in last pages task is composed by few specialization hierarchies. 
Hence, every seed change (i.e. a search-tree to remove) more heavily affects the 
search space portion to be re-explored. Obviously, this is because the caching rate is 
computed as the average of rates at each learning step. A more significant 
information could be  provided by also evaluating  the caching rate standard 
deviation. Indeed, for the last pages task, the standard deviation varies between 27 
and 44, while for the first pages task it varies between 68 and 73. This suggests that 
on the first pages task, the effect of caching is more uniform than in the other task. 
The higher efficiency gain as well as the more uniform variation of caching rate for 
the first pages task are due to a more homogeneous distribution of examples in the 
training set. From a more general point of view, the dataset peculiarities affect both 
the caching rate and the time gain rate since whenever one of the two measures is 
high, the other one is high too.  

5.1.2   Experiment 2 
In this experiment we progressively increase the size of the dataset. The two versions 
of the system have been run on a set of 3, 6, 9, 12, 15, 18 and 21 tpami documents. 
For each dataset trends of the efficiency gain rate and the caching rate for first and 
last pages tasks are shown in Fig. 5 and Fig. 6, respectively. 

Graphs in Fig. 5 and 6 show that both the measures tend to approximately follow 
the same trend. In the first pages task, both the caching rate and the time gain rate are 
quite constant, that is the effect of caching has no influence on performances while 
the dataset grows. In the last pages task, both the rates decrease starting from the 
dataset with 12 documents.  
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Fig. 5. Time gain rate and caching rate in first page document task varying the complexity of 
datasets in terms of examples number.  
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Last pages understanding
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Fig. 6. Time gain rate and caching rate in last page document task varying the complexity of 
datasets in terms of examples number. 

When we relate the two measures (Fig. 7), we can observe that in the case of last 
pages task there is a fairly good dependence between the caching and the time gain 
rates because when the caching rate raises, the time gain tends to raise too. 
Moreover, both the measures are affected by peculiarities of each task, because as in 
the first experiment, when one of the two rates is high, the other one tends to be high 
too, and vice versa. 
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Fig. 7. Distribution of time gain and caching rates for first and last pages tasks varying the 
complexity of datasets in terms of examples number. 

5.1.3   Experiment 3 
In this experiment the effect of the caching is investigated with respect to two system 
parameters, the minimum number of consistent clauses found at each learning step 
before selecting the best one and the beam of the search. The former affects the 
depth of specialization hierarchies, because the higher the number of consistent 
clauses is, the deeper the hierarchies are. The latter affects the width of the search-
tree.  
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Fig. 8. Efficiency gain on first pages task on beam value variation. 
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Fig. 9. Efficiency gain on first pages task on consistent variation. 

Results for the first page learning task are shown in Fig. 8 and 9. Percentages refer 
to efficiency gain in time of ATRE-cache with respect to ATRE. Results show a 
positive dependence between the size of the beam and the efficiency gain rate. On 
the contrary, slight increases in the number of consistent clauses do not seem to 
significantly affect the efficiency gain due to caching. 

From the memory use point of view, the application of caching leads to additional 
memory requirements. As an example, the memory use of ATRE-cache with respect 
to ATRE for the last pages learning task is reported in Fig. 10. Results show that the 
additional memory need is directly affected by the size of the beam. Results 
computed with respect to consistent variation do not point out any dependency 
between further memory requirements and the parameter variation. 
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Fig. 10. Memory use on last pages task on beam value variation. 

5.1.4   Accuracy and Structure of Induced Theories 
Concerning the induced theories, we can observe that sometimes slight differences 
occur both in the number of learned clauses and in the order in which they have been 
learned. Considering that the clause generation caching implies the storage of the 
sequence of clauses to be  explored, this can influence the order that the learning 
strategy “naturally” follows. Indeed, generally it may happen that going down from a 
learning step to the following step, the learning strategy generates the same clauses 
by following a  different sequence. To evaluate the effect of caching on the accuracy 
of the learning problem, we compare results of a 5-fold cross-validation test 
performed on both the versions of the system. In particular, the set of 21 documents 
is firstly divided as reported in Table 1, and then, for every fold, ATRE and ATRE-
cache are trained on the remaining folds and tested on the hold-out fold. For each 
learning problem, the number of omission/commission errors is recorded. Omission 
errors occur when logical labelling of layout components are missed, while 
commission errors occur when wrong logical labelling are “recommended” by a rule. 
Experimental results are reported in Table 4 for each trial, and the average number of 
omission and commission errors is also given. We can conclude that the caching 
does not significantly affect the accuracy. 

Table 4. Accuracy of induced theories in the first page documents task. 

ATRE ATRE-cache 
Fold 

Omissions Commissions Omissions Commissions 

1 21/99 15/4080 20/99 12/4080 
2 13/91 16/4697 12/91 11/4697 
3 17/98 15/4781 18/98 17/4781 
4 19/100 14/5318 19/100 14/5318 
5 31/97 8/3746 30/97 9/3746 

Average % 20,76 0,30 20,34 0,28 
Std Dev. % 6,75 0,06 6,50 0,05 
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6   Conclusions 

In this paper evolutions on a search strategy for recursive theory learning to tackle 
efficiency problems are proposed. They have been implemented in ATRE and tested 
in the document understanding domain. Initial experimental results show that the 
learning task benefits from the caching strategy. As future work we plan to perform 
more extensive experiments to investigate the real efficiency gain in other real-word 
domains. As future work, further improvements concerning the quality of induced 
theories are worth to be investigated. The complexity and comprehensibility of 
learned theories are affected by the application of the layering technique and an 
optimisation on the number of layering operations can be profitably feasible.  
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