
R. Camacho, R. King, A. Srinivasan (Eds.): ILP 2004, LNAI 3194, pp. 44-62, 2004.
© Springer-Verlag Berlin Heidelberg 2004

On the Effect of Caching in Recursive Theory Learning

Margherita Berardi, Antonio Varlaro, and Donato Malerba

Dipartimento di Informatica – Università degli Studi di Bari
via Orabona 4 - 70126 Bari

{berardi, varlaro, malerba}@di.uniba.it

Abstract. This paper focuses on inductive learning of recursive logical
theories from a set of examples. This is a complex task where the learning of
one predicate definition should be interleaved with the learning of the other
ones in order to discover predicate dependencies. To overcome this problem
we propose a variant of the separate-and-conquer strategy based on parallel
learning of different predicate definitions. In order to improve its efficiency,
optimization techniques are investigated and adopted solutions are described.
In particular, two caching strategies have been implemented and tested on
document processing datasets. Experimental results are discussed and
conclusions are drawn.

1 Introduction

Learning a single predicate definition from a set of positive and negative examples is
a classical problem in ILP. In this paper we are interested into the more complex case
of learning multiple predicate definitions, provided that both positive and negative
examples of each concept/predicate to be learned are available. Complexity stems
from the fact that the learned predicates may also occur in the antecedents of the
learned clauses, that is, the learned predicate definitions may be interrelated and
depend on one another, either hierarchically or involving some kind of mutual
recursion. For instance, to learn the definitions of odd and even numbers, a multiple
predicate learning system will be provided with positive and negative examples of
both odd and even numbers, and may generate the following recursive logical
theory:

odd(X) ← succ(Y,X), even(Y)
even(X) ← succ(Y,X), odd(Y)

even(X) ← zero(X)
where the definitions of odd and even are interdependent. This example shows that the
problem of learning multiple predicate definitions is equivalent, in its most general
formulation, to the problem of learning recursive logical theories.

There has been considerable debate on the actual usefulness of learning recursive
logical theories in knowledge acquisition and discovery applications. It is a common
opinion that very few real life concepts seem to have recursive definitions, rare
examples being “ancestor” and natural language [4, 14]. Despite this scepticism, in

On the Effect of Caching in Recursive Theory Learning 45

the literature it is possible to find several ILP applications in which recursion has
proved helpful [10]. Moreover, many ILP researchers have shown some interest in
multiple predicate learning [9], which presents the same difficulty of recursive
theory learning in its most general formulation.

To formulate the recursive theory learning problem and then to explain its main
theoretical issues, some basic definitions are given below.

Generally, every logical theory T can be associated with a directed graph
γ(T)=<N,E>, called the dependency graph of T, in which (i) each predicate of T is a
node in N and (ii) there is an arc in E directed from a node a to a node b, iff there
exists a clause C in T, such that a and b are the predicates of a literal occurring in the
head and in the body of C, respectively.

A dependency graph allows representing the predicate dependencies of T, where a
predicate dependency is defined as follows:

Definition 1 (predicate dependency). A predicate p depends on a predicate q in a
theory T iff (i) there exists a clause C for p in T such that q occurs in the body of C;
or (ii) there exists a clause C for p in T with some predicate r in the body of C that
depends on q.

Definition 2 (recursive theory). A logical theory T is recursive if the dependency
graph γ (T) contains at least one cycle.

In simple recursive theories all cycles in the dependency graph go from a
predicate p into p itself, that is, simple recursive theories may contain recursive
clauses, but cannot express mutual recursion.

Definition 3 (predicate definition). Let T be a logical theory and p a predicate
symbol. Then the definition of p in T is the set of clauses in T that have p in their
head. Henceforth, δ(T) will denote the set of predicates defined in T and π (T) will denote
the set of predicates occurring in T, then δ(T)⊆π (T).

In a quite general formulation, the recursive theory learning task can be defined as
follows:

Given
• A set of target predicates p1, p2, …, pr to be learned
• A set of positive (negative) examples Ei

+ (Ei

-) for each predicate pi,
1≤i≤r

• A background theory BK
• A language of hypotheses LH that defines the space of hypotheses SH

Find
a (possibly recursive) logical theory T∈SH defining the predicates p1, p2, …, pr

(that is, δ(T)={p1, p2, …, pr}) such that for each i, 1≤i≤r, BK∪ T |= Ei

+ (completeness
property) and BK∪T |≠ Ei

- (consistency property).
Three important issues characterize recursive theory learning. First, the generality

order typically used in ILP, namely θ-subsumption [17], is not sufficient to guarantee
the completeness and consistency of learned definitions, with respect to logical
entailment [16]. Therefore, it is necessary to consider a stronger generality order,
which is consistent with the logical entailment for the class of recursive logical
theories we take into account.

46 M. Berardi, A. Varlaro, and D. Malerba

Second, whenever two individual clauses are consistent in the data, their conjunction
need not be consistent in the same data [8]. This is called the non-monotonicity
property of the normal ILP setting, since it states that adding new clauses to a theory
T does not preserve consistency. Indeed, adding definite clauses to a definite
program enlarges its least Herbrand model (LHM), which may then cover negative
examples as well. Because of this non-monotonicity property, learning a recursive
theory one clause at a time is not straightforward.

Third, when multiple predicate definitions have to be learned, it is crucial to
discover dependencies between predicates. Therefore, the classical learning strategy
that focuses on a predicate definition at a time is not appropriate.

To overcome these problems some solutions have been proposed in [12] and
implemented in the learning system ATRE (www.di.uniba.it/∼malerba/software/atre).
This approach differs from related works for at least one of the following three
aspects: the learning strategy, the generalization model, and the strategy to recover
the consistency property of the learned theory when a new clause is added.

In this paper we focus on the main problem of the interleaving of the learning of
one (possible recursive) predicate definition with the learning of the other ones. In
particular, different aspects of the adopted strategy for the automated discovery of
predicate dependencies, namely the separate-and-parallel-conquer strategy, are
presented. Efficiency problems due to the computational complexity of the search
space are also discussed and some solutions implemented in a new version of the
system ATRE are described.

The paper is organized as follows. Section 2 illustrates details on the learning
strategy. Section 3 introduces efficiency problems and related works. Section 4
presents optimization approaches adopted in ATRE. The application of ATRE on
real-world documents and results on efficiency gain are reported in Section 5.
Finally, some conclusions are drawn.

2 The Learning Strategy

2.1 The Separate-and-Parallel-Conquer Search

The high-level learning algorithm in ATRE belongs to the family of sequential
covering (or separate-and-conquer) algorithms [13] since it is based on the strategy
of learning one clause at a time, removing the covered examples and iterating the
process on the remaining examples. Indeed, a recursive theory T is built step by step,
starting from an empty theory T0, and adding a new clause at each step. In this way
we get a sequence of theories

T0 =∅, T1, …, Ti, Ti+1, …, Tn = T,
such that Ti+1 = Ti ∪ {C} for some clause C. If we denote by LHM(Ti) the least
Herbrand model of a theory Ti, the stepwise construction of theories entails that
LHM(Ti) ⊆ LHM(Ti+1), for each i∈{0, 1, …, n-1}, since the addition of a clause to a
theory can only augment the LHM. Henceforth, we will assume that both positive
and negative examples of predicates to be learned are represented as ground atoms

On the Effect of Caching in Recursive Theory Learning 47

with a + or - label. Therefore, examples may or may not be elements of the models
LHM(Ti). Let pos(LHM(Ti)) and neg(LHM(Ti)) be the number of positive and
negative examples in LHM(Ti), respectively. If we guarantee the following two
conditions:

1. pos(LHM(Ti)) < pos(LHM(Ti+1)) for each i∈{0, 1, …, n-1}, and
2. neg(LHM(Ti)) = 0 for each i∈{0, 1, …, n},

then after a finite number of steps a theory T, which is complete and consistent, is
built.

In order to guarantee the first of the two conditions it is possible to proceed as
follows. First, a positive example e+ of a predicate p to be learned is selected, such
that e+ is not in LHM(Ti). The example e+ is called seed. Then the space of definite
clauses more general than e+ is explored, looking for a clause C, if any, such that
neg(LHM(Ti ∪ {C})) = ∅. In this way we guarantee that the second condition above
holds as well. When found, C is added to Ti giving Ti+1. If some positive examples are
not included in LHM(Ti+1) then a new seed is selected and the process is repeated.

The second condition is more difficult to guarantee because of the second issue
presented in the introduction, namely, the non-monotonicity property. The approach
followed in ATRE to remove inconsistency due to the addition of a clause to the
theory consists of simple syntactic changes in the theory, which eventually creates
new layers, just as the stratification of a normal program creates new strata [1].
Details on the layering approach and on the computation method are reported in [12].
The layering of a theory introduces a first variation of the classical separate-and-
conquer strategy sketched above, since the addition of a locally consistent clause
generated in the conquer stage is preceded by a global consistency check.

As explained above, in recursive theory learning it is necessary to consider a
generality order that is consistent with the logical entailment for the class of
recursive logical theories. The main problem with the well-known θ-subsumption is
that the objects of comparison are two clauses and no additional source of knowledge
(e.g., a theory T) is considered. Instead, we are only interested in those relative
generality orders that compare two clauses relatively to a given theory T. In ATRE, a
new generalization order named generalized implication is adopted [12], since both
Buntine's generalized subsumption [5] and Plotkin’s [17,18] notion of relative
generalization are not appropriate (they are either too strong or too weak).

A solution to the problem of automated discovery of dependencies between target
predicates p1, p2, …, pr is based on another variant of the separate-and-conquer
learning strategy. Traditionally, this strategy is adopted by single predicate learning
systems that generate clauses with the same predicate in the head at each step. In
multiple/recursive predicate learning, clauses generated at each step may have
different predicates in their heads. In addition, the body of the clause generated at the
i-th step may include all target predicates p1, p2, …, pr for which at least a clause has
been added to the partially learned theory in previous steps. In this way,
dependencies between target predicates can be generated.

Obviously, the order in which clauses of distinct predicate definitions have to be
generated is not known in advance. This means that it is necessary to generate
clauses with different predicates in the head and then to pick one of them at the end

48 M. Berardi, A. Varlaro, and D. Malerba

of each step of the separate-and-conquer strategy. Since the generation of a clause
depends on the chosen seed, several seeds have to be chosen such that at least one
seed per incomplete predicate definition is kept. Therefore, the search space is
actually a forest of as many search-trees (called specialization hierarchies) as the
number of chosen seeds. A directed arc from a node C to a node C' exists if C' is
obtained from C by a single refinement step. Operatively, the (downward)
refinement operator considered in this work adds a new literal to a clause.1

even(X) ←

even(X) ← zero(X) even(X) ← succ(X,Y)

odd(X) ←

odd(X) ← succ(Y,X) odd(X) ← succ(X,Y)

even(X) ←zero(X)
 succ(X,Y)

even(X) ←succ(X,Y)
 succ(Y,Z)

odd(X) ← succ(Y,X)
 zero(Y)

odd(X) ← succ(Y,X)
 succ(X,Z)

even(0) odd(1) seeds

Level 0

Level 1

Level 2

even(X) ←

even(X) ← succ(Y,X) even(X) ← succ(X,Y)

odd(X) ←

odd(X) ← succ(Y,X) odd(X) ← succ(X,Y)

even(X) ← succ(Y,X)
 succ(Z,Y)

even(X) ←succ(X,Y)
 succ(Y,Z)

odd(X) ← succ(Y,X)
 zero(Y)

odd(X) ← succ(Y,X)
 even(Y)

even(2) odd(1) seeds

Level 0

Level 1

Level 2

Fig. 1. Two steps (up and down) of the parallel search for the predicates odd and even.
Consistent clauses are reported in italics.

The forest can be processed in parallel by as many concurrent tasks as the number

of search-trees (hence the name of separate-and-parallel-conquer for this search
strategy). Each task traverses the specialization hierarchy top-down (or general-to-
specific), but synchronizes traversal with the other tasks at each level. Initially, some
clauses at depth one in the forest are examined concurrently. Each task is actually
free to adopt its own search strategy, and to decide which clauses are worth to be
tested. If none of the tested clauses is consistent, clauses at depth two are considered.
Search proceeds towards deeper and deeper levels of the specialization hierarchies
until at least a user-defined number of consistent clauses is found. Task
synchronization is performed after that all “relevant” clauses at the same depth have
been examined. A supervisor task decides whether the search should carry on or not
on the basis of the results returned by the concurrent tasks. When the search is
stopped, the supervisor selects the “best” consistent clause according to the user’s
preference criterion. This strategy has the advantage that simpler consistent clauses

1 A discussion on properties of this operator is beyond the scope of this paper. A thorough

description of upward and downward refinement operators can be found in [16].

On the Effect of Caching in Recursive Theory Learning 49

are found first, independently of the predicates to be learned.2 Moreover, the
synchronization allows tasks to save much computational effort when the distribution
of consistent clauses in the levels of the different search-trees is uneven. The parallel
exploration of the specialization hierarchies for odd and even is shown in Fig. 1.

2.2 Some Refinements

The learning strategy reported in the previous section is quite general and there is
room for several distinct implementations. In particular, the following some points
have been left unspecified: 1) how seeds are selected; 2) what is the search strategy
adopted by each task. In this section, solutions adopted in the last release of the
learning system ATRE are illustrated.

Seed selection is a critical point. In the example of Fig. 1, if the search had started
from even(2) and odd(1), the first clause added to the theory would have been
odd(X) ← succ(Y,X), zero(Y), thus resulting in a less compact, though still correct,
theory for odd and even numbers. Therefore, it is important to explore the
specialization hierarchies of several seeds for each predicate. According to the
classical ILP learning setting, the set of training examples is a set of ground atoms.
In this case, the choice of seeds should be stochastic because of the large number of
candidate seeds. However, a random choice does not guarantee that the right seeds
are chosen for the generation of the base clauses of the recursive definition. For this
reason ATRE adopts a variant of the learning interpretation setting, where training
examples of target predicates p1, p2, …, pr are partitioned into training objects, each
of which also includes a set of ground facts from the extensional BK. As observed by
[3] within the setting of learning from interpretations, it is possible to develop more
efficient learning algorithms than the classical ILP setting. This is especially true for
recursive theory learning. Indeed, the object-centered representation adopted by
ATRE has the advantage of reducing the number of candidate seeds. The main
assumption made in this approach is that each object contains examples explained by
some base clauses of the underlying recursive theory.3 Therefore, by choosing as
seeds all examples of different concepts represented in one training object, it is
possible to induce some of the correct base clauses. Since in many learning problems
the number of positive examples in an object is not very high, a parallel exploration
of all candidate seeds is feasible. Mutually recursive concept definitions will be
generated only after some base clauses have been added to the theory.

Seeds are chosen according to the textual order in which objects are input to
ATRE. If a complete definition of the predicate pj is not available yet at the i-th step

2 Apparently, some problems might occur for those recursive definitions where the recursive

clause is syntactically simpler than the base clause. However, the proposed strategy does
not allow the discovery of the recursive clause until the base clause has been found,
whatever its complexity is.

3 Problems caused by incomplete object descriptions violating the above assumption are not
investigated in this work, since they require the application of abductive operators, which
are not available in the current version of the system.

50 M. Berardi, A. Varlaro, and D. Malerba

of the separate-and-conquer search strategy, then there are still some uncovered
positive examples of pj. The first (seed) object Ok in the object list that contains
uncovered examples of pj is selected to generate seeds for pj.

The second undefined point of the search strategy concerns the search strategy
adopted by each task. ATRE applies a variant of the beam-search strategy. The
system generates all candidate clauses at level l+1 starting from those filtered at level
l in the specialization hierarchy. During task synchronization, which occurs level-by-
level, the best m clauses are selected from those generated by all tasks. The user
specifies the beam of the search, that is m, and a set of preference criteria for the
selection of the best m clauses.

3 Improving Efficiency in ATRE

Considering the separate-and-parallel-conquer search sketched in Section 2.1, it
presents some efficiency problems and leaves a large margin for optimization. One
of the reasons is that every time a clause is added to the partially learned theory, the
specialization hierarchies are reconstructed for a new set of seeds, which may
intersect the set of seeds explored in the previous step. Therefore, it is possible that
the system explores the same specialization hierarchies several times, since it has no
memory of the work done in previous steps. This is particularly evident when
concepts to learn are neither recursively definable nor mutually dependent.
Intuitively, caching the specialization hierarchies explored at a certain step of the
separate-and-conquer strategy and reusing part of them at the following step, seems
to be a good strategy to decrease the learning time while keeping memory usage
under acceptable limits. Furthermore, clause evaluation requires a number of
generalized implication tests, one for each positive or negative example. Although
the generalized implication test is optimized in ATRE, when the number of tests to
perform is high, the clause evaluation leads to efficiency problems anyway. To
reduce the number of tests, a caching method on the list of positive and negative
examples of each clause has been investigated.

In this section we present the novel caching strategy implemented in ATRE to
solve efficiency problems above. Generally speaking, caching aims to save useful
information that would be repeatedly recomputed otherwise, with a clear waste of
time. In particular, the proposed strategy affects the two most computationally
expensive phases of the learning process, namely the clause generation step and the
clause evaluation step.

3.1 Caching for Clause Generation

To prevent the exploration of the same specialization hierarchies several times, we
propose a caching mechanism that aims to save the specialization hierarchies
explored at the i-th step of the separate-and-conquer strategy so to reuse part of them
at the (i+1)-th step.

On the Effect of Caching in Recursive Theory Learning 51

First of all, we observe that a necessary condition for reusing a specialization
hierarchy between two subsequent learning steps is that the associated seed remains
the same. This means that if the seed of a specialization hierarchy is no longer
considered at the (i+1)-th step, then the corresponding clauses cached at the i-th step
can be discarded.

However, even in the case of same seed, not all the clauses of the specialization
hierarchy will be actually useful. For instance, the cached copies of a clause C added
to Ti can be removed from all specialization hierarchies including it. Moreover, all
clauses that cover only positive examples already covered by C can be dropped,
according to the separate-and-conquer learning strategy. These examples explain
why a cached specialization hierarchy has to be pruned before considering it at the
(i+1)-th step of the learning strategy.

Fig. 2. An example of search-tree pruning effect on beam search width.

In order to maintain unchanged the width of the search beam, some grafting
operations are necessary after pruning. Indeed, by removing the clauses that will be
no more examined, the exploration beam decreases. Grafting operations aim to
consider previous unspecialized clauses in order to restore the beam width, as shown
in Fig.2.

Grafting operations are also necessary to preserve the generation of recursive
clauses. For instance, by looking at the two specialization hierarchies of the predicate
odd in Fig. 1, it is clear that once the clause even(X) ← zero(X) has been added to the
empty theory (step 1), the consistent clause odd(X) ← succ(Y,X), even(Y) can be a
proper node of the specialization hierarchy, since a base clause for the recursive
definition of the predicate even is already available. Therefore, the grafting
operations also aim to complete the pruned specialization hierarchy with new clauses
that take predicate dependencies into account.

3.2 Caching for Clause Evaluation

To clarify the caching technique proposed for the clause evaluation phase, we need
to distinguish between dependent clauses, that is, clauses with at least one literal in

52 M. Berardi, A. Varlaro, and D. Malerba

the body whose predicate symbol is a target predicate pi, and independent clauses (all
the others).

In independent clauses, the lists of negative examples remain unchanged between
two subsequent learning steps. Indeed, the addition of a clause C to a partially
learned theory Ti does not change the set of consequences of an independent clause,
whose set of negative examples can neither increase nor decrease. Therefore, by
caching the list of negative examples, the learning system can prevent its
computation.

A different observation concerns the list of positive examples to be covered by the
partially learned theory. For the same reason reported above it cannot increase, while
it can decrease since some of the positive examples might have been covered by the
added clause C. Actually, the set of positive examples of a clause C' generated at the
(i+1)-th step can be calculated as intersection of the cached set computed at the i-th
step of the learning strategy and the set of positive examples covered by the parent
clause of C' in the specialization hierarchy computed at the (i+1)-th step (see Fig. 3).
In the case of dependent clauses, both lists of the positive and negative examples can
increase, decrease or remain unchanged, since the addition of a clause C to a partially
learned theory Ti might change the set of consequences of a dependent clause.
Therefore, caching the set of positive/negative examples covered by a dependent
clause is useless.

Fig. 3. An example of the positive examples list computation as intersection of the positive
examples list of the same clause in the previous learning, step (i), and the positive examples
list of the parent clause in the current learning, step (i+1).

It is noteworthy that, differently from the caching technique for clause generation,
caching for clause evaluation does not require additional memory resources since all
requested information are kept from the current learning step (see Section 5.1.3).

4 Related Work

Efficiency of ILP systems is strongly dependent on the strategy adopted while
searching the space of candidate hypotheses. Different techniques have been

On the Effect of Caching in Recursive Theory Learning 53

investigated to improve efficiency. A common approach is to reduce the number of
hypotheses to evaluate during the search. Language bias specification to constraint
the number of hypotheses [15] and branch-and-bound as well as heuristic searches
have been widely employed in this perspective.

The caching of information on clauses coverage seems instead to be a convenient
solution when exhaustive search is carried out. Indeed, [7] implements in Progol the
caching of positive and negative cover of clauses during the search. Results show an
improvement expressed by a 15.75 speed up factor. This approach is very similar to
the caching strategy adopted in the clause evaluation phase of ATRE. Nevertheless,
it presents some differences due to the additional difficulties raised by recursive
theory learning. Indeed, as explained in Section 3.2, ATRE has to take into account
the distinction between dependent/independent clauses in order to decide whether
caching strategy should be applied or not. In addition, Progol implements a prune
cache method that aims to cache clauses representing points of the hypothesis space
where the search should be pruned.

Other approaches focusing on clause evaluation phase have been investigated by
[6] whose work has been later extended by [2] in the particular ILP setting that
considers examples of predicate definition to be learned as composing a database to
repeatedly query. In this context, a query (clause) is a conjunction of goals (literals)
to refine in order to generate a predicate definition. In particular, [6] propose a
method to reduce the number of literals in clause bodies in order to optimize the
number of predicate calls. The method is based on redundant literal reduction by
means of a subsumption relation test. They also propose an optimisation of the
number of clause coverage tests by grouping dependent body literals in equivalence
classes and adding a cut predicate between literals of different equivalence classes.
This method based on the cut introduction has been generalized by [2], which also
implement a strategy to remove literals whose success is known and that will not
influence the success of the examined clause.

[19] propose a method to minimize clause evaluation costs that is based on the
reordering of dependent literals. In particular, they look for clause transformations
with the shortest execution time. The idea is inspired by relational database
management systems area and it is based on the observation that first order clauses
are more efficient if “selective” literals are placed first.

All these last approaches address the goal of minimizing the number of theorem-
proving for clauses to evaluate. In ATRE, the problem of managing redundancy or
ordering of literals has never been tackled but it suggests interesting directions for
further improvement.

5 Experimental Results

To evaluate the efficacy of the implemented caching strategies we performed
extensive comparisons on the document understanding domain which is a source of
interesting data sets for multiple predicate learning [11]. For this purpose, release of
ATRE with caching has been also integrated in WISDOM++

54 M. Berardi, A. Varlaro, and D. Malerba

(www.di.uniba.it/~malerba/wisdom++), an intelligent document processing system
that uses logical theories learned by ATRE to perform automatic classification and
understanding of document images. We show experimental results for the document
image understanding task alone.

A document is characterized by two different structures representing both its
internal organization and its content: the layout structure and the logical structure.
The former associates the content of a document with a hierarchy of layout
components, while the latter associates the content of a document with a hierarchy of
logical components. Here, the term document understanding denotes the process of
mapping the layout structure of a document into the corresponding logical structure.
The document understanding process is based on the assumption that documents can
be understood by means of their layout structures alone. The mapping of the layout
structure into the logical structure can be performed by means of a set of rules which
can be automatically learned from a set of training objects. Each training object
describes the layout of a document image and the logical components associated to
layout components.

In our empirical study on the effect of the proposed caching strategies, we
selected twenty-one papers, published as either regular or short, in the IEEE
Transactions on Pattern Analysis and Machine Intelligence (tpami), in the January
and February issues of 1996. Each paper is a multi-page document; therefore, the
dataset is composed by 197 document images in all. Since in the particular
application domain, it generally happens that the presence of some logical
components depends on the order page (e.g. author is in the first page), we have
decomposed the document understanding problem into three learning subtasks, one
for the first pages of scientific papers, another for intermediate pages and the third
for the last pages. Target predicates are only unary and concern the following logical
components of a typical scientific paper published in a journal: abstract, affiliation,
author, biography, caption, figure, formulae, index_term, page_number, references,
running_head, table, title.

By running ATRE on a document understanding dataset obtained from scientific
papers, a set of theories is learned. Some examples of learned clauses follow:

author(X1) alignment(X1,X2)=only_middle_col, abstract(X2),

 height(X1)∈[7..13]
figure(X1) type_of(X1)= image, width(X1)∈[12..227],

 x_pos_centre(X1)∈[335..570]
references(X1) to_right(X1,X2), biography(X2),

 width(X2)∈[261..265]

They can be easily interpreted. For instance, the first clause states that if a quite
short layout component (X1), whose height is between 7 and 13, is centrally aligned
with another layout component (X2) labelled as the abstract of the scientific paper,
then it can be classified as the author of the paper. These clauses show that ATRE
can automatically discover meaningful dependencies between target predicates.

On the Effect of Caching in Recursive Theory Learning 55

5.1 Settings and Results

Experiments have been conducted in order to compare running time of the standard
version of the system (ATRE) against the running time of ATRE with caching
(ATRE-cache). Three different experiments have been performed to investigate
different factors affecting the use of caching varying the dataset setting. In particular,
we evaluate the caching effect in the following settings: the set of 21 documents are
divided into 5 folds according to a 5-fold cross-validation; the training set is
incrementally built by adding 3 documents each time until all the 21 documents are
taken into account; the learning parameters that affect the size of the search space are
set to different values.

5.1.1 Experiment 1
In the first experiment, the 21 tpami documents have been divided in five folds
removing some documents in turn (Table 1).

Table 1. Distribution of pages and examples per document grouped by 5 folds.

Number of positive examples Fold
number

List of documents
Number of

pages First pages Last pages
Tpami1 13 27 13

Tpami13 3 12 5
Tpami14 10 26 14

1

Tpami 16 14 34 19
Tpami8 5 16 6

Tpami15 15 35 20
Tpami18 10 24 12

2

Tpami24 6 16 7
Tpami3 15 34 17
Tpami7 6 16 6

Tpami12 6 14 6
3

Tpami20 14 34 16
Tpami9 5 15 7

Tpami11 6 15 7
Tpami19 20 45 24

4

Tpami21 11 25 16
Tpami4 14 31 15
Tpami6 1 6 2

Tpami10 3 11 3
Tpami17 13 31 17

5

Tpami23 7 18 9

For each fold, the two versions of ATRE have been run on the four remaining

folds. Besides, only the two learning tasks of first and last document pages have been
examined. Execution time of each learning task, efficiency gain rates and caching
rates are reported in Table 2 and Table 3. The caching rate is computed as the
average on the percentages of cached clauses over the total number of clauses at each
learning step. In particular, the caching rate estimates the caching effort in the clause

56 M. Berardi, A. Varlaro, and D. Malerba

generation phase. Running times refer to executions performed on a 1.4 Ghz IBM
Centrino notebook equipped with 512 Mb of RAM.

Table 2. Running times, efficiency gain rates and caching rates for the first page learning task.

First pages ATRE ATRE-cache

Fold No Execution time Execution time Caching rate Time gain rate

1 3095,470 1203,706 65,240% 61,114%

2 3096,785 1282,777 68,888% 58,577%

3 2545,410 1156,807 70,292% 54,553%

4 2790,321 1206,513 73,645% 56,761%

5 2851,612 1238,228 68,286% 56,578%

Mean values 2875,920 1217,606 69,270% 57,662%

Table 3. Running times, efficiency gain rates and caching rates for the last page learning task.

Last pages ATRE ATRE-cache

Fold No Execution time Execution time Caching rate Time gain rate

1 2199,972 1381,098 31,726% 37,222%

2 1681,480 1317,043 34,102% 21,674%

3 1817,711 1254,341 35,878% 30,993%

4 1641,837 1117,979 44,403% 31,907%

5 2016,882 1299,936 35,286% 35,547%

Mean values 1871,576 1274,079 36,279% 31,925%

Results reported in the Table 2 and 3 show that the running time gain as well as
the caching rates vary with respect to the training fold because it may happen that
some folds are composed by more complex training objects than others. Moreover,
the above tables show that the two rates are not so proportional as one can expect.
This is because the caching rate is only related to the clause generation phase, while
the time gain rate is related to both the clause generation and evaluation phases.
Interesting observations can arise relating trends on caching and time gain rates.

Performance of caching methods

0,000%
20,000%
40,000%
60,000%
80,000%

0,000% 20,000% 40,000% 60,000% 80,000%

Caching rate

T
im

e
ga

in
 r

at
e

first pages

last pages

Fig. 4. Time gain rates on the varying of the caching rate.

On the Effect of Caching in Recursive Theory Learning 57

Fig. 4 shows that the two tasks generate two distinct clusters. No definite
relationship seems to characterize the use of caching with respect to the efficiency
gain inside each cluster. In addition, we observe that the cluster generated for the last
pages task is further down positioned with respect to the cluster generated for the
first pages task. This means that the employment of caching strongly improves the
running time in first pages task while does not significantly affect the last pages task.
This is because in the case of first page documents, the system has more target
predicate definitions to learn than in the case of last pages documents. Consequently,
the search space in last pages task is composed by few specialization hierarchies.
Hence, every seed change (i.e. a search-tree to remove) more heavily affects the
search space portion to be re-explored. Obviously, this is because the caching rate is
computed as the average of rates at each learning step. A more significant
information could be provided by also evaluating the caching rate standard
deviation. Indeed, for the last pages task, the standard deviation varies between 27
and 44, while for the first pages task it varies between 68 and 73. This suggests that
on the first pages task, the effect of caching is more uniform than in the other task.
The higher efficiency gain as well as the more uniform variation of caching rate for
the first pages task are due to a more homogeneous distribution of examples in the
training set. From a more general point of view, the dataset peculiarities affect both
the caching rate and the time gain rate since whenever one of the two measures is
high, the other one is high too.

5.1.2 Experiment 2
In this experiment we progressively increase the size of the dataset. The two versions
of the system have been run on a set of 3, 6, 9, 12, 15, 18 and 21 tpami documents.
For each dataset trends of the efficiency gain rate and the caching rate for first and
last pages tasks are shown in Fig. 5 and Fig. 6, respectively.

Graphs in Fig. 5 and 6 show that both the measures tend to approximately follow
the same trend. In the first pages task, both the caching rate and the time gain rate are
quite constant, that is the effect of caching has no influence on performances while
the dataset grows. In the last pages task, both the rates decrease starting from the
dataset with 12 documents.

First pages understanding

0,000%

20,000%

40,000%

60,000%

80,000%

3 6 9 12 15 18 21
Training documents

Clause caching rate

Time gain rate

Fig. 5. Time gain rate and caching rate in first page document task varying the complexity of
datasets in terms of examples number.

58 M. Berardi, A. Varlaro, and D. Malerba

Last pages understanding

0,000%
10,000%
20,000%
30,000%
40,000%
50,000%

3 6 9 12 15 18 21

Training documents

Clause caching rate

Time gain rate

Fig. 6. Time gain rate and caching rate in last page document task varying the complexity of
datasets in terms of examples number.

When we relate the two measures (Fig. 7), we can observe that in the case of last
pages task there is a fairly good dependence between the caching and the time gain
rates because when the caching rate raises, the time gain tends to raise too.
Moreover, both the measures are affected by peculiarities of each task, because as in
the first experiment, when one of the two rates is high, the other one tends to be high
too, and vice versa.

Performance of caching methods

0,000%

20,000%

40,000%

60,000%

80,000%

0,000% 20,000% 40,000% 60,000% 80,000%

Caching rate

T
im

e
ga

in
 r

at
e

first pages

last pages

Fig. 7. Distribution of time gain and caching rates for first and last pages tasks varying the
complexity of datasets in terms of examples number.

5.1.3 Experiment 3
In this experiment the effect of the caching is investigated with respect to two system
parameters, the minimum number of consistent clauses found at each learning step
before selecting the best one and the beam of the search. The former affects the
depth of specialization hierarchies, because the higher the number of consistent
clauses is, the deeper the hierarchies are. The latter affects the width of the search-
tree.

On the Effect of Caching in Recursive Theory Learning 59

45,204%
52,808%

58,711%

0,000%

20,000%

40,000%

60,000%

80,000%

100,000%

5 10 15

Beam

ATRE-cache efficiency gain with respect to ATRE

Fig. 8. Efficiency gain on first pages task on beam value variation.

53,943% 53,611% 51,535%

0,000%

20,000%

40,000%

60,000%

80,000%

100,000%

5 10 15

Consistent

ATRE-cache efficiency gain with respect to ATRE

Fig. 9. Efficiency gain on first pages task on consistent variation.

Results for the first page learning task are shown in Fig. 8 and 9. Percentages refer
to efficiency gain in time of ATRE-cache with respect to ATRE. Results show a
positive dependence between the size of the beam and the efficiency gain rate. On
the contrary, slight increases in the number of consistent clauses do not seem to
significantly affect the efficiency gain due to caching.

From the memory use point of view, the application of caching leads to additional
memory requirements. As an example, the memory use of ATRE-cache with respect
to ATRE for the last pages learning task is reported in Fig. 10. Results show that the
additional memory need is directly affected by the size of the beam. Results
computed with respect to consistent variation do not point out any dependency
between further memory requirements and the parameter variation.

60 M. Berardi, A. Varlaro, and D. Malerba

1,920%
8,873%

17,010%

0,000%

20,000%

40,000%

5 10 15

Beam

ATRE-cache memory use with respect to ATRE

Fig. 10. Memory use on last pages task on beam value variation.

5.1.4 Accuracy and Structure of Induced Theories
Concerning the induced theories, we can observe that sometimes slight differences
occur both in the number of learned clauses and in the order in which they have been
learned. Considering that the clause generation caching implies the storage of the
sequence of clauses to be explored, this can influence the order that the learning
strategy “naturally” follows. Indeed, generally it may happen that going down from a
learning step to the following step, the learning strategy generates the same clauses
by following a different sequence. To evaluate the effect of caching on the accuracy
of the learning problem, we compare results of a 5-fold cross-validation test
performed on both the versions of the system. In particular, the set of 21 documents
is firstly divided as reported in Table 1, and then, for every fold, ATRE and ATRE-
cache are trained on the remaining folds and tested on the hold-out fold. For each
learning problem, the number of omission/commission errors is recorded. Omission
errors occur when logical labelling of layout components are missed, while
commission errors occur when wrong logical labelling are “recommended” by a rule.
Experimental results are reported in Table 4 for each trial, and the average number of
omission and commission errors is also given. We can conclude that the caching
does not significantly affect the accuracy.

Table 4. Accuracy of induced theories in the first page documents task.

ATRE ATRE-cache
Fold

Omissions Commissions Omissions Commissions

1 21/99 15/4080 20/99 12/4080
2 13/91 16/4697 12/91 11/4697
3 17/98 15/4781 18/98 17/4781
4 19/100 14/5318 19/100 14/5318
5 31/97 8/3746 30/97 9/3746

Average % 20,76 0,30 20,34 0,28
Std Dev. % 6,75 0,06 6,50 0,05

On the Effect of Caching in Recursive Theory Learning 61

6 Conclusions

In this paper evolutions on a search strategy for recursive theory learning to tackle
efficiency problems are proposed. They have been implemented in ATRE and tested
in the document understanding domain. Initial experimental results show that the
learning task benefits from the caching strategy. As future work we plan to perform
more extensive experiments to investigate the real efficiency gain in other real-word
domains. As future work, further improvements concerning the quality of induced
theories are worth to be investigated. The complexity and comprehensibility of
learned theories are affected by the application of the layering technique and an
optimisation on the number of layering operations can be profitably feasible.

References

1. Apt, K.R.: Logic programming. In: van Leeuwen, J. (ed.): Handbook of Theoretical
Computer Science, Vol. B. Elsevier, Amsterdam (1990) 493-574.

2. Blockeel H., Demoen B., Jansseens G., Vandecasteele H., Van Laer W.: Two Advanced
Transformations for Improving the Efficiency of an ILP System, In J. Cussens and A.
Frisch (ed.), Proceedings of the Work-in-Progress Track at the 10th International
Conference on Inductive Logic Programming (2000) 43-59.

3. Blockeel H., De Raedt L., Jacobs N., and Demoen B.: Scaling up inductive logic
programming by learning from interpretations. Data Mining and Knowledge Discovery,
3(1) 59-93 (1999).

4. Boström H.: Induction of Recursive Transfer Rules. In J. Cussens (ed.), Proceedings of the
Language Logic and Learning Workshop (1999) 52-62.

5. Buntine, W.: Generalised subsumption and its applications to induction and redundancy.
Artificial Intelligence, Vol. 36 (1988) 149-176.

6. Costa V. S., Srinivasan A., Camacho R.: A note on two simple trasformations for
improving the efficiency of an ILP system, Proceedings of the 10th International
Conference on Inductive Logic Programming, Lecture Notes in Artificial Intelligence,
Springer-Verlag (2000).

7. Cussens J.: Part-of-speech tagging using Progol. In Inductive Logic Programming:
Proceedings of the 7th Int. Workshop. Lecture Notes in Artificial Intelligence, vol.1297
93–108 Springer-Verlag (1997).

8. De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning Journal, 26(2/3) (1997)
99-146.

9. De Raedt, L., and N. Lavrac: Multiple predicate learning in two Inductive Logic
Programming settings. Journal on Pure and Applied Logic, 4(2) (1996) 227-254.

10. Khardon, R.: Learning to take Actions. Machine Learning, 35(1) (1999) 57-90.
11. Malerba D., Esposito F., Lisi F.A. and Altamura O.: Automated Discovery of

Dependencies Between Logical Components in Document Image Understanding.
Proceedings of the 6th International Conference on Document Analysis and Recognition,
Seattle (WA), (2001) 174-178.

12. Malerba D.: Learning Recursive Theories in the Normal ILP Setting, Fundamenta
Informaticae, 57(1) (2003) 39-77.

13. Mitchell, T.M.: Machine Learning. McGraw-Hill (1997).

62 M. Berardi, A. Varlaro, and D. Malerba

14. Muggleton, S. and C.H. Bryant: Theory completion using inverse entailment. In: J.
Cussens and A. Frisch (eds.): Inductive Logic Programming, Proceedings of the 10th Int.
Conference ILP 2000, LNAI 1866, Springer, Berlin, Germany (2000) 130-146.

15. Nedellec C., Ad H., Bergadano F., and Tausend B.: Declarative bias in ILP. In L. De
Raedt (ed.), Advances in Inductive Logic Programming, volume 32 of Frontiers in
Artificial Intelligence and Applications (1996) 82-103, IOS Press.

16. Nienhuys-Cheng, S.-W., de Wolf, R.: The Subsumption theorem in inductive logic
programming: Facts and fallacies. In: De Raedt, L. (ed.): Advances in Inductive Logic
Programming. IOS Press, Amsterdam (1996) 265-276.

17. Plotkin, G.D.: A note on inductive generalization. In: Meltzer, B., Michie, D. (eds.):
Machine Intelligence 5. Edinburgh University Press, Edinburgh (1970) 153-163.

18. Plotkin, G.D.: A further note on inductive generalization. In: Meltzer, B., Michie, D.
(eds.): Machine Intelligence 6. Edinburgh University Press, Edinburgh (1971) 101-124.

19. Struyf J. and Blockeel H.: Query optimisation in Inductive Logic Programming by
Reordering Literals. In T. Horváth and A. Yamamoto (ed.), Proceedings of the 13th
International Conference on Inductive Logic Programming, Lecture Notes in Artificial
Intelligence, vol. 2835 (329-346). Springer-Verlag, 2003.

