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Abstract. In spatial data mining, a common task is the discovery of spatial 
association rules from spatial databases. We propose a distributed system, 
named ARES that takes advantage of the use of a multi-relational approach to 
mine spatial association rules. It supports spatial database coupling and 
discovery of multi-level spatial association rules as a means for spatial data 
exploration. We also present some criteria to bias the search and to filter the 
discovered rules according to user’s expectations. Finally, we show the 
applicability of our proposal to two different real world domains, namely, 
document image processing and geo-referenced analysis of census data. 

1   Introduction 

Spatial data mining investigates the problem of extracting pieces of knowledge from 
data describing spatial objects, which are characterized by a geometrical 
representation (e.g. point, line, and region in a 2D context) and a position with respect 
to some reference system. The relative positioning of spatial objects defines implicitly 
spatial relations of different nature, such as directional and topological. The goal of 
spatial data mining methods is to extract spatial patterns, that is, patterns involving 
spatial relations between mined objects such that they are certain, previously 
unknown, and potentially useful for the specific application [10]. 

In [13] the authors have proposed a spatial data mining method, named SPADA 
(Spatial Pattern Discovery Algorithm), that discovers spatial association rules, that is, 
association rules involving spatial objects and relations. It is based on an Inductive 
Logic Programming (ILP) approach to (multi-) relational data mining [5] and permits 
the extraction of multi-level spatial association rules, that is, association rules 
involving spatial objects at different granularity levels. For each granularity level, 
SPADA operates in three different phases: i) pattern generation; ii) pattern evaluation; 
iii) rule generation and evaluation. 

In this paper, we describe the integration of SPADA in a full-fledged spatial data 
mining system, named ARES (Association Rules Extractor from Spatial data), that 
assists data miners in the complex process of extracting the units of analysis from the 
spatial database, specifying the background knowledge on the application domain and 
defining some form of search bias. The last aspect is particularly relevant, since the 
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number of discovered patterns or association rules is usually high and the interest of 
most of them does not fulfill user expectations. The new spatial data mining tool has 
been applied to two different domains, namely, document image processing and geo-
referenced analysis of census data, thus proving the generality of the proposed solution. 

The paper is organized as follows. The problem of mining spatial association rules 
is reported in Section 2. In Section 3, some related works are presented. Section 4 
describes the ARES distributed architecture that supports the interface of SPADA 
with a spatial database by generating high-level logic descriptions of spatial data.  
Some filtering mechanisms implemented in SPADA are described in Section 5. 
Finally, the application of ARES to two case studies is described in Sections 6. 

2   Mining Spatial Association Rules 

The discovery of spatial association rules is a descriptive mining task aiming to detect 
associations between reference objects (ro) and some task-relevant objects (tro). The 
former are the main subject of the description, while the latter are spatial objects that 
are relevant for the task in hand and are spatially related to the former.  

In general, association rules are a class of regularities that can be expressed by the 
implication: P⇒Q (s, c), where P and Q are a set of literals, called items, such that 
P∩Q = ∅, the support s estimates the probability p(P∪Q), and the confidence c, 
estimates the probability p(Q | P). The conjunction P∧Q is called pattern. A spatial 
pattern expresses a spatial relationship among spatial objects and can be expressed by 
means of predicate calculus. A spatial association rule is an association rule whose 
corresponding pattern is spatial. An example of spatial association rule is: 

is_a(X, large_town), intersects(X,Y), is_a(Y, road) ⇒ 
intersects(X, Z), is_a(Z, road), Z≠ Y (91%, 100%) 

to be read as “If a large town X intersects a road Y then X intersects a road Z distinct 
from Y with 91% support and 100% confidence.” By taking into account some kind 
of taxonomic knowledge on task-relevant objects it is possible to obtain descriptions 
at different granularity levels (multiple-level association rules). For instance, a finer-
grained association rules can be the following: 

is_a(X, large_town), intersects(X, Y), is_a(Y, regional_road) ⇒ 
intersects(X, Z), is_a(Z, main_trunk_road), Z≠ Y (65%,71%) 

The problem of mining association rules solved by SPADA can be formally stated 
as follows: 

Given a spatial database (SDB), a set of reference objects S, some sets Rk, 1≤k≤m, of 
task-relevant objects, a background knowledge BK including some hierarchies Hk 
on objects in Rk , M granularity levels in the descriptions (1 is the highest while 
M is the lowest), a language bias LB that constrains the search space and a couple 
of thresholds minsup[l] and minconf[l] for each granularity level;  

Find strong multi-level spatial association rules. Each Rk is typically a layer of the 
spatial database while hierarchies define is-a (i.e., taxonomical) relations of 
spatial objects in the same layer.  
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To deal with several hierarchies at once in a uniform manner, objects in them are 
mapped to one or more of the M user-defined description granularity levels so that 
frequency of patterns as well as strength of rules depend on the level l of granularity 
with which patterns/rules describe data. To be more precise, a pattern P (s%) at level l 
is frequent if s≥minsup[l] and all ancestors of P with respect to Hk are frequent at their 
corresponding levels. An association rule Q → R (s%, c%) at level l is strong if the 
pattern Q∪R (s%) is frequent and c≥ minconf[l]. 

3   Related Works 

The problem of mining multi-level association rules has its roots in the seminal work 
by Han and Fu [6], where the authors proposed an improved version of the Apriori 
algorithm [1] to handle multiple level association rules by remapping the original 
database and performing the mining by a progressive deepening of the levels. A slight 
variant of this approach has been adopted by Koperski and Han [11] and implemented 
in the system GeoMiner [7] in the context of spatial data mining.  

A different solution is adopted in the work by Morimoto [17], where different 
types of patterns, called “Frequent neighboring class sets” are extracted. In particular, 
first the spatial dataset is partitioned by considering closeness relations and then the 
patterns are discovered on single partitions. 

Another solution is proposed by Ding [4], where rules are extracted from RSI 
(Remote Sensed Imagery) data by means of the Peano Count Tree (P-tree) structure, 
which is a lossless representation of the image data. By using P-trees, association rule 
mining algorithm with fast support calculation and significant pruning techniques is 
possible. Although RSI data can be considered a kind of spatial data, rules discovered 
are not “spatial” in a strict sense.  

All solutions reported above suffer from severe limitations due to the restrictive data 
representation formalism, known as single-table assumption [5]. More specifically, it is 
assumed that data to be mined are represented in a single table (or relation) of a relational 
database, such that each tuple represents an independent unit of the sample population 
and columns correspond to properties of units. In spatial data mining applications this 
assumption turns out to be a great limitation. Indeed, different geographical objects may 
have different properties, which can be properly modeled by as many data tables as the 
number of object types. The ILP system WARMR [3] overcomes this limitation by 
resorting to multi-relational data mining. It supports the discovery of frequent DATALOG 
patterns by adapting Mannila and Toivonen's levelwise method [16] to the case of 
conjunctive formulas which are organized according to θ-subsumption. Although it has 
been presented as a system able to use is-a hierarchies, WARMR is not a system for 
mining multi-level association rules because it lacks of mechanisms for taxonomic 
reasoning [13]. Moreover, the transformation of frequent patterns into association rules 
requires the specification of a list of possible patterns that can occur in the antecedent or 
conseguent of a rule. Therefore, the specification of a bias for the output rules is a must 
and not an additional opportunity given to the user to filter some rules. Finally, WARMR 
is not integrated in a system for spatial data analysis that supports users to extract both 
spatial and apatial properties of either reference objects or task-relevant object.  
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Therefore, to the best of our knowledge, SPADA can be considered the only multi-
relational data mining method especially conceived for spatial data mining tasks and 
implemented in a system, named ARES, that supports the user in all preprocessing 
steps.  

4   The Architecture of ARES  

ARES has a distributed architecture based on a client-server model (see Figure 1). 
SPADA is on the server side, so that several data mining tasks can be run 
concurrently by multiple users. SPADA is implemented in Prolog and allows to 
specify both the background knowledge BK (hierarchies are expressed by a collection 
of ground atoms that define the binary predicate is_a, while domain specific 
knowledge is expressed as sets of definite clauses) and a language bias LB that 
constrains the search for patterns.  

On the client side, the system includes a Graphical User Interface (GUI) 
implemented as Java application, which provides the user with facilities for 
controlling all parameters of the data mining process as well as the module RUDE 
(relative unsupervised discretization algorithm), which discretizes a numerical 
attribute of a relational database in the context defined by other attributes [14].  

The SDB (Oracle Spatial) can run on a third computation unit. Many spatial 
features (relations and attributes) can be extracted from spatial objects stored in the 
SDB. The feature extraction requires complex data transformation processes to make 
spatial relations explicit and representable as ground Prolog atoms. Therefore, a 
middle layer module is required to make possible a loose coupling between SPADA 
and the SDB by generating features of spatial objects. The module, named FEATEX 
(Feature Extractor), is implemented as an Oracle package of procedures and 
functions, each of which computes a different feature [2]. According to their nature, 
features extracted by FEATEX can be distinguished as geometrical, directional and 
topological features. Geometrical features (e.g. area, length) are based on principles of 
Euclidean geometry, directional features (e.g. north, south,) regard relative spatial 
orientation in 2D, while topological features (e.g. crosses, on top) are relations 
preserving themselves under topological transformations such as translation, rotation, 
and scaling. In addition, hybrid features (e.g. roughly parallel), which merge 
properties of two or more feature categories, can be also extracted by FEATEX.  

On the client side, the system WISDOM++ [15] can be used to extract spatial data 
from document image and store them in the SDB. The process performed by 
WISDOM++ consists of the preprocessing of the raster image of a scanned paper 
document, the segmentation of the preprocessed raster image into basic layout 
components, the classification of basic layout components according to the type of 
content (e.g., text, graphics, etc.), the identification of a more abstract representation 
of the document layout (layout analysis), the classification of the document in one of 
predefined categories (e.g. business letter, scientific paper) on the basis of its layout 
and content, and the identification of semantically relevant layout components (e.g. 
title, abstract of a scientific paper) called logical components (document image 
understanding [15]). The final representation includes both layout structure (extracted 
in the layout analysis) and logical structure (semantic information extracted by means 
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of document classification and understanding) computed on the original image. A 
further processing step stores the output structures in the SDB. WISDOM++ makes 
use of an Oracle Database to store intermediate data. 

 
 
 
 
 
 
 
 
 
 

Fig. 1. ARES architecture 

In order to handle spatial data provided by WISDOM++, FEATEX has been 
extended to allow features of layout components to be extracted (see section 5.1). 

5   Filtering Patterns and Association Rules 

The efficiency of the data mining process is very important to tackle real-world 
problems. In order to improve the efficiency of the search process, SPADA 
associates each candidate pattern with backward pointers to parent patterns both at 
the same granularity level (intra-space parenthood) and at higher granularity levels 
(inter-space parenthood). Backward pointers are profitably exploited in the pattern 
generation phase to prevent the generation of some infrequent patterns [12]. In a 
more recent release of SPADA (3.0), backward pointers are also exploited in the 
pattern evaluation phase. Indeed, by associating each pattern with the list of support 
objects, it is possible to perform the evaluation of each pattern solely on the support 
objects of its intra-space parenthood instead of the whole set S of reference objects. 
An additional caching technique compensates the overhead in looking for the 
parenthood of each pattern, since it has a cost, which increases with the number of 
stored patterns.   

The above mentioned efficiency improvements are based on the monotonicity 
property of the generality order that is defined for spatial patterns with respect to the 
support of the patterns themselves. This is a nice example of an “intelligent” 
exploitation of general properties to prune the search space and reduce the number of 
expensive tests. However, this approach does not take into account user preferences 
and expectations. In real-world applications, such as urban site accessibility [2], a 
large number of spatial patterns can be generated even for a few hundred spatial 
objects. Nevertheless, most of discovered patters are useless for the application at 
hand. Therefore, it is important to allow the user to specify his/her bias for interesting 
solutions, and then to exploit this bias to improve both the efficiency of the system 
and the quality of the discovered rules. In SPADA 3.0, the language bias LB is 
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expressed as a set of constraint specifications for either patterns or association rules. 
Users may specify the following pattern constraint: 

pattern_constraint(AtomList, Min_occur, Max_occur) 

where AtomList is a list of atoms (for atomic constraints) or a list of atom lists (for 
conjunctive constraints), while Min_occur (Max_occur) is positive number which 
specifies the minimum (maximum) number of constraints in the AtomList that must be 
satisfied. When Max_occur = ‘_’ no limitation is imposed on the maximum number 
of constraints. For instance, the following: 

pattern_constraint(crossed_by_green_area(_,_ ), crossed_by_urban_area(_,_ )],1,_ ) 

specifies that at least one of the binary spatial predicates crossed_by_green_area and 
crossed_by_urban_area must occur in the patterns filtered by SPADA, while the 
following: 

pattern_constraint([ [crossed_by_green_area(_,_ ), crossed_by_urban_area (_,_)], 
[crossed_only_by_road(_ )] ], 1, _ ). 

specifies that at least one of either the spatial predicates crossed_by_green_area and 
crossed_by_urban_area or the spatial predicate crossed_only_by_road must occur in 
the patterns filtered by SPADA. It is noteworthy that this specification allows users to 
define both conjunctive and disjunctive constraints. 

During the rule generation phase, patterns that do not satisfy a pattern constraint 
are filtered out. This means that they are generated and evaluated anyway. This late 
exploitation of pattern constraints is due to the fact that if a pattern P does not satisfy 
a constraint (e.g. the lack of the predicate crossed_by_green_area), it is still possible 
that P descendants (i.e., more specific patterns) satisfy it. Therefore, pattern 
constraints do not prune the pattern space, but improve the efficiency of the mining 
process, since they prevent the generation of useless rules, and hence their evaluation.  

A further pattern constraint takes into account the typing mechanism of the 
variables to be included in the rules. A variable X is untyped when it does not appear 
as first argument of a binary is-a atom in the rule. In some applications, the 
occurrence of untyped variables in a rule is undesirable. Therefore, users can specify 
the constraint max_rules_untyped_vars(n), where n denotes the maximum number of 
untyped variables in the rules being generated. As in the previous case, the 
specification of this constraint affects the rule generation phase. 

Users may specify constraints either on the antecedent or on the consequent of 
spatial association rules through one of the following facts: 

body_constraint(AtomList, Min_occur, Max_occur). 
head_constraint(AtomList, Min_occur, Max_occur). 

where AtomList, Min_occur and Max_Occur have the same meaning as in the pattern 
constraint described above. For instance, the constraint head_constraint([mortality_ 
rate(_ )], 1, 1) specifies that a single occurrence of the unary predicate high_mortality 
must be in the head of the rules. As for pattern constraints, head and body constraints 
affect the rule generation phase. The main property of all described constraints is that 
they do not prevent the generation of candidate rules but only the evaluation of their 
confidence.  
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In addition to constraints above, SPADA 3.0 users can specify the fact: 
rule_head_length (Min_occur, Max_occur) in order to fix the minimum (Min_occur) 
and the maximum number (Max_occur) of predicates to be included in the head of 
generated rules. For instance, by combining the rule filters head_constraint( 
[mortality_rate(_ ) ], 1, 1)  and rule_head_length(1, 1) the user can ask for the 
generation of rules containing only the predicate mortality_rate in the head. Rules in 
this form may be employed for spatial subgroup mining that is the discovery of 
interesting group of spatial objects with respect to a certain property of interest, as 
well as for classification purposes. 

6   The Application: Two Case Studies 

In this section, we describe the application of SPADA to two distinct real-world 
problems, namely mining document images and mining geo-referenced census data. 
In the former problem, spatial objects are layout components extracted by means of 
WISDOM++. Layout components are in the same page of a document and have a 
common geometrical representation: they are all rectangles with edges parallel to the 
axes associated to the left and top border of a page. As result of the document 
understanding process, layout components may be associated with some components 
of the document logical structure, whose hierarchical organization defines the 
hierarchy of task-relevant objects. Discovered spatial association rules can be used in 
a generative way. For instance, if a part of the document is hidden or missing, strong 
spatial association rules can be used to predict the location of missing layout/logical 
components [9]. This problem is also related to document reformatting [8]. 

In the second problem, the goal is to perform a joint analysis of both socio-
economic factors represented in census data and geographical factors represented in 
topographic maps. The discovery of interesting association rules on geographically 
distributed socio-economic phenomena can be a valuable support to good public 
policy. In this case, spatial objects are territorial units for which census data are 
collected as well as entities of the transport network (roads and rails), while the 
hierarchies are either based on layers of the topographic map or defined on the basis 
of a conceptual categorization or urban areas.  

6.1   Document Image Processing 

In this application SPADA takes as input a collection of ground facts describing both 
the layout and the logical structures of the documents processed by WISDOM++. 
Spatial features (relations and attributes) are used to describe the logical structure of a 
document image. In particular, we use FEATEX to extract locational features such as 
the coordinates of the centroid of a logical component, geometrical features such as 
the dimensions of a logical component, and topological features such as relations 
between two components. We use the aspatial feature type_of  that specifies the 
content type of a logical component (e.g. image, text, horizontal line). In addition 
there are other aspatial features, called logical features which define the label 
associated to the logical components. They are: affiliation, page_number, figure, 
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caption, index_term, running_head, author, title, abstract, formulae, subsection_title, 
section_title, biografy, references, paragraph, table, undefined.  

The specification of the domain specific knowledge allows SPADA to associate 
information on page order to layout components, since the presence of some logical 
components may depend on the order page (e.g. author is in the first page). An 
example related to the first page is  

at_page(X,first) :- part_of(Y,X), page(Y,first). 

The specification of the hierarchy (Figure 2) allows the system to extract spatial 
association rules at different granularity levels.  

In this task, the ro are the logical components associated with logical features 
different from undefined. The tro are all the logical components. This is specified by 
means of the language bias LB. In particular, we ask for rules containing at least one 
binary spatial predicate: 

 

Fig. 2. Hierarchy of logical components 

pattern_constraint([only_middle_coumnl(_,_),only_left_row(_,_), ... , on_top(_,_) ],1). 

Furthermore, we are interested in rules containing the ro in the antecedent. For 
instance, if we use abstract as ro the constraint is:  

body_constraint([abstract(_)], 1). 

We investigate the applicability of the proposed solution on 19 real-world 
documents, which are scientific papers published as either regular or short in the IEEE 
Transactions on Pattern Analysis and Machine Intelligence in the January and February 
1996 issues. Each paper is a multi-page document and has a variable number of pages 
and layout components per page, for a total of 179 document images and 2,998 layout 
components. Eight hundred and eleven layout components with no clear logical 
meaning are labelled as undefined. All logical labels belong to the lowest level of the 
hierarchy reported in the previous section. The number of logical components is 2,177. 
The number of features to describe the documents presented to SPADA is 78,789, about 
440 features for each page document. Average running time per document image is 1.32 
secs (237.52/179), therefore this application of SPADA to document images seems 
scalable to larger collections of documents. The number of mined association rules is 
398 at the first level, 468 at the second level, 638 at the third level and 674 at the 
fourth level. Many spatial patterns involving logical components  (e.g., affiliation, 
title, author, abstract and index term) in the first page of an article are found. SPADA 
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has found several spatial associations involving all logical components, references 
and biography excluded. This can be explained by the observation that the first page 
generally has a more regular layout structure and contains several distinct logical 
components. An example of association rule discovered by SPADA is: 

is_a(author,A) ⇒ on_top(A,B), is_a(B,heading) , height(B,[1..174]) , type_text(A)
        (82.6%, 82.6%) 

This means that 19 logical components which represent the author of some paper 
are textual components on top of a logical component B that is the heading of the 
paper, with height between 1 and 174. At a lower granularity level, a similar rule is 
found where the logical component B is specialized as abstract: 

is_a(author,A) ⇒ on_top(A,B), is_a(B,abstract) , height(B,[1..174]), type_text(A)
        (82.6%, 82.6%) 

The rule has the same confidence and support reported for the rule inferred at the 
first granularity level.  

6.2   Geo-referenced Exploratory Data Analysis 

In this study we describe how it is possible to employ ARES in performing data 
analysis on geo-referenced census data concerning Greater Manchester, one of the five 
counties of North West England, that is divided into censual sections or wards, for a 
total of two hundreds and fourteen wards. For this application, spatial analysis is 
enabled by the availability of vectorized boundary of wards as well as vector 
geographical data about transport network, waters, green and urban areas that allow 
us to investigate the mortality rate (i.e. percentage of deaths with respect to the number 
of inhabitants) from a spatial viewpoint according to deprivation indices. Geographical 
layers are taken from the Meridian product of the Ordnance Survey. In particular, we 
decide to mine spatial association rules relating wards, which play the role of ro, with 
topological related road network (i.e. motorways, primary roads, A- and B- roads), 
rail network, water network (i.e. rivers, canals and waters), green area (i.e. parks and 
woods) and urban area (i.e. small and large areas) as tro. 

Therefore, by using FEATEX we extract facts concerning topological relationships 
between wards and roads, rails, waters, green areas and urban areas reported in the 
spatial database for that area. An example of fact extracted by FEATEX is 
crosses(ward_135, urbareaL_151). The number of facts is 784,107. Despite the 
complexity of the spatial computation performed by FEATEX to extract these facts, 
the results are still not appropriate for the goals of our data analysis tasks. Therefore, a 
domain specific knowledge should be expressed in form of a set of rules. Some of the 
rules used in this data mining task are: 

crossed_by_urbanarea(X,Y) :- crosses(X,Y), is_a(Y,urban_area).  
crossed_by_urbanarea(X,Y) :- inside(X,Y), is_a(Y,urban_area). 
not_crossed_by_urbanarea(X) :- is_a(X,ward), \+ crossed_by_urbanarea(X,_). 

Here the use of the predicate is_a hides the fact that a hierarchy has been defined 
for spatial objects belonging to urban area layer (see Figure 3). Similarly, four 
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different hierarchies have been defined to describe road network, rail network, water 
network and green area. The hierarchies have depth three and are straightforwardly 
mapped into three granularity levels. Hence, these hierarchies are used to complete 
the domain specific knowledge by adding rules describing topological relationships 
and/or not-relationschips between wards and green area, transport and water net. 

Until now, all extracted data and user-defined background knowledge are purely 
spatial. However, we can observe that the mortality rate of an area cannot be defined 
on the basis of the geographical environment alone. We select four deprivation 
indecies, namely Townsend index, Carstairs index, Jarman index and DoE index, we 
discretize them with RUDE and generate the following four binary predicates for 
SPADA: townsend_idx, carstairs_idx, jarman_idx and doe_idx. The first argument of 
the predicate refers to a ward, while the second argument is an interval returned by 
RUDE. The Townsend index is a measure of multiple deprivation that is computed at 
ward level according to the percentage of households that are not owner occupied, 
percentage of households with no car, percentage of households with more than one 
person per room and percentage of persons who are unemployed. Similarly, Carstairs 
index, Jarman index and DoE index are calculated using census data to measure 
socio-economical deprivation of a ward. 

 

Fig. 3. Spatial hierarchies defined for four Greater Manchester layers: road net, rail net, urban 
area and green area 

To complete the problem statement we specify a declarative bias both to constrain 
the search space and to filter out some uninteresting spatial association rules. In 
particular, we rule out all spatial relations directly extracted by means of FEATEX. 
Moreover, by specifying the rule filters head_constraint( [mortality_rate(_ ) ], 1, 1)  
and rule_head_length(1, 1) we ask for rules containing only the predicate 
mortality_rate in the head. After some tuning of the parameters min_sup and 
min_conf for each granularity level, we decide to run the system with the following 
parameter values: min_sup[1]=0.1, min_sup[2]=0.1, min_sup[3]=0.05, 
min_conf[1]=0.3, min_conf [2]=0.2, min_conf [3]=0.1. 

Despite the above constraints, SPADA generates 413 rules from a set of 100791 
candidates. A rule returned by SPADA at the first level is the following: 

is_a(A, ward), crossed_by_urbanarea(A, B), is_a(B, urban_area), 
townsendidx_rate(A, high) ⇒ mortality_rate(A, high)  (40.72%, 72.47%) 

which states that a high mortality rate is observed in a ward A that includes an urban 
area B and has a high value of Townsend index. The support (40.72%) and the high 
confidence (72.47%) confirm a meaningful association between a geographical factor 
such as living in deprived urban areas and a social factor such as the mortality rate. It 
is noteworthy that SPADA generates the following rule: 
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is_a(A,ward), crossed_by_urbanarea(A,B), is_a(B, urban_area) ⇒  
mortality_rate(A, high)     (56.7%, 60.77%) 

which has a greater support and a ower confidence. These two association rules show 
together an unexpected association between Townsend index and urban areas. 
Apparently, this means that this deprivation index is unsuitable for rural areas. 

At a granularity level 2, SPADA specializes the task relevant object B by 
generating the following rule which preserve both support and confidence: 

is_a(A, ward), crossed_by_urbanarea(A, B), is_a(B, urban_areaL), 
townsendidx_rate(A,high) ⇒ mortality_rate(A, high) (40.72%, 72.47%) 

This rule clarifies that the urban area B is large. 
Similarly, SPADA discovers association rules involving low mortality wards: 

is_a(A, ward), crossed_by_urbanarea(A, B), is_a(B, urban_area), 
townsendidx_rate(A, low) ⇒ mortality_rate(A, low) (21.13%, 56. 94%)  

This rule, extracted at the first granularity level, states that a low valued Townsend 
index ward A that (partly) includes an urban area B presents a low mortality rate.  

7   Conclusions 

In this paper the discovery of spatial association rules by means of ARES in two real-
world case studies, namely document image analysis and geo-referenced census data 
analysis, is illustrated. We also present some criteria to reduce the pattern search 
space and to filter extracted rules in order to discover interesting association rules 
according to user preferences. This is achieved by exploiting the high expressive 
power of rule miner SPADA 3.0, integrated in ARES, as well as by endowing 
SPADA 3.0 of a powerful language for bias specification. Results show that ARES 
mines interesting rules at different granularity levels. For future work we plan to 
investigate the improvement of ARES in order to implement a tight-coupling between 
SPADA and the spatial database. 
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