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Abstract. Information given in topographic map legends or in GIS models is
often insufficient to recognize interesting geographical patterns. Some
prototypes of GIS have already been extended with a knowledge-base and some
reasoning capabilities to support sophisticated map interpretation processes.
Nevertheless, the acquisition of the necessary knowledge is still an open
problem to which machine learning techniques can provide a solution. This
paper presents an application of first-order rule induction to pattern recognition
in topographic maps. Research issues related to the extraction of first-order
logic descriptions from vectorized topographic maps are introduced. The
recognition of morphological patterns in topographic maps of the Apulia region
is presented as a case study.

1 Introduction

Handling digitized maps raises several research issues for the field of pattern
recognition. For instance, raster-to-vector conversion of maps has received increasing
attention in the community of graphics recognition [6]. In  fact, obtaining vector data
from a paper map is a very expensive and slow process, which often requires manual
intervention. While supporting the map acquisition process is important, it is equally
useful and even more challenging to automate the interpretation of a map in order to
locate some geographic objects and their relations [12]. Indeed information given by
map legends or given as basis of data models in Geographical Information Systems
(GIS) is often insufficient to recognize not only geographical objects relevant for a
certain application, but also patterns of geographical objects which geographers,
geologists and town planners are interested in. Map interpretation tasks such as the
detection of morphologies characterizing the landscape, the selection of important
environmental elements, both natural and artificial, and the recognition of forms of
the territorial organization require abstraction processes and deep domain knowledge
that only human experts have.

Several studies show the difficulty of map interpretation tasks. For instance, a
study on the drawing instructions of Bavarian cadastral maps (scale 1:5000) pointed
out that symbols for road, pavement, roadside, garden and so on were defined neither
in the legend nor in the GIS-model of the map [16]. In a previous work in cooperation
with researchers from the Town Planning Department of the Polytechnic of Bari, an
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environmental planning expert system was developed for administrators responsible
for urban planning [2], [1]. The system was able to provide them with appropriate
suggestions but presumed that they had good skills in reading topographic maps to
detect some important ground morphology elements, such as system of cliffs, ravines,
and so on. These are some examples of morphological patterns that are very important
in many civil and military applications but never explicitly represented in topographic
maps or in a GIS-model.

Empowering GIS with advanced pattern recognition capabilities would support
effectively map readers in map interpretation tasks. Some prototypes of GIS have
already been extended with a knowledge-base and some reasoning capabilities in
order to support sophisticated map interpretation processes [20]. Nevertheless, these
systems have a limited range of applicability for a variety of reasons mainly related to
the knowledge acquisition bottleneck.

A solution to these difficulties can come from machine learning. In this paper we
present an application of first-order rule induction to pattern recognition in
topographic maps. Reseach issues related to the extraction of first-order logic
descriptions from vectorized topographic maps are introduced. The task of
topographic map interpretation as a whole is supported by INGENS (Inductive
Geographic Information System), a prototypical GIS extended with a training facility
and an inductive learning capability [16]. In INGENS, each time a user wants to
retrieve geographic complex objects or patterns not explicitly modeled in the Map
Repository, he/she can prospectively train the system to the recognition task within a
special user view. Training is based on a set of examples and counterexamples of
geographic concepts of interest to the user (e.g., ravine or steep slopes). Such
(counter-) examples are provided by the user who detects them on stored maps by
applying browsing, querying and displaying functions of the GIS interface. The
symbolic representation of the training examples is automatically extracted from
maps by the module Map Descriptor. The module Learning Server implements one or
more inductive learning algorithms that can generate models of geographic objects
from the chosen representations of training examples. In this paper, we will focus our
presentation on the first-order rule induction algorithm ATRE [15].

The data model for the Map Repository of INGENS is described in the next
section. In Section 3, the feature extraction algorithms implemented in the Map
Descriptor are sketched. Section 4 is devoted to the first-order rule induction
algorithm ATRE made available in the Learning Server. A case study, namely the
recognition of relevant morphological patterns on topographic maps of the Apulia
region, is presented and discussed in Section 5. Conclusions and future work are
reported in Section 6.

2 A Data Model for Topographic Maps

Many GIS store topographic maps. In the Map Repository of INGENS each map is
stored according to a hybrid tessellation � topological model. The tessellation model
follows the usual topographic practice of superimposing a regular grid on a map in
order to simplify the localization process. Indeed each map in the repository is
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divided into square cells of the same size. For each cell the raster image in GIF format
is stored together with its coordinates and component objects. In the topological
model of each cell it is possible to distinguish two different structural hierarchies:
physical and logical.

The physical hierarchy describes the geographical objects by means of the most
appropriate physical entity, that is: point, line or region. In different maps of the same
geographical area, the same object may have different physical representations. For
instance, a road can be represented as a line on a small-scale map, or as a region on a
large-scale map. Points are described by their spatial coordinates, while (broken) lines
are characterized by the list of line vertices, and regions are represented by their
boundary line. Some topological relationships between points, lines and regions are
modeled in the conceptual design, namely points inside a region or on its border, and
regions disjoining/meeting/overlapping/containing/equaling/covering other regions.
The meaning of the topological relationships between regions is a variant of that
reported in the 9-intersection model by Egenhofer and Herring [7], in order to take
into account problems due to approximation errors.

The logical hierarchy expresses the semantics of geographical objects, independent
of their physical representation. Since the conceptual data model has been designed to
store topographic maps, the logical entities concern geographic layers such as
hydrography, orography, land administration, vegetation, administrative (or political)
boundary, ground transportation network, construction and built-up area. Each of
them is, in turn, a generalization meaning that, for instance, an administrative
boundary must be classified in one of the following classes: city, province, county or
state.

3 Feature Extraction from Vectorized Topographic Maps

In INGENS the content of a map cell is described by means of a set of features. Here
the term feature is intended as a characteristic (property or relationship) of a
geographical entity. This meaning is similar to that commonly used in Pattern
Recognition (PR) and differs from that attributed by people working in the field of
GIS, where the term feature denotes the unit of data by which a geographical entity is
represented in computer systems and, according to the OGC terminology, is modelled
through a series of properties [17], [21].

In PR, feature is a synonym for discriminatory property of objects which have to
be recognised and classified. Obviously, the number of features needed to
successfully perform a given recognition task depends on the discriminatory qualities
of the chosen features. However, the problem of feature selection (i.e. what
discriminatory features to select), is usually complicated by the fact that the most
important features are not necessarily easily measurable. Feature extraction is an
essential phase which follows the segmentation in the classical recognition
methodology [11]. In PR, features are classified into three categories according to
their nature: physical, structural, and mathematical [22]. The first two categories are
used primarily in the area of image processing, while the third one includes statistical
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means, correlation coefficients and so on. In map interpretation tasks a different
category of features is required, namely spatial features.

Tables 1 and 2 show a taxonomy of spatial features that can be to be extracted from
vectorized maps. The first distinction to be made concerns the type of feature: it can
be an attribute, that is a property possessed by the spatial object, or a relation that
holds among the object itself and other objects. Spatial relationships among
geographic objects are actually conditions on object positions.
According to the nature of the feature, it is possible to distinguish among:
•  Locational features, when they concern the position of the objects. The position of

a geographic object will be represented by numeric values expressing coordinates
for example in latitude/longitude or in polar coordinates or others.

•  Geometric features, when they depend on some computation of metric/distance.
Area, perimeter, length are some examples. Their domain is typically numeric.

•  Topological features (actually only a relation can be topological), when they are
preserved under topological transformations, such as translation, rotation, and
scaling. Topological features are generally represented by nominal values.

•  Directional features, when they concern orientation (e.g., north, north-east, and so
on). Generally, a directional feature is represented by means of nominal values.

Clearly, a geo-referenced object also has aspatial features, such as the name, the
layer label, and the temperature. Many other features can be extracted from maps,
some of which are hybrid in the sense that merge properties of two or more
categories. For instance, the features that express the conditions of parallelism and
perpendicularity of two lines are both topological and geometrical. They are
topological since they are invariant with respect to translation, rotation and stretching,
while they are geometrical since their semantics is based on the size of their angle of
incidence. Another example of hybrid spatial feature is represented by the relation of
�faraway-west�, whose semantics mixes both directional and geometric concepts.
Finally, some features might mix spatial relations with aspatial properties, such as the
feature that describes coplanar roads by combining the condition of parallelism with
information on the type of spatial objects.

The problem of extracting features from maps has been mainly investigated in the
fields of document processing and graphics recognition, nevertheless most of the

Table 1. A classification of attributive features.

ATTRIBUTES

SPATIAL ASPATIAL

LOCATIONAL GEOMETRIC DIRECTIONAL

Co-ordinate (x,y) of a point
(centroid, extremal points,
bounding rectangles, �)

� Area
� Perimeter
� Length of axes

 Other shape
properties

Orientation of
major axis

Name
Layer
Type
Others
(temperature, no.
inhabitants, �)



92      D. Malerba et al.

work reported in the literature concerns raster maps, where the issues are how to
isolate text from graphics as in the work by Pierrot et al. [18], or how to extract
particular geographical objects, such as contour lines as in [6], or points and lines as
in the work by Yamada et al. [23] or land-use classes using thematic maps as in [3].

The lack of works on vectorized representations can be attributed to the main usage of
topographic maps made in the field of GIS: only for rendering purposes. The rare
applications to vectorized maps reported in the literature refer to cadastral maps, as in
[5].

A first application of feature extraction algorithms to vectorized topographic maps
can be found in the work by Esposito et al. [8]. This work is a natural evolution of the
collaboration already established between a research group on Machine Learning of
the University of Bari with the Town Planning Department of the Polytechnic of Bari
in order to develop an expert system for environmental planning [2], [1]. For
environmental planning tasks, fifteen features were specified with the help of domain
experts (see Table 3). Being quite general, they can also be used to describe maps on
different scales. In INGENS they are extracted by the module Map Descriptor, which
generates first-order logic descriptions of the maps stored in the Map Repository.

Actually, feature extraction procedures working on vectorized maps are far from
being a simple �adaptation� of existing graphics recognition algorithms. In fact, the
different data representation (raster vs. vector) makes the available algorithms totally
unsuitable to vectorized maps, as it is the case of all filters based on the mathematical
morphology [23]. Each feature to be extracted needs a specific procedure to be
developed basing upon the geometrical, topological and topographical principles,
which are involved in the semantics of that feature.

For instance, the relation distance between two �parallel� lines is computed by
means of the following algorithm. Let O1 and O2 be two geographical linear objects
represented by n and m coordinate pairs, respectively. Without loss of generality, let
us assume that  n ? m. The algorithm first computes dminh as the minimum distance

Table 2. A classification of relational features.

RELATIONS

SPATIAL ASPATIAL

GEOMETRIC TOPOLOGICAL DIRECTIONAL

� Distance
� Angle of

incidence

� Region-to-Region
� Region-to-Line
� Region-to-Point
� Line-to-Line
� Line-to-Point
� Point-to-Point

� Neighbouring
relations

� Instance-of

� Hierarchical
relation (sub-type,
super-type)

� Aggregation/
Composition
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between the h-th point of O1 and any point of O2 (see Figure 1). Then, the distance
between O1 and O2 is computed as follows:

n

 d
distance

n

h
h�

== 1
min

 (1)

The complexity of this simple feature extraction algorithm is O(mn) though less
computationally expensive solutions can be found by applying multidimensional
access methods [10].

The descriptions obtained for each cell are quite complex, since some cells contain
dozens of geographic objects of various types. For instance, the cell shown in Figure
2 contains one hundred and eighteen distinct objects, and its complete description is a
clause with more than one thousand literals in the body.

4 The Induction of First-Order Rules with ATRE

Sophisticated end users may train INGENS to recognize geographical patterns that are
not explicitly modeled in the Map Repository. To support this category of users, the
module Learning Server places some inductive learning systems at their disposal. We
will focus our attention on the first-order rule induction algorithm ATRE [14].

The distinguishing feature of ATRE is that it can induce recursive logical theories
from a set of training examples. Here the term logical theory (or simply theory)
denotes a set of first-order definite clauses. An example of logical theory is the
following:

downtown(X) ? high_business_activity(X), onthesea(X).
residential(X) ? close_to(X,Y), downtown(Y), low_business_activity(X).
residential(X) ? close_to(X,Y), residential(Y), low_business_activity(X).

(x1,y1)

(x2,y2) (x3,y3)
(x4,y4)

(x´1,y´1)

(x´2,y´2) (x´3,y´3)

(x´4,y´4)

(x´5,y´5)

n = 4

m = 5

Fig. 1. Computation of the distance between two �parallel� lines.
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Table 3. Features extracted for the generation of map descriptions.
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It expresses sufficient conditions for the two concepts of �main business center of a
city� and �residential zone,� which are represented by the unary predicates downtown
and residential, respectively.

The learning problem solved by ATRE can be formulated as follows:
Given
•  a set of concepts C1, C2, ?, Cr to be learned,
•  a set of observations O described in a language LO,
•  a background knowledge BK described in a language LBK,
•  a language of hypotheses LH,
•  a generalization model Γ over the space of hypotheses,
•  a user�s preference criterion PC,
Find
a (possibly recursive) logical theory T for the concepts C1, C2, ?, Cr, such that T is
complete and consistent with respect to O and satisfies the preference criterion PC.

The completeness property holds when the theory T explains all observations in O
of the r concepts Ci, while the consistency property holds when the theory T explains
no counter-example in O of any concept Ci. The satisfaction of these properties
guarantees the correctness of the induced theory with respect to O.

As regards the representation languages LO, LBK, LH, the basic component is the
literal, which takes two distinct forms:
f(t1, ?, tn) = Value   (simple literal) f(t1, ?, tn) ? [a..b] (set literal),
where f and g are function symbols called descriptors, ti's and si's are terms, and [a..b]
is a closed interval. Descriptors can be either nominal or linear, according to the
ordering relation defined on its domain values. Some examples of literals are:

Fig. 2. A partial logical description of a cell. The constant x1 represents the whole cell, while
all other constants denote the one hundred and eighteen enclosed objects. Distances and
extensions are expressed in meters.

class(x1)=fluvial_landscape ?
contain(x1,x2)=true, contain(x1,x3)=true, �,
contain(x1,x119)=true, type_of(x2)=main_road,
type_of(x3)=slope, �, type_of(x119)=vegetation,
color(x2)=black, color(x3)=brown,�,
color(x119)=black, trend(x2)=straight,
trend(x3)=straight, �, trend(x118)=curvilinear,
extension(x2)=340.352, extension(x8)=134.959, �,
extension(x119)=94.162,
geographic_direction(x2)=north_west,
geographic_direction(x8)=north_east, �,
geographic_direction(x114)=north_east,
shape(x28)=non_cuspidal, shape(x44)=non_cuspidal,
�, shape(x92)=non_cuspidal, density(x4)=low,
density(x17)=low, �, density(x115)=low,
line_to_line(x2,x6)=almost_perpendicular,
line_to_line(x8,x6)=almost_perpendicular, �,
line_to_line(x5,x114)=almost_parallel,
distance(x6,x10)=311.065, distance(x6,x11)=466.723,
�, distance(x105,x114)=536.802

x4 x2 x3
x6 x119

x115x105 x118

x44
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color(X)=blue, distance(X,Y)=63.9, width(X)?[82.2 .. 83.1], and close_to(X,Y)=true.
The last example points out the lack of predicate symbols in the representation
languages adopted by ATRE. Thus, the first-order literals p(X,Y) and ?p(X,Y) will be
represented as fp(X,Y)=true and fp(X,Y)=false, respectively, where fp is the function
symbol associated to the predicate p. Henceforth, for the sake of simplicity, we will
adopt the usual notation p(X,Y) and ?p(X,Y). Furthermore, the interval [a..b] in a set
literal f(X1, ..., Xn)? [a..b] is computed according to the same information theoretic
criterion used in INDUBI/CSL [13].

Observations in ATRE are represented as ground multiple-head clauses, called
objects, which have a conjunction of simple literals in the head. Multiple-head clauses
present two main advantages with respect to definite clauses: higher
comprehensibility and efficiency. The former is basically due to the fact that multiple-
head clauses provide us with a compact description of multiple properties to be
predicted in a complex object such as those we may have in map interpretation. The
second advantage derives from the possibility of having a unique representation of
known properties shared by a subset of observations.

The background knowledge defines any relevant problem domain knowledge. It is
expressed by means of linked, range-restricted definite clauses [4] with simple and
set literals in the body and one simple literal in the head. The same constraints are
applied to the language of hypotheses.

ATRE implements a novel approach to the induction of recursive theories [9]. To
illustrate how the main procedure works, let us consider the following instance of the
learning problem:

Observations O
1

downtown(zone1)? ?residential(zone1)? residential(zone2) ?
?downtown(zone2) ? ?downtown(zone3) ? residential(zone4) ?
?downtown(zone4) ? ?downtown(zone5) ? ?residential(zone5) ?
 ?residential(zone6) ? downtown(zone7) ? ?residential(zone7) ←
onthesea(zone1),high_business_activity(zone1),
close_to(zone1,zone2),
low_business_activity(zone2),close_to(zone2,zone4),
 adjacent(zone1,zone3), onthesea(zone3),
low_business_activity(zone3), low_business_activity(zone4),
close_to(zone4,zone5), high_business_activity(zone5),
adjacent(zone5,zone6), low_business_activity(zone6),
close_to(zone6,zone8), low_business_activity(zone8),
close_to(zone1,zone7), onthesea(zone7),

BK close_to(X,Y) ← adjacent(X,Y)
close_to(X,Y) ← close_to(Y,X)

Concepts C
1
C
2

downtown(X)=true
residential_zone(X)=true

PC Minimize/maximize negative/positive examples explained by the
theory

The first step towards the generation of inductive hypotheses is the saturation of all
observations with respect to the given BK [19]. In this way, information that was
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implicit in the observation, given the background knowledge, is made explicit. In the
example above, the saturation of O1 involves the addition of the nine literals logically
entailed by BK, that is close_to(zone2, zone1), close_to(zone1, zone3), close_to(zone3,
zone1), close_to(zone7, zone1), close_to(zone4, zone2), close_to(zone5, zone4),
close_to(zone5, zone6), close_to(zone6, zone5), and close_to(zone8, zone6).

Initially, all positive and negative examples are generated for every concept to be
learned, the learned theory is empty, while the set of concepts to be learned contains
all Ci. With reference to the above input data, the system generates two positive
examples for C1 (downtown(zone1) and downtown(zone7)), two positive examples for
C2 (residential(zone2) and residential(zone4)), and eight negative examples equally
distributed between C1 and C2 (?downtown(zone2), ?downtown(zone3),
?downtown(zone4) ? ?downtown(zone5), ?residential(zone1), ?residential(zone5),
?residential(zone6), ?residential(zone7) ).

Once the observations have been saturated and examples have been generated, the
separate-conquer loop starts. The step of parallel conquer generates a set of consistent
clauses, whose minimum number is defined by the user. Since clauses are consistent,
they should explain no negative example. For instance, by requiring the generation of
at least one consistent clause with respect to the examples above, this procedure
returns the following set of clauses:

downtown(X) ?  onthesea(X), high_business_activity(X).
downtown(X) ?  onthesea(X), adjacent(X,Y).
downtown(X) ?  adjacent(X,Y), onthesea(Y).

The first of them is selected according to the preference criterion (procedure
find_best_clause). Actually, the hypothesis space of the concept residential has been
simultaneously explored, but at the time in which the three consistent clauses for the
concept downtown have been found, no consistent clause for residential has been
discovered yet. Thus the parallel conquer step stops since the number of consistent
clauses is greater than one.

Since the addition of a consistent clause to the partially learned theory may lead to
an augmented, inconsistent theory, it is necessary to verify the global consistence of
the learned theory and eventually reformulate the theory in order to recover the
consistency property without repeating the learning process from scratch. The learned
clause is used to saturate again the observation. Continuing the previous example, the
two literals added to O1 are downtown(zone1) and downtown(zone7). This operation
enables ATRE to generate also definitions of the concept residential that depend on
the concept downtown. Indeed, at the second iteration of the separate-conquer cycle,
the parallel conquer step returns the clause:
residential(X) ? close_to(X,Y), downtown(Y), low_business_activity(X).
and by saturating again the observation with both learned clauses, it becomes possible
to generate a recursive clause at the third iteration, namely
residential(X) ? close_to(X,Y), residential(Y), low_business_activity(X).

The separate step consists of tagging positive examples explained by the current
learned theory, so that they are no longer considered for the generation of new
clauses. The separate-conquer loop terminates when all positive examples are tagged,
meaning that the learned theory is complete as well as consistent.



98      D. Malerba et al.

5 The Recognition of Morphological Patterns
in Topographic Maps: A Case Study

The first-order rule induction algorithm ATRE has been applied to the recognition of
four morphological patterns in topographic maps of the Apulia region, Italy, namely
regular grid system of farms, fluvial landscape, system of cliffs and royal cattle track.
Such patterns are deemed relevant for the environmental protection, and are of
interest to town planners. A regular grid system of farms is a particular model of rural
space organization that originated from the process of rural transformation. The
fluvial landscape is characterized by the presence of waterways, fluvial islands and
embankments. The system of cliffs presents a number of terrace slopes with the
emergence of blocks of limestone. A royal cattle track is a road for transhumance that
can be found exclusively in the South-Eastern part of Italy.

The territory considered in this application covers 131 km2 in the surroundings of
the Ofanto River, spanning from the zone of Canosa to the Ofanto mouth. More
precisely, the examined area is covered by five map sheets on a scale of 1:25000
produced by the IGMI (Ofanto mouth � 165 II S.W., Barletta 176 I N.W., Canne della
Battaglia � 176 IV N.E., Montegrosso 176 IV S.E., Canosa 176 IV S.W.).

The maps have been segmented into square observation units of 1 Km2 each. The
choice of the gridding step, which is crucial for the recognition task, has been made
using  the advice of a team of fifteen geomorphologists and experts in environmental
planning, giving rise to a one-to-one mapping between observation units of the map
and cells in the database.

Thus, the problem of recognizing the four morphological patterns can be
reformulated as the problem of labeling each cell with at most one of four labels.
Unlabelled cells are considered uninteresting for environmental protection.
As previously mentioned, ATRE extends the system INGENS with a training
functionality and an inductive learning capability in order to overcome the difficulties
related to the acquisition of operational definitions for the recognition task. ATRE
was trained according to the experimental design briefly presented below. One
hundred and thirty-one cells were selected, each of which was described in the
symbolic language illustrated in the previous Section and assigned to one of the
following five classes: system of farms, fluvial landscape, system of cliffs, royal cattle
track and other. The last class simply represents �the rest of the world,� and no
classification rule is generated for it. Indeed, its assigned cells are not interesting for
the problem of environmental protection being studied, and they are always used as
negative examples when ATRE learns classification rules for the remaining classes.
Forty-five cells from the map of Canosa were selected to train the system, while the
remaining eighty-six cells were randomly selected from the four maps of the Ofanto
mouth, Barletta, Canne della Battaglia and Montegrosso. Training observations
represent about 35% of the total experimental data set. An example of partial logical
description of a training cell is shown in Figure 2.

A fragment of the logical theory induced by ATRE is reported below:
class(X1) = fluvial_landscape ? contain(X1,X2), color(X2)=blue,

type_of(X2)=river,trend(X2)=curvilinear, extension(X2)?[325.00..818.00].
class(X1) = fluvial_landscape ? contain(X1,X2), type_of(X2)=river, color(X2)=blue,
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relation(X3,X2)=almost_perpendicular,
extension(X2)?[615.16..712.37],trend(X3)=straight.

class(X1)=system_of_farms ? contain(X1,X2), color(X2)=black,
relation(X2,X3)=almost_perpendicular,
relation(X3,X4)=almost_parallel,type_of(X4)=interfarm_road,
geographic_direction(X4)=north_est,
extension(X2)?[362.34 .. 712.25], color(X3)=black, type_of(X3)=farm_road,
color(X4)=black.

The first two clauses explain all training observations of fluvial landscape. In
particular, the first states that cells labeled as fluvial_landscape contain a long,
curvilinear, blue object of type river, while the second clause states that cells
concerning a fluvial landscape may also present a long, straight, blue object that is
perpendicular to another object (presumably, a bridge). The third clause refers to the
system of farms. From the training observations, the machine learning system induced
the following definition: �There are two black objects, namely an interfarm road (X4)
and a farm road (X3), which run almost parallel to the north-east, and are both
perpendicular to a long black object�. This definition of system of farms is not
complete since it includes other clauses that ATRE actually generated but are not
reported in this paper. It is easy to see that the classification rules are intelligible and
meaningful. Some experimental results obtained in a previous work are reported in
[8].

By matching these rules with logical descriptions of other map cells it is possible to
automate the recognition of complex geographical objects or geographical patterns
that have not been explicitly modeled by a set of symbols.

6 Conclusions

Automated map interpretation is a challenging application domain for pattern
recognition. Knowledge of the meaning of symbols reported in the map legends is not
generally sufficient to recognize interesting geographical complex objects or patterns
on a map. Moreover, it is quite difficult to describe such patterns in a machine-
readable format. That would be tantamount to providing GIS with an operational
definition of abstract concepts often reported in texts and specialist handbooks. In
order to enable the automation of map interpretation tasks in GIS, a new approach has
been proposed in this paper. The idea is to ask GIS users for a set of classified
instances of the patterns that interest them, and then apply a first-order rule induction
algorithm to generate the operational definitions for such patterns. These definitions
can be either used to recognize new occurrences of the patterns at hand in the Map
Repository. An application to the problem of Apulian map interpretation has been
reported in this paper in order to illustrate the advantages of the proposed approach.

This work is still in progress and many problems have to be solved. As for the data
model for topographic maps, the segmentation of a map in a grid of suitably sized
cells is a critical factor, since over-segmentation leads to a loss of recognition of
global effects, while under-segmentation leads to large cells with an unmanageable
number of components. To cope with the first problem, it is necessary to consider the
context of a cell, that is the neighboring cells, both in the training phase and in the
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recognition phase. To solve problems caused by under-segmentation it is crucial to
provide users with appropriate tools that hide irrelevant information in the cell
description. Indeed, a set of generalization and abstraction operators will be
implemented in order to simplify the complex descriptions currently produced by the
Map Descriptor.

As for the algorithm ATRE, we plan to further investigate the influence of both the
representation and the content of observations in the training set on experimental
results. Case studies stressing the capability of autonomously discovering concept
dependencies should also be faced.
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