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Abstract. Transduction is an inference mechanism “from particular to
particular”. Its application to classification tasks implies the use of both
labeled (training) data and unlabeled (working) data to build a classifier
whose main goal is that of classifying (only) unlabeled data as accurately
as possible. Unlike the classical inductive setting, no general rule valid for
all possible instances is generated. Transductive learning is most suited
for those applications where the examples for which a prediction is needed
are already known when training the classifier. Several approaches have
been proposed in the literature on building transductive classifiers from
data stored in a single table of a relational database. Nonetheless, no
attention has been paid to the application of the transduction principle
in a (multi-)relational setting, where data are stored in multiple tables of
a relational database. In this paper we propose a new transductive clas-
sifier, named TRANSC, which is based on a probabilistic approach to
making transductive inferences from relational data. This new method
works in a transductive setting and employs a principled probabilistic
classification in multi-relational data mining to face the challenges posed
by some spatial data mining problems. Probabilistic inference allows us
to compute the class probability and return, in addition to result of
transductive classification, the confidence in the classification. The pre-
dictive accuracy of TRANSC has been compared to that of its inductive
counterpart in an empirical study involving both a benchmark relational
dataset and two spatial datasets. The results obtained are generally in
favor of TRANSC, although improvements are small by a narrow margin.

1 Introduction

In the usual inductive classification setting, data is supposed to have been gener-
ated independently and identically distributed (i.i.d.) from an unknown proba-
bility distribution P on some domain X and are labeled according to an unknown
function g. The domain of g is spanned by m independent (predictor) random
variables Xi (either numerical or categorical), that is, X = X1, X2, . . . , Xm. The
range of g is a finite set Y = {C1, C2, . . . , CL}, where each Ci is a distinct class
label. After being inputted a training sample S = {(x, y) ∈ X × Y |y = g(x)},
an inductive learning algorithm returns a function f that is hopefully close to
g on the domain X . However, there are many cases in which the goal is to esti-
mate the value of the unknown function g at a given set of points of a working
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sample W ⊆ X based on the training sample S. The usual way of estimating
these values consists in first finding an approximation g′ to the desired function g
and then using this approximation to get the required estimates. This approach
is not always the best when the cardinality of the training sample S is much
smaller than that of the working sample W , which is often the case in many
real-world situations. It characterizes the traditional inductive learning setting,
which uses only labeled examples to generate a classifier and discards a large
amount of information potentially conveyed by the unlabeled instances to be
classified. Conversely, the idea of transductive inference (or transduction) [20] is
to analyze both the labeled (training) data S and the unlabeled (working) data
W to build a classifier whose main goal is that of classifying (only) the unlabeled
data W as accurately as possible.

Several transductive learning methods have been proposed in the literature
for support vector machines [1] [10] [13] [6], for k-NN classifiers [14] and even
for general classifiers [15]. However, despite the growing interest of the scientific
community for transductive inference, all of those transductive learning algo-
rithms are based on the single-table assumption [22], according to which the
training/test data are represented in a single table (or database relation) whose
rows (or tuples) represent independent units of the sample population, while
columns correspond to properties of these units. This classic tabular representa-
tion of data, also known as propositional or feature-vector representation, turns
out to be too restrictive for some complex applications. For instance, in spatial
data mining, different spatial objects may have distinctive properties, which can
be properly modeled by as many data tables as the number of object types.
Moreover, attributes of the neighbors of spatial objects may affect each other
(spatial autocorrelation), hence the need for representing object interactions by
additional data tables. Although several methods have been proposed to trans-
form a (multi-)relational (or structural) representation of training data into a
single table, this approach (known as propositionalization) is fraught with many
difficulties in practice [7,11].

In this paper, we propose a novel transductive classification algorithm, named
TRANSC (TRANsductive Structural Classifier), that exploits the expressive
power of Multi-Relational Data Mining (MRDM) to deal with relational data in
their original form. This means that knowledge on the relational data model (e.g.,
foreign key constraints) is obtained free of charge from the database schema and
used to guide the search process. The method works in a transductive setting and
employs a probabilistic approach to classification. Information on the potential
uncertainty of classification conveyed by probabilistic inference is useful when
small changes in the attribute values of a test case may result in sudden changes
of the classification. It is also useful when missing (or imprecise) information
may prevent a new object from being classified at all [5].

The rest of the paper is organized as follows. In the next section, the back-
ground of this research and some related works are introduced, while the
(multi-)relational transductive learning problem solved by TRANSC is formally
defined in Section 3. In Section 4 experimental results are reported for both
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a benchmark dataset typically used in MRDM and for two spatial datasets.
Finally, Section 5 concludes and discusses ideas for further work.

2 Background and Related Work

The combination of relational representation with principled probabilistic and
statistical approaches to inference and learning has been deeply investigated. In
particular, relational näıve Bayesian classifiers have been designed to perform
probabilistic classification tasks.

Given a feature-vector representation of a test data x, a classical näıve Bayesian
classifier assigns x to the class Ci that maximizes the posterior probability P (Ci|x).
By applying the Bayes theorem, P (Ci|x) is expressed as follows:

P (Ci|x) =
P (Ci)P (x|Ci)

P (x)
. (1)

Under the conditional independence (or näıve) assumption of object attributes,
the likelihood P (x|Ci) can be factorized as follows:

P (x|Ci) = P (x1, . . . , xm|Ci) = P (xi|Ci) × . . . × P (xm|Ci) (2)

where x1, . . . , xm represent the attribute values different from the class label
used to describe the object x. Surprisingly, näıve Bayesian classifiers have been
proved accurate even when the conditional independence assumption is grossly
violated. This is due to the fact that when the assumption is violated, although
the estimates of posterior probabilities may be poor, the correct class still has
the highest estimate. This leads to correct classifications [8].

The above formalization of a näıve Bayesian classifier is clearly limited to
propositional representations. In the case of relational representations, some ex-
tensions are necessary. The basic idea is that of using a set of relational patterns
to describe an object to be classified, and then to define a suitable decomposi-
tion of the likelihood P (x|Ci) à la näıve Bayes to simplify the resolution of the
probability estimation problem.

An example of relational pattern considered in this work is the following:
molecule Atom(A, B) ∧ molecule T ype(B, [22, 27])

⇒ molecule Attribute(A, active).
This is a relational classification rule generated for the Mutagenesis dataset

considered in Section 4.1. The literal molecule Attribute(A, active) in the con-
sequent of the rule represents the class label (i.e. “active”) associated to the
molecule A. The literal molecule Atom(A, B) in the antecedent of the rule is
a structural characteristic representing the foreign-key constraint between the
tables Molecule and Atom, while the literal molecule T ype(B, [22, 27]) is a prop-
erty stating that the value of the attribute Type of the atom B (composing the
molecule A) is a number in the interval [22,27].

Each P (x|Ci) is computed on the basis of a set � = {Aj ⇒ y(X, Ci)}
of relational classification rules, where Ci ∈ Y , y( , ) is a binary predicate
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representing the class label for an example X and the antecedent Aj is a con-
junction of literals describing both relations and properties of objects. More pre-
cisely, if �(x) ⊆ � is the set of rules whose antecedent covers the reference object
x, then:

P (x|Ci) = P (
∧

Rk∈�(x)

antecendent(Rk)|Ci). (3)

This extension of the näıve Bayesian classifier to the case of multi-relational
data was originally proposed by Pompe and Kononenko [18] and was recently re-
worked by Flach and Lachiche [9]. In both works, the conditional independence
assumption is straightforwardly applied to all literals in

∧
Rk∈�(x)

antecendent(Rk).

However, this may lead to underestimate P (x|Ci) when several similar rules in �
are considered for the class Ci. Therefore, in this study, we employ a less biased
procedure for the computation of the probabilities 3, namely that adopted in the
multi-relational näıve Bayesian classifier Mr-SBC [5].

All above mentioned works on relational näıve Bayesian classifiers ignore un-
labeled data when mining the classifier. In semi-supervised learning approaches,
both labeled and unlabeled data are used for training, but the inferential princi-
ple is still inductive, that is, a general rule hopefully valid for the whole instance
space is generated. An example of semi-supervised learning algorithm has been
proposed by Nigam et al. [16], who combine the the näıve Bayesian classifier
with the Expectation-Maximization (EM) algorithm. The former is trained on
labeled data and provides an initial classification of unlabeled data, while the
latter is used to perform hill-climbing in data likelihood space, finding the clas-
sifier parameters that locally maximize the likelihood of all the data, both the
labeled and the unlabeled.

Vapnik [20] has introduced the transductive Support Vector Machines
(SVMs), which take into account a particular test set and try to minimize the
misclassification rate of just those particular examples. A different approach has
been proposed by Blum and Chawla [2], who uses a similarity measure to con-
struct a graph and then partitions the graph in such a way that it minimizes
(roughly) the number of similar pairs of examples that are given different labels.
An evolution of this work is the transductive version of k-NN, which has been
designed to avoid the myopia of the greedy search strategy adopted in graph par-
titioning by efficiently and globally solving an optimization problem via spectral
methods [14].

Finally, some studies on transductive inference have investigated the opportu-
nity of applying transduction to evaluate the predictive reliability of a real-valued
regression model. The basic idea in [3] is to construct transductive predictors
and to establish a connection between initial and transductive predictions. An
initial predictor is obtained as the model that best fits the training set. It is used
to assign a label to a single unlabeled example to be included in the training set
and the new training set is used to obtain the final transductive predictor in an
iterative process.
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3 Probabilistic Transduction in TRANSC

Let D = {(x, y) ∈ X×Y |y = g(x)} be a dataset labeled according to an unknown
function g whose range is a finite set Y = {C1, C2, . . . , CL}. Our transductive
classification problem is formalized as follows:

Input
• a training set S ⊂ D and
• the projection of the working set W = D − S on X ;
Output : a prediction of the class value (y) of each example in the working set
W which is as accurate as possible.

The learner receives full information (including labels) on the examples in S
and partial information (only that concerning the independent variables Xi) on
the examples in W and is required to predict the class values only of the examples
that W consists of. The original formulation of the problem of function estima-
tion in a transductive (distribution-free) setting requires that S be sampled from
D without replacement. This means that, unlike the standard inductive setting,
the examples in the training (and working) set are supposed to be mutually de-
pendent. Vapnik also introduced a second (distributional) transduction setting
in which the learner receives training and working sets, which are assumed to be
drawn i.i.d. from some unknown distribution. As shown in [20] (Theorem 8.1),
error bounds for learning algorithms in the distribution-free setting also apply
to the more popular distributional transductive setting. Therefore, in this work
we focus our attention to the first setting.

In the case of relational data, the problem of transductive classification we
aim at solving can be formulated as follows:
Given:

– a database schema S which consists of a set of h relational tables {T0, . . . ,
Th−1}, a set PK of primary key constraints on the tables in S, and a set FK
of foreign key constraints on the tables in S

– a target relation T ∈ S
– a target discrete attribute y in T , different from the primary key of T , whose

domain is the finite set {C1, C2, . . . , CL}
– the projection T ′ of T on all attributes of T except y
– a training (working) set that is an instance TS (WS) of the database schema

S with known values for y

Find: the most accurate prediction of the values of y for examples in WS rep-
resented as a tuple of t ∈ WS.T ′ and all tuples related to t in WS according to
FK.

This problem is solved by TRANSC by accessing, as in the propositional case,
both the full representation of instances in the training set (including that of y)
and the partial representation of instances in the working set (represented by T ′

and its joined tables).
In keeping with the main idea adopted in [13], we iteratively refine the clas-

sification by changing the classification of training and working examples in the
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“borderline” of the class that would be more likely subject to errors. In par-
ticular, we propose an algorithm (see Algorithm 1) which starts with a given
classification and, at each iteration, alternates a step during which examples
are reclassified and a step during which the class of “borderline” examples is
changed.

Algorithm 1. Top level transductive algorithm description
1: transductiveClassifier(initialClassification, TS, WS)
2: classification1 ← initialClassification;
3: changedExamples ← φ;
4: i ← 0;
5: repeat
6: prevClassification ← classification1;
7: prevChangedExamples ← changedExamples;
8: classification2 ← reclassifyExamplesKNN(classification1, TS, WS);
9: (classification1, changedExamples) ← changeClassification(classification2);

10: until ( (++i ≥ MAX ITERS) OR
(computeOverlap(prevChangedExamples,changedExamples) ≥ MAXOVERLAP))

11: return prevClassification

The initial classification of an example E ∈ WS ∪ TS is obtained according
to the following classification function:

preclass(E) =
{

class(E) if E ∈ TS
BayesianClassification(E) if E ∈ WS

where BayesianClassification(E) is the classification function corresponding
to the initial inductive classifier built from the training set TS. Such an initial
classifier is obtained by means of an improved version of the relational prob-
abilistic learning algorithm Mr-SBC [5] whose search strategy is enhanced by
considering cyclic paths in the set of foreign keys FK.

The examples are then reclassified by means of a version of the k-NN algorithm
tailored for transductive inference in MRDM. The idea is to classify each example
E ∈ WS ∪ TS on the basis of a k-sized neighborhood Nk(E) = {E1, . . . , Ek}
consisting of the k examples included in WS ∪ TS closest to E with respect
to a dissimilarity measure d. This step aims at identifying the value y′ of the
L-dimensional class probability vector associated to the example E, that is y′ =
(y1(E), . . . , yL(E)), where each yi(E) = P (class(E) = Ci) is estimated based
on Nk(E).

Each probability P (class(E) = Ci) is estimated as follows:

P (class(E) = Ci) =
|{Ej ∈ Nk(E)|CEj = Ci}|

k
(4)
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such that:

– P (class(E) = Ci) ≥ 0 for each i = 1, . . . , L,
–

∑
i=1,...,L P (class(E) = Ci) = 1.

In Equation (4), CEj is the generic class value associated to the example Ej at the
previous step; at the first step, CEj is the class label returned by preclass(Ej). It
should be noted that P (class(E) = Ci) is estimated according to the transduc-
tive inference principle, as both training and working set are taken into account
in the process.

The changeClassification procedure is in charge of changing the classifica-
tion of the examples on the borderline of a class. Unlike what proposed in [13],
where support vectors are used to identify examples on the border, in our case
we consider examples for which the entropy of the decision taken by the classifier
is maximum. The entropy for each example E is computed from the probabilities
associated with each class Ci:

Entropy(E) = −
∑

i=1,...,L

P (class(E) = Ci) × log(P (class(E) = Ci)) (5)

The examples are ordered according to the entropy function and the class
label of at most the first k examples having Entropy(E) > MINENTROPY
is changed. The class to which each selected example E is assigned is the most
likely class Ci for E among those remaining after the the old class of E has been
excluded. The threshold k is necessary in order to avoid changing the class of
several examples that would lead to erroneously change class of entire “clusters”.

In Algorithm 1, two distinct stopping criteria are used. The first criterion
stops the execution of the algorithm when the maximum number of iterations
(MAX ITERS) is reached. This guarantees the termination of the algorithm.
Indeed, our experiments showed that this criterion is rarely attained when the
parameter MAX ITERS is as small as 10.

The second criterion aims at stopping execution when a cycle insists on the
same examples of the previous one. For this purpose, the overlap between two
sets of examples is determined. The computeOverlap function returns the ratio
between the cardinality of the intersection between the sets of examples and the
cardinality of their union.

The classifier returned by Mr-SBC starting from the training set TS is not just
employed to pre-classify the working examples in WS. Indeed, the initial Mr-
SBC classifier includes a set of first-order classification rules used to represent
the examples to be classified. TRANSC reuses such rules to derive a boolean
feature-vector representation of each example in WS on which the similarity
function subsequently determined is based.

More formally, let � = {Aj ⇒ y(X, Ci)} be the set of classification rules
extracted by Mr-SBC, where Ci ∈ Y , y( , ) is a binary predicate representing
the class label for an example X and the antecedent Aj is the conjunction of
at most MAX LEN PATH literals describing both relations and properties of
objects. Then each example E ∈ WS is described by a boolean feature-vector
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VE composed by |�| elements, that is, A1, . . . , A|�|. If the antecedent of a rule
(Aj ⇒ y(X, Ci)) ∈ � covers E, that is, a substitution θ exists such that Ajθ ⊆ E,
then the j-th element of VE is set to true; otherwise, it is set to false.

The similarity between two examples E1 and E2 is determined by matching
the true values of the corresponding vectors VE1 and VE2 . More precisely, by
computing Jaccard’s similarity coefficient, which is defined as follows:

s(E1, E2) =
cardinality(VE1 AND VE2)
cardinality(VE1 OR VE2)

(6)

where cardinality(•) returns the number of true values included in a boolean
vector. Coefficient 6 takes values in the unit interval: s(E1, E2) = 1 if the two
vectors match perfectly, while s(E1, E2) = 0 if the two vectors are orthogo-
nal or in the degenerate case of no true value occurring in both vectors. The
dissimilarity between two examples is then defined as follows:

d(E1, E2) = 1 − s(E1, E2) (7)

4 Experiments

An empirical evaluation of our algorithm was carried out on both the Mutage-
nesis dataset, which have been used extensively in testing MRDM algorithms,
and on two real-world spatial data collections concerning North West England
Census data and Munich Census data, respectively.

We compared the performance of TRANSC to that of Mr-SBC in order to
identify the advantages of employing a transductive reformulation of the prob-
lem of relational probabilistic classification in real-world applications where few
labeled examples are available and manual annotation is fairly expensive.

The two algorithms are compared on the basis of the average misclassification
error on the same K-fold cross validation of each dataset. For each dataset, the
target table is first divided into K blocks of nearly-equal size and then a subset
of tuples related to the tuples of the target table block by means of foreign key
constraints are extracted. This way, K database instances are created. For each
trial, both TRANSC and Mr-SBC are trained on a single database and tested
on the hold-out K − 1 database instances forming the working set. It should
be noted that the error rates reported in this work are significantly higher than
those reported in other literature [5] [4] because of this peculiar experimental
design. Indeed, unlike the standard cross-validation approach, here one fold at
a time is set aside to be used as the training set (and not as the test set). Small
training set sizes allows us to validate the transductive approach but result in
high error rates as well.

A non-parametric Wilcoxon two-sample paired signed rank test [17] is em-
ployed to perform a pairwise comparison of the two algorithms. In this test,
the summations on both positive (W+) and negative (W-) ranks determine the
winner.

It should be noted that in our experiments the size of the working set is one
order of magnitude greater than the size of the training set; this is something
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rather different from what usually happens when testing algorithms developed
according to the inductive paradigm. Since the performance of the transductive
classifier TRANSC may vary significantly depending on the size (k) of the neigh-
borhood used to predict the class value of each working example, experiments for
different k are performed in order to set the optimal value. In theory, we should
experiment with each value of k ranging in the interval [1, |D|] where D is the
labeled data set. However, as observed in [21] it is not necessary to consider all
possible values of k during cross-validation to obtain the best performance. The
best performances are obtained by means of cross-validation on no more than
approximately ten values of k. A similar consideration has also been reported
in [12], where it is shown that the search for the optimal k can be substantially
reduced from [1, |D|] to [1,

√
|D|], without loosing too much accuracy of the ap-

proximation. Hence, we have decided to consider in our experiments only k = ηi
such that i value ranges on the sample [1,

√
|D|/h] and η is the step value.

Classifiers mined in all experiments in this study are obtained by setting
MAX LENGTH PATH = 3, MAX ITERS = 10, MINENTROPY = 0.65
and MAXOV ERLAP = 0.5. The step η is different for each dataset.

4.1 Benchmark Relational Data Application

The Mutagenesis dataset concerns the problem of identifying some mutagenic
compounds. We have considered, similarly to most experiments on data mining
algorithms reported in literature, the “regression friendly” dataset consisting of
188 molecules. A study on this dataset [19] has identified five levels of background
knowledge. Each subset is constructed by augmenting a previous subset and pro-
vides richer descriptions of the examples. Table 1 shows the first three sets of
background knowledge, the ones we have used in our experiments, where BKi ⊂
BKi+1 for i = 0, 1. The larger the background knowledge set, the more com-
plex the learning problem. All experiments consist in a 10-fold cross validation
(K = 10).

Table 1. Background knowledge for Mutagenesis data

Background Description
BK0 Data obtained with the molecular modeling package QUANTA. For each

compound it obtains the atoms, bonds, bond types, atom types, and
partial charges on atoms.

BK1 Definitions in BK0 plus indicators ind1 and inda in molecule table.
BK2 Variables (attributes) logp and lumo are added to definitions in BK1.

The predictive accuracy of TRANSC was measured by considering the values
k ∈ {2, 4, 6, 8, 10, 12}. For each setting BKi (i = 0, 1, 2), the average misclassifi-
cation error of both TRANSC and Mr-SBC is reported in Figure 1. Results show
that with BK0, TRANSC performs better than Mr-SBC, although the improve-
ment is not statistically significant (see Table 2). The results in the BK1 and
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Fig. 1. TRANSC vs. Mr-SBC: average misclassification error on the working sets of
Mutagenesis 10-CV data

BK2 settings suggest different conclusions. As also shown in [5], the predictive
accuracy of Mr-SBC increases so significantly when background knowledge is
increased (BK1 and BK2 setting), that the consideration of unlabeled examples
in a neighborhood can even lead to a deterioration in predictive accuracy. In this
case, we obtain the best results when k is the lowest.

Table 2. Mutagenesis dataset: results of the Wilcoxon test (p-value) on average ac-
curacy of TRANSC vs. Mr-SBC. The statistically significant p-values (< 0.05) are in
italics. The sign + (-) indicates that TRANSC outperforms Mr-SBC (or vice-versa).

BK/k 2 4 6 8 10 12
BK0 0.23 (+) 0.65 (+) 0.73 (+) 0.19 (+) 0.84 (+) 0.25 (-)
BK1 0.42 (+) 0.65 (-) 0.76 (-) 0.55 (-) 0.35 (-) 0.2 (-)
BK2 1.0 (+) 0.13 (-) 0.38 (-) 0.64 (-) 0.02 (-) 0.001 (-)

4.2 Spatial Data Application

We have also tested our transductive algorithm on two different spatial data
collections, that is, the North-West England Census Data and the Munich Census
Data.

The North-West England Census data are obtained from both census and
digital maps data provided by the European project SPIN! (http://www.ais.
fraunhofer.de/KD/SPIN/project.html). These data concern Greater Manchester,
one of the five counties of North West England (NWE). Greater Manchester is
divided into ten metropolitan districts, each of which is in turn decomposed
into censual sections (wards), for a total of two hundreds and fourteen wards.
Census data are available at ward level and provide socio-economic statistics



334 M. Ceci et al.

NWE (10-fold CV)

40,00%

41,00%

42,00%

43,00%

44,00%

45,00%

46,00%

2 4 7 9 11 14

k

A
v
g
. 

M
is

c
la

s
s
if

ic
a
ti

o
n
 E

r
r
o
r

Mr-SBC

TRANSC

NWE (20-fold CV)

40,00%

41,00%

42,00%

43,00%

44,00%

45,00%

46,00%

2 4 7 9 11 14

k

A
v
g
. 

M
is

c
la

s
s
if

ic
a
ti

o
n
 E

r
r
o
r

Mr-SBC

TRANSC

Fig. 2. TRANSC vs. Mr-SBC on NWE census data: average misclassification error on
the working sets for 10-fold and 20-fold cross-validation

(e.g. mortality rate – the percentage rate of deaths with respect to the number of
inhabitants) as well as some measures of the deprivation of each ward according
to information provided by Census combined into single index scores. We have
employed Jarman Underprivileged Area Score (which is designed to estimate the
need for primary care), the indices developed by Townsend and Carstairs (used
to perform health-related analyses), and the Department of the Environment’s
(DoE) index (which is used in targeting urban regeneration funds). The higher
the index value the more deprived the ward. The mortality percentage rate takes
values in the finite set {low = [0.001, 0.01], high =]0.01, 0, 18]}.

The goal of the classification task is to predict the value of the mortality
rate by exploiting both deprivation factors and geographical factors represented
in some linked topographic maps. Spatial analysis is possible thanks to the
availability of vectorized boundaries of the 1998 census wards as well as of
other Ordnance Survey digital maps of NWE, where several interesting lay-
ers such as urban area (115 lines), green area (9 lines), road net (1687 lines),
rail net (805 lines) and water net (716 lines) can be found. The objects on
each layer have been stored as tuples of relational tables including also infor-
mation on the object type (TYPE). For instance, an urban area may be ei-
ther a “large urban area” or a “small urban area”. Topological relationships
between wards and objects in all these layers are materialized as relational ta-
bles (WARDS URBAN AREAS, WARDS GREEN AREAS, WARDS ROADS,
WARDS RAILS and WARDS WATERS) expressing non-disjointing relations.
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Fig. 3. TRANSC vs. Mr-SBC on Munich census data: average misclassification error
on the working sets for 10-fold and 20-fold cross-validation

The number of materialized “non disjoint” relationships is 5313 (381 wards-
urban areas, 13 wards-green areas, 2798 wards-roads, 1054 wards-rails and 1067
wards-waters).

The Munich Census Data concern the level of monthly rent per square meter
for flats in Munich expressed in German Marks (http://www.di.uniba.it/∼ceci/
mic Files/munich db.tar.gz). The data have been collected in 1998 by Infratest
Sozialforschung to develop the 1999 Munich rental guide. This dataset contains
2180 geo-referenced flats situated in the 446 subquarters of Munich obtained by
first dividing the Munich metropolitan area up into three areal zones and then
by decomposing each of these zones into 64 districts. The vectorized boundaries
of subquarters, districts and zones as well as the map of public transport stops
consisting of public train stops (56 subway (U-Bahn) stops, 15 rapid train (S-
Bahn) stops and 1 railway station) within Munich are available for this study.
The objects included in these layers are stored in different relational tables (SUB-
QUARTERS, TRANSPORT STOPS and FLATS). Information on the “area” of
subquarters is stored in the corresponding table. Transport stops are described
by means of their type (U-Bahn, S-Bahn or Railway station), while flats are
described by means of their “monthly rent per square meter”, “floor space in
square meters” and “year of construction”.

The target attribute was represented by the “monthly rent per square me-
ter”, whose values have been discretized into the two values low = [2.0, 14.0]
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or high =]14.0, 35.0]. The spatial arrangement of data is defined by both the
“close to” relation between Munich metropolitan subquarters areas and the
“inside” relation between public train stops and metropolitan subquarters. Both
of these topological relations are materialized as relational tables (CLOSE TO
and INSIDE).

The average misclassification error of TRANSC and Mr-SBC on both NWE
Census Data and Munich Census Data is reported in Figure 2 and Figure 3,
respectively. The reported results refer to both a 10-fold cross validation (CV)
of the data and 20-fold cross validation of the same data. When experimenting
on the NWE Census Data, we set k ∈ {2, 4, 7, 9, 1, 14}, while when experimenting
on the Munich Census Data we set k ∈ {9, 18, 27, 36, 45}.

The results of Wilcoxon test are reported in Table 3 for the NWE Census
Data and in Table 4 for the Munich Census Data. The results showed a slight
improvement in the predictive accuracy of the transductive classifier over its
inductive counterpart. Considering that both datasets are characterized by a
strongly relevant structural component, these results confirm what observed with
the Mutagenesis dataset, that is, the transductive approach we are proposing is
beneficial when structural information is strongly relevant for the task at hand.

Table 3. TRANSC vs. Mr-SBC on NWE census data: results of the Wilcoxon test.
Statistically significant p-values (< 0.05) are in italics. The sign + (-) indicates that
TRANSC outperforms Mr-SBC (or vice-versa).

Experiment/k 2 4 6 8 10 12
10-fold CV 0.43 (+) 0.84 (+) 0.31 (+) 0.29 (+) 0.21 (+) 0.37 (+)
20-fold CV 0.12 (+) 0.17 (+) 0.36 (+) 0.12 (+) 0.09 (+) 0.16 (+)

Table 4. TRANSC vs. Mr-SBC on Munich census data: results of the Wilcoxon test.
Statistically significant p-values (< 0.05) are in italics. The sign + (-) indicates that
TRANSC outperforms Mr-SBC (or vice-versa).

Experiment/k 9 18 27 36 45
10-fold CV 0.42 (-) 0.74 (-) 0.04 (+) 0.25 (+) 0.20 (+)
20-fold CV 0.0019 (+) 0.03 (+) 0.1 (+) 0.00012 (+) 0.00006 (+)

5 Conclusions

In this work we have investigated the combination of transductive inference
with principled probabilistic MRDM classification in order to face the chal-
lenges posed by real-world applications characterized by both complex and het-
erogeneous data, which are naturally modeled as several tables of a relational
database, and the availability of a small (large) set of labeled (unlabeled) data.
Our proposed algorithm builds on an initial inductive classifier, namely a multi-
relational näıve Bayesian classifier (Mr-SBC), learned from the training
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(i.e., labeled) examples and used to perform a preliminary labeling of the work-
ing (i.e., unlabeled) data. The initial classification of the examples comprising
the working set is then refined iteratively over a finite number of steps, each of
which consists in a k-NN classification of all unlabeled examples and a subsequent
reclassification of some “borderline” unlabeled examples. Neighbors are deter-
mined by computing a distance measure on a propositionalized representation
of working examples. Propositionalization is based on the set of multi-relational
rules mined by Mr-SBC.

The proposed transductive multi-relational classifier (TRANSC) has been
compared to its inductive counterpart (Mr-SBC) in an empirical study involving
both a benchmark relational dataset and two spatial datasets. The results of
the experiments conducted on the benchmark dataset are in favor of TRANSC
only when no background knowledge is considered (setting BK0). Experimental
results on spatial data are generally in favor of TRANSC and statistically signif-
icant in the case of the largest disproportion between training and working set
(Munich census data with 20-fold cross validation). However, the improvements
over the inductive counterpart are small. This findings confirm for the relational
framework what already established for the propositional case [14], where similar
small improvements have been observed when comparing SVMs in the inductive
and transductive setting (SVMs vs TSVMs). Nonetheless, we intend to perfect
our work in order to corroborate our intuition that transductive inference has
benefits over inductive inference when applied to situations, like text mining,
where the unlabeled examples heavily outnumber the labeled ones.
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