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Abstract. In this paper we tackle the problem of simplifying tree-based
regression models, called model trees, which are characterized by two types of
internal nodes, namely regression nodes and splitting nodes. We propose two
methods which are based on two distinct simplification operators, namely
pruning and grafting. Theoretical properties of the methods are reported and the
effect of the simplification on several data sets is empirically investigated.
Results are in favor of simplified trees in most cases.

1 Introduction

Model trees are tree-structured regression models that associate leaves with multiple
linear regression functions. Internal nodes are typically spliting tests that partition the
space spanned by m independent (or predictor) random variables x, (both numerical
and categorical). Regression models at the leaves capture the linear dependence
between one or more independent variables and the continuous dependent (or
response) variable y, locally to a partition of the sample space. Several methods have
been proposed for the construction of the tree and for the estimation of the linear
dependence at the leaves on the basis of a training sample. They have been
implemented in some well-known model tree induction systems such as M5 [10],
RETIS [5], M5’ [14], HTL [12], TSIR [6] and SMOTI [7]. All these systems perform
a top-down induction of model trees (TDIMT). However, the last two systems are
characterized by two types of internal nodes: regression nodes, which perform only
straight-line regressions, and splitting nodes, which partition the sample space. The
regression model at a leaf is obtained by combining the straight-line regression
functions associated to the regression nodes along the path from the root to the leaf. In
SMOTI, the composition of straight-line regressions can be statistically interpreted as
a multiple linear model built stepwise.

When building model trees, it is common practice to discard parts of the tree that
describe spurious effects in the training sample rather than true features of the
underlying phenomenon. The application of model tree simplification (pruning)
methods follows the generation (growing) of the tree itself and tries avoid the
overfitting problem under control. Several simplification methods have been reported
in the literature, most of which are derived from those developed for decision trees
[4]. For instance, RETIS bases its pruning algorithm on Niblett and Bratko’s method

N. Zhong et al. (Eds.): ISMIS 2003, LNAI 2871, pp. 49-56, 2003.
© Springer-Verlag Berlin Heidelberg 2003



50 M. Ceci, A. Appice, and D. Malerba

[8], extended later by Cestnik & Bratko [2]. M5 uses a pessimistic-error-pruning-like
strategy since it compares the error estimates obtained by pruning a node or not. The
error estimates are based on the training cases and corrected in order to take into
account the complexity of the model in the node. Similarly, in M5’ the pruning
procedure makes use of an estimate, at each node, of the expected error for the test
data. The estimate is the resubstitution error compensated by a factor that takes into
account the number of training examples and the number of parameters in the linear
model associated to the node [14]. A method a la error-based-pruning is adopted in
HTL, where the upper level of a confidence interval of the resubstitution error
estimate is taken as the most pessimistic estimate of the error node [12]. A different
solution has been proposed by Robnik-Sikonja and Kononenko [11] who applied the
MDL principle. This principle is based on the coding of the possible solutions to the
problem and the selection of the instance with the shortest code as the result.

A common characteristic of all these methods is that they have been defined for
model trees whose internal nodes are only splitting tests. Since SMOTI has a different
tree structure, it is necessary to develop new methods that correctly operates on the
two types of internal nodes. It is noteworthy that no simplification method was
proposed in TSIR, the only other system that induces trees with two types of nodes. In
this paper, two methods are proposed: they are based on two distinct simplification
operators, namely pruning and grafting. They are described in Section 3, after a brief
introduction of SMOTI (next section). Experimental results are reported and
discussed in Section 4.

2 Stepwise Induction of Model Trees

In this section we briefly recall some characteristics of SMOTI. A more detailed
explanation of SMOTI and a comparison with other TDIMT methods are reported in
[7]. In SMOTI the top-down induction of models trees is performed by considering
regression steps and splitting tests at the same level. The former compute straight-line
regression, while the latter partition the feature space. They pass down observations to
their children in two different ways. For a splitting node ¢, only a subgroup of the N(t)
observations in ¢ is passed to each child (left or right). No change is made on training
cases. For a regression node ¢, all the observations are passed down to its only child,
but the values of both the dependent and independent numeric variables not included
in the multiple linear model associated to ¢ are transformed in order to remove the
linear effect of those variables already included. Thus, descendants of a regression
node will operate on a modified training set. This is done in accordance to the
statistical theory of linear regression, where the incremental construction of a multiple
linear model is made by removing the linear effect of introduced variables each time a
new independent variable is added to the model. In this way, a multiple linear model
can be associated to each leaf. It involves all the numerical variables in the regression
nodes along the path from the root to the leaf. Variables involved in regression nodes
at top levels of the tree capture global effects, while those involved in regression
nodes close to the leaves capture local effects.

During the tree growing phase, nodes are selected on the basis of an evaluation
function. For a splitting node ¢ it is defined as:
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The estimate yj=ap+ ias x, is computed by combining all univariate regression
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lines associated to regression nodes along the path from the root to ¢, (z,).

The evaluation of a regression step at node ¢ cannot be naively based on the
resubstitution error R(?). Indeed, the splitting node “looks-ahead” to the best
multiple linear regressions after the split is performed, while the regression step
does not. A fairer comparison would be growing the model tree at a further level
in order to base the computation of p(f) on the best splitting node ¢’ after the
current regression node ¢ is performed. Therefore, p(¢) is defined as follows:

p(t) = min {R(1),0(1’)}.

Both oft) and p(t) are compared to choose between three different possibilities:
i) growing the model tree by adding a regression node #; ii) growing the model
tree by adding a splitting node ¢; iii) stopping the tree’s growth at node t.

Five different stopping criteria are used in SMOTI. The first performs the partial F-
test to evaluate the contribution of a new independent variable to the model [3]. The
second requires the number of cases in each node to be greater than a minimum value.
The third operates when all continuous variables along the path from the root to the
current node are used in regression steps and there are no discrete variables in the
training set. The fourth creates a leaf if the error in the current node is below a
fraction of the error in the root node [13, p. 60]. The fifth stops the growth when the
coefficient of determination is greater than a minimum value [15, pp. 18-19].

3  Simplification Methods for Model Trees

The two proposed methods are both based on the use of an independent pruning set,

but they adopt two distinct simplification operators (see Fig. 1), namely:

e the pruning operator, T, which associates each internal node ¢ with the tree 7 ,(¢)
having all the nodes of T except the descendants of 7, and

e the grafting operator, 7,, which associates each couple of internal nodes <z,t’>
directly connected by an edge with the tree 7, (<t,t”>) having all nodes of T
except those in the branch between ¢ and ¢’

The two methods are detailed in the next two subsections.
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Fig. 1. The model tree T’ is obtained by pruning T in node 2, while T" is obtained by grafting
the subtree rooted in node 4 onto the place of node 2.

3.1 Reduced Error Pruning (REP)

This method is based on the Reduced Error Pruning (REP) proposed by Quinlan for
decision trees [9]. It uses a pruning set to evaluate the goodness of the subtrees of a
model tree T. The pruning set is independent of the set of observations used to build
the tree T, therefore, the training set must be partitioned into a growing set used to
build the tree and a pruning set used to simplify T.

The algorithm analyzes the complete tree T and, for each internal node ¢, it
compares the mean square error (MSE) computed on the pruning set when the subtree
T, is kept, with the MSE computed on the same set when T, is pruned and the best
regression function is associated to the leaf #. The MSE is defined as follows:

1 _
MSED) =¥, [3 0 -507 .
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where N is the number of examples (x, y,) in the pruning set, T is the set of leaves of
the tree T, and y; is the estimate of the response variable computed according to the

multiple linear model associated to a leaf.

If the simplified tree has a better performance than the original one, it is advisable
to prune T,. The pruning is repeated on the simplified tree until further pruning
increases the MSE. The nodes to be pruned are examined according to a bottom-up
traversal strategy. When the node 7 is turned into a leaf the model associated to ¢ is
entirely determined on the basis of the growing set.

The following optimality theorem can be proven [1]:

Theorem. Given a model tree T constructed on a set of observations O and a pruning
set O, the REP version that determines the regression model on O returns the smallest
pruned subtree of T with the lowest error with respect to O’.

The specification “the REP version that determines the regression model on 0”
refers to the fact that once a node ¢ has been pruned, the model associated to ¢ is
determined on the basis of the same growing set O. Alternatively, it could be
determined on the basis of either the pruning set or the whole training set.

Finally, the computational complexity of REP is linear in the number of internal
nodes, since each node is visited only once to evaluate the opportunity of pruning it.



Comparing Simplification Methods for Model Trees 53

3.2 Reduced Error Grafting

The Reduced Error Grafting (REG) is conceptually similar to REP and uses a pruning
set to evaluate the goodness of T, a subtree of T. The algorithm operates recursively.
It analyzes the complete tree T and, for each splitting node ¢, it compares the MSE
made on the pruning set when the subtree T, is kept, with the MSE made on the
pruning set when Tis turned into REG(T, ) or REG(T,, ), where 7, and 7, are children

of ¢. Sometimes, the simplified tree has a better performance than the original one. In
this case, it appears convenient to replace ¢ with its best simplified subtree (left of
right). This grafting operation is repeated on the simplified tree until the MSE
increases. The nodes to be pruned are examined according to a bottom-up traversal
strategy.

This method is theoretically advantaged with respect to REP, since it allows the
replacement of a subtree by one of its branches. Indeed, if ¢ is a node that should be
pruned according to some criterion, while ¢’ is a child of ¢ that should not be pruned
according the same criterion, such simplification strategy either prunes and loses the
accurate branch Ty or does not prune at all and keeps the inaccurate branch T,. On the
contrary, REG acts by grafting Ty» onto the place of ¢, so saving the good sub-branch
and deleting the useless node z.

Similarly to REP, a theorem on the optimality of the pruned tree can be proven [1].
Theorem. Given a model tree T constructed on a set of observations O and a pruning
set O, the REG version that determines the regression model on O returns the smallest
grafted subtree of T with the lowest error with respect to O’.

The complexity of REG is O( | N, | log, | N, |), where N, is the set of nodes in T.

4 Comments on Experimental Results

The experiment aims at investigating the effect of simplification methods on the
predictive accuracy of the model trees. REP and REG were implemented as a module
of KDB2000 (http://www.di.uniba.it/~malerba/software/kdb2000/) and have been
empirically evaluated on ten datasets listed in table 1.

Table 1. Datasets used in the empirical evaluation of SMOTI.

Dataset No. Cases | No. Attributes | Continuous | Discrete
Abalone 4177 10 9 1
Auto-Mpg 392 8 5 3
Auto-Price 159 27 17 10
Bank8FM 4499 9 9 0
Cleveland 297 14 7 7
Housing 506 14 14 0
Machine CPU 209 10 8 2
Pyrimidines 74 28 28 0
Triazines 74 61 61 0
Wisconsin Cancer 186 33 33 0
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Each dataset is analyzed by means of a 10-fold cross-validation. For every trial, the
training set is partitioned into growing (70%) and pruning set (30%). SMOTI is
trained on the growing set, pruned on the pruning set and tested on the hold-out block
(testing set). Comparison is based on the average mean square error (Avg.MSE) made
on the testing sets and on the average number of leaves. The stopping criteria used in
the experimentation are fixed as follows: the significance level o used in the F-test is
set to 0.075, the minimum number of cases falling in each internal node must be
greater than the square root of the number of cases in the entire training set, the error
in each internal node must be greater than the 0.01% of the error in the root node, the
coefficient of determination in each internal node must be below 0.90 for model trees
induced on the entire training set and 0.99 for model trees induced on the growing set
and after simplified by means of REP or REG method.

Experimental results are listed in Table 2, which reports the average MSE of (un-
pruned/pruned) SMOTI trees built on training/growing set. For comparison purposes,
results obtained by M5’ are reported as well. They show that pruning is generally
beneficial since REP and REG decrease the average MSE of SMOTI trees built on the
growing set. The two methods also drastically reduce the size of the induced trees,
often of an order of magnitude, although REG tends to be more conservative than
REP. The pruning method implemented in M5’ outperforms both REP and REG in
most data sets. However, the worst performance of REP and REG can be justified if
we consider that M5’ pruned a model tree which was originally more accurate than
that pruned by REP and REG because of the full use of the cases in the training set.

This result is similar to that reported in [4] for decision trees. Even in that case, it
was observed that methods requiring an independent pruning set are at a
disadvantage. This is due to the fact that the set of pre-classified cases is limited and,
if part of the set is put aside for pruning, it cannot be used to grow a more accurate
tree. A clear example is represented by the Auto-Price dataset, where the average
number of leaves of REG and M5’ is the same (1.6) while the accuracy is different.

Table 2. Experimental results of pruning methods for SMOTI and M5".

SMOTI un-pruned trees SMOTI pruned trees M5’
T ree l?uzlt on | Tree b'uzlt on REP REG T ree l?uzlt on Prming
training sel | growing set training set

Avg | Avg | Avg | Avg | Avg | Avg | Avg | Avg | Avg |AvgNo| Avg | Avg
MSE |Leaves| MSE |Leaves| MSE |Leaves| MSE |Leaves| MSE |Leaves| MSE |Leaves
Abalone |2.5364| 143 | 6.724 | 95.6 | 2.185 | 5.4 |2.179 | 25.4 |2.7724| 281.4 | 2.126 | 11

AutoMpg [3.1493( 13.7 [4.4866( 19.2 |3.5633| 3.1 [3.7436( 8.5 |3.2010| 22.6 | 2.835 | 4.6
Auto Price (2246.0( 4.3 |2481.7| 8 [2746.3| 1.6 (2890.4| 4.1 |2358.8| 12.4 |2390.1| 1.6
Bank8FM |0.0383] 2.2 [0.0427| 68.8 | 0.035| 5.6 | 0.034 | 30.2 [0.0409| 417.7 |0.0319| 27
Cleveland |1.3160] 21.7 [ 1.521 | 17.3 | 0.914 | 2.3 | 0934 | 5.2 [1.2496| 28.1 |0.9028| 1.6
Housing 358 | 88 [ 5717 | 19.6 [ 4080 | 3.1 |3.912| 7.6 |4.2792| 50.7 | 3.815 | 14.5
MachineCPU | 55.314| 4.0 [71.699( 6 |70.953| 2.7 [69.145 2.4 |57.352| 12 (58341 3.8
Pyrimidines |0.1056| 3.8 [0.1872| 6.4 [0.1034| 1.8 |0.1352] 1.8 [0.0927| 3.4 |0.0864| 3
Triazines |0.2017| 16.6 |0.1820( 13.3 | 0.155 | 1.2 | 0.229 | 3.8 |0.1550| 9.1 0.131 | 3.5
Wisconsin |51.413] 18.4 [72.376( 11.5 |33.464| 1.2 [37.455( 1.9 |45.406| 32.1 (34397 2.7
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Table 3. Average percentage of the MSE for pruned trees w.r.t. the MSE of un-pruned trees.
MSE is computed on the testing set. Best values are in bold.

Data Set | REP/unpruned SMOTI|REG/unpruned SMOTI | Pruned M5’ /unpruned M5’
Abalone 32.49% 32.40% 76.68%
AutoMpg 79.42% 83.4% 88.56%
Auto Price 110.66% 116.46% 101.32%
BankSFM 81.96% 79.62% 77.99%
Cleveland 60.09% 61.40% 72.24%
Housing 71.36% 68.42% 89.15%
Machine CPU 98.96% 96.44% 101.72%
Pyrimidines 55.23% 72.23% 93.20%
Triazines 85.71% 125.86% 84.51%
Wisconsin 46.23% 51.75% 75.75%

A different view of results is offered in Table 3, which reports a percentage of the
Avg. MSE made by pruned trees on the testing sets with respect to the average mean
square error made by un-pruned trees on the same testing sets. The table emphasizes
the gain of the use of pruning. In particular, pruning is beneficial when the value is
less than 100%, while it is not when the value is grather than 100%. Results reported
confirm that pruning is beneficial for nine out of ten datasets. Moreover, the absolute
difference of Avg. MSE for REP and REG is below 5% in seven datasets. Finally, it is
worthwhile to notice that the gain of REP and REG is better than the corresponding
gain of M5’ pruning method in six datasets. This induces to hypothesize that the better
absolute performances of M5’ are mainly due to the fact that the tree to be pruned is
more accurate because of the full use of training cases.

5 Conclusions

SMOTI is a TDIMT method which integrates the partitioning phase and the labeling
phase. Similar to many decision tree induction algorithms, SMOTI may generate
model trees that overfit training data. In this paper, the a posteriori simplification (or
pruning) of model trees has been investigated in order to solve this problem. Two
methods, named REP and REG, have been defined. They are both based on the use on
an independent pruning set, but adopt different simplification operators. Some
experimental results have been reported on the pruning methods and show that
pruning is generally beneficial. Moreover, the comparison with another well-known
TDIMT method, namely M5’, which uses the training data both for growing and for
pruning the tree, has shown that putting aside some data for pruning can lead to worse
results. As future work, we plan to extend this comparison to other TDIMT systems
(e.g. HTL and RETIS). Moreover, we intend to implement a new simplification
method based on both pruning and grafting operators and to eventually extend MDL-
based pruning strategies developed for regression [11] trees to the case of SMOTI
trees. This extension should overcome problems we observed for small datasets since
the new pruning algorithm will not require an independent pruning set.
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