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Abstract-A definition of distance measure between structural descrip- 
tions, which is based on a probabilistic interpretation of the matching 
predicate, is proposed. It aims at coping with the problem of classification 
when noise causes both local and structural deformations. The distance 
measure is defined according to a top-down evaluation scheme: distance 
between disjunctions of conjuncts, conjunctions, and literals. At the lowest 
level, the similarity between a feature value in the pattern model (G) 
and the corresponding value in the observation (Ez) is defined as the 
probability of observing a greater distortion. The classification problem 
is approached by means of a multilayered framework in which the 
cases of single perfect match, no perfect match, and multiple perfect 
match are treated differently. Another possible application of the distance 
measure is in the field of concept acquisition. A plausible solution for the 
problem of completing the attribute and structure spaces, based on the 
probabilistic approach, is also given. Finally, both a comparison with 
other related works and an application in the domain of layout-based 
document recognition are illustrated. 

Index Terms-Distance measure, flexible matching, incomplete descrip- 
tions, learning structural descriptions from examples, learning systems, 
pattern classification in noisy environments. 

I. INTRODUCTION 

Learning tasks in real-world domains are often affected by some 
degree of uncertainty due to either the presence of noise or to the 
imprecision of measuring instruments or simply to the variability of 
the phenomena themselves. 

Sometimes, when the origin of uncertainty is only noise, it is 
possible to select noiseless observations for the training phase, but 
this does not assure that future events will be noiseless. Therefore, 
the classification phase still remains affected by uncertainty. In such 
a situation, a simple classifier based on the match/unmatch criterion 
[l], [2] is useless, and it becomes necessary to rely on a less rigid 
definition of similarity between observations, namely, a measure 
taking on values in a continuous range and not in a boolean set. 
Such a measure of similarity is strictly connected to the concept of 
distance because if the two objects are more distant, the less they can 
be considered similar [3]-[7]. 

A classical distance measure is the Euclidean metric, defined on 
feature vectors whose components are interval or ratio level mea- 
surements. Although, such a metric is attractive for its computational 
simplicity, it forces us to represent objects by numerical feature 
vectors only, which is a serious limitation for real-world problems [8]. 
Even if some extensions are possible in order to include other kinds 
of measurements, such as nominal or ordinal-level measurements 
[9], there still remains the difficulty in representing the structure of 
an object that may be vital in many real applications. To describe 
an object, it may be decomposed by successive refinements until 
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atomic parts, called primitives, are defined. Once these subparts and 
their mutual relationships are identified, the structure is obtained. 
Although feature vectors are adequate in representing the attributes 
of each primitive, they are unsuitable for describing relations among 
a variable number of subparts. Consequently, distances based on such 
a representation are only able to cope with local deformations, that 
is, differences at the primitive attribute level between the pattern 
recognized (ideal pattern) and the new object to be classified [lo]. 

However, structural deformations may also arise when the number 
of subparts of the ideal pattern and the new events are different or 
the relationships between component parts change substantially. This 
problem is particularly felt in the field of pattern recognition when 
image segmentation is performed [ll]. In fact, earlier research that 
dealt with structural deformations [3], [4], [lo] used the terminology 
and representation of structured objects, through attributed relational 
graphs, which is typical of the field of pattern recognition. Later 
works [12] have pointed out the generality of the problem and the 
utility of the concept of distance also in the area of machine learning. 

For instance, some possible applications of a more general defini- 
tion of distance may be the following: 

1) Classifying examples that do not exactly have all the regulari- 
ties appearing in the corresponding recognition rule 

2) evaluating the validity of the hypotheses generated during or 
at the end of an inductive inference process 

3) clustering a given collection of objects (observations, situations, 
etc.) in a hierarchical structure of meaningful subcategories 

4) selecting typical training examples in order to optimize the 
learning process 

5) resolving ambiguity in multiple group classification with em- 
phasis on what an example is versus what an example contains 
[131. 

In this paper, the definition of a distance measure between struc- 
tural descriptions, expressed as disjunctive well-formed formulas 
(wff’s) in 1 *&I representation language, is proposed. First, some def- 
initions and basic notions about the problem of pattern matching are 
introduced. Then, we proceed to formalize, by a top-down evaluation 
scheme, a measure of fitness suitable for structural deformations: the 
measure of fitness between formulas represented in disjunctive normal 
form in Section III, between conjunctions (products of selectors) in 
Section IV, and between selectors in Section V. In Section VI, we 
raise some questions about the application of the distance measure 
to both the conceptual clustering and the process of learning from 
examples. The problem of completing the attribute and structure 
spaces is addressed in Section VII. Section VIII is devoted to the 
illustration of an application of the distance to digitized document 
recognition. Finally, a comparison with related works both in the 
area of machine learning and pattern recognition is sketched out. 

II. THE PROBLEMOF MATCHING Two FORMULAS 

Because the definition of the distance measure is closely related 
to the problem of matching two formulas and searching for the most 
general unifier, some notions concerning the matching process and its 
potential optimization will be introduced. Initially, however, we must 
briefly present the TTLn~ representation language in which formulas 
are expressed. 

The T-L21 system is a multivalued version of a first-order predicate 
logic (FOPL) whose basic component is the selector or relational 
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statement, which is written as 

[L = R] 

where 
l L, known as the referee, is a functional symbol with its argu- 

ments. 
l R, known as the reference, is a disjunction of values of the 

referee’s domain. 
Function symbols of referees are called descriptors, and they are 

n-adic typed functions (n 2 1) mapping onto one of three different 
kinds of domains: nominal, linear, and tree structured. 

Selectors can be combined by applying different operators, some 
of which are AND, OR, and decision operator (::>) in order to represent 
facts and recognition rules. (For a more complete definition of 1-L21, 
refer to [14]). 

A conjunctive I-L21 wff can be represented as a graph with labeled 
nodes and directed labeled edges [15], [16]. The labels on the nodes 
can be either a selector containing an n-ary descriptor without its 
argument list or a quantified variable. The edges are optionally labeled 
with integers 1,2.. that refer to the position of the argument at the 
head of the edge. The label is omitted if the argument position is 
irrelevant. For instance, the V&I formula 

[on-top(r1, s2)][shape(rl) = square][shape(.r2) = rectangle] 

has the following graph representation: 

3Sl -+ [shape = square] 
1\ 
2 /” [on-top = true] 

3x2 + [shape = rectangle] 

A conjunctive I-L21 wff is connected if its graph structure repre- 
sentation is completely connected, i.e., there exists a traversal of the 
entire graph from any starting node [15]. 

Such a constraint on the connection of formulas actually represents 
a restriction on the variables appearing as arguments of the TiL2t 
descriptors but has the advantage of speeding the matching process 
up. Moreover, it is always possible to turn a I-Lz, formula into an 
equivalent connected formula; for example, the formula 

[on-top(zl, x2)][shape(.rl) = square][shape(s3) = rectangle] 

may be redefined as 

[part-of(E.r, sl)][part-of(Er. ~2)][partLof(Er. x3)] 
[on-top(.rl. r2)][shape(rl) = square][shape(s3) = rectangle] 

which is a connected one. 

B. The Problem of Pattern Matching 
Generally, if Sl and S2 are two selectors, the problem of matching 

Sl against S2 can be formally stated as follows: to find a substitution 
D for the variables in Sl such that rr(S1) = S2. This last condition 
is generally weakened in classification problem solving, and it is 
required that S2 3 cr(Sl), where 3 is the logic implication. Thus, 
in order to match two selectors, the following conditions are to be 
satisfied: 

1) They must have the same descriptor. 
2) A consistent binding must exist between the variables appearing 

as arguments for the descriptors. 
3) The reference of Sl should be “more general” than that of S2. 

This classical matching paradigm is also known as syntactic 
matching [17]. The output is a boolean value since a pattern Sl 
either does or does not match against S2. 

The problem of matching two l-Lzl wff’s, ET and G, is more 
complex. Once again, it is said that E.r matches against G  if there 
exists a substitution g for the variables in G  such that Es + a(G). 
In the field of structural pattern recognition, where objects or patterns 
are usually represented by labeled graphs, such a problem is known 
as subgraph isomorphism [18]. Unfortunately, it can be shown that 
such a problem is NP complete [19]; thus, we can either try to find 
pattern matching algorithms that, on average, perform quickly or try 
to find approximate algorithms that produce acceptable answers in an 
acceptable amount of time. 

A way to optimize the matching process, thus reducing its com- 
plexity of some order of magnitude, is based on the decomposition 
of the generalized description G  as follows: 

G  = Gl A G2 

where Gl = Srlt A Sel;! A A SFI, A A Sel, is a con- 
junction of selectors such that the referee of Sel, contains the 
maximum nonnull number of variables not appearing in the referees 
of Sell. Sela.. , Sel,-r;G2 is the conjunction of the remaining 
selectors of G. 

Such a sort rearranges the selectors of G  with the aim of mini- 
mizing the number of selectors in Gl to optimize the backtracking 
process. Afterwards, we will exploit such an optimization criterion 
in order to define some heuristic that produces an acceptable answer 
in an acceptable amount of time. 

III. A DISTANCE MEASURE BASED ON FLEXIBLE MATCHING 

The central idea of this correspondence is that a distance measure 
between two formulas can be defined if a probability distribution on 
the results of a matching process is given. Below, we first extend the 
definition of pattern matching and then give a definition of distance 
measure according to our notation. 

Definition 1: Let S denote the space of VLal wff’s, and let Match 
represent the canonical matching predicate defined on S: 

Match : S x  S -+ {false, frue}. 

Then, it is known as flexible matching any function: 

Flex-Match : S x  S + [O. 11 

such that 

VFl. F2 E S 

Flex-Match(F1, F2) 

= 1 u Match(F1, F2) = true 

Flex-Match(F1. F2) E [0, 1) * Match(F1, F2) = false. 

Generally, the value taken by a flexible matching function is a 
number indicating how well two descriptions match, i.e., the degree 
of similarity between two wff’s in S. Therefore, the definition of the 
flexible matching function should draw its inspiration from a theory 
that is able to quantify the degree of similarity between two objects. 
Because probability theory fulfills such requirements, we can assign 
to each pair of wff’s in S the probability of precisely matching the two 
formulas, provided that a change is possibly made in the description 
F2. Consequently, we can define 

Flex-Match(F1, F2) = P(Match(F1, F2)). (1) 

Such a definition marks the transition from syntactic to probabilistic 
matching. Henceforth, in order to distinguish this particular function 
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from any flexible matching function, we will denote it by the term 
measure of fitness (MF). 

Definition 2: Let Fl and F2 be two wff’s; then, the distance 
measure A between Fl and F2, A(F1, F2), is 

A(F1, F2) = 1 - P(Match(F1, F2)) = 1 - MF(F1, F2). (2) 

In the following, attention will be devoted to the problem of concept 
recognition and classification; therefore, Fl and F2 will be denoted 
with G  and Ex, respectively, where G  stands for generalization and 
Ex for observation. Moreover, it is assumed that G  is a disjunctive 
VL21 wff 

G  = Or-atom1 V . . V Or-atom, ( R > 0) 

and Ez is a conjunctive VLzl wff. The different form of G  and 
Ex is justified because generally, in inductive learning, an observed 
event Ex = EXI V Exz V . . V Ex, can be considered to be the 
equivalent of a set of n different events Ez,, where i = 1,2,. n. 
Under these assumptions, the distance measure may be rewritten as 

A(G, E,) = 1 - MF(G. Es) (3) 

where 
MF(G,Ea) = P(Match(G. Es)) = 
P(Match(Or-atom1 V V Oratom,). ET) = 
= P(Match(Or-atomr, Ez) V Match(Or-atomz. ET) V . . V 
Match(Or-atom,, Er)) = 
and by replacing the symbol Match( Or-atom,, Ex) with E,, we have 

+>: C C P(E,AE,AE~)+... 
s=l J=Z+l k=j+l 

+(-l)“-’ . P(E, A Ez A . ..E.). 

We assume here that all the elementary events E, are mutually 
independent, i.e. 

P(E,IEj) = P(Ez) Vi # j 

P(E;(E, AEk) = P(E,) Vi # j # k  

. . 

since the consideration of high-order joint probabilities is generally 
impractical. In such a case, it follows that 

P(E, A EJ) = P(E,)P(E,) Vi # j 

P(E, A E, A Ek) = P(E,)P(E,)P(Ek) Vi # j # k  

. . . 

There could be two clear exceptions to this assumption. The first one 
arises when Or-atom, is a specialization of another Or-atom, within 
the same generalization rule G. In this case, we could have 

P(Match(Or-atom,, Ex)l N Match(Or-atom,, Ez)) = 0. 

However, we do not expect such a specialization to occur within the 
same generalization rule; otherwise, one of the or-atoms would be 
redundant. 

The second exception arises when E, AE3 = 0. In addition, in this 
case, we could have P(E,(E,) = P(E,(E,) = 0. However, mutual 
exclusion of the or-atoms of the same generalization is very unusual 
when dealing with structural descriptions. For instance, given the 
following generalization G  
G  : [ontop(z1,22) = true][touch(zl, .r2) = false] V 
[ontop(zl, 22) = false][touch(zl, x2) = true] 

its or-atoms would seem disjunctive, but a possible example might be 
EX : [ontop(zl,22) = true] (touch(zl,x2) = false] 
[ontop(x2,23) = true][ontop(z3, ~4) = false][touch(x3, ~4) = true] 
which is covered by both or-atoms. 

In other words, when no auxiliary information is provided, the 
independence of the events E, seems a reasonable assumption, which 
simplifies the problem. 

Finally, we have 

MF(G, EI) = C P(Ez) - C C P(Et) ’ P(EJ) 
,=l ,=I J=‘+l 

n-2 n-1 n 

+>: c c P(E,).P(E,).P(Ek)+... 

+(-l)“-’ j&W 
1=1 

= 2 MF(Or-atom,, ET) 
t=l n-l n 

-cc *=l ,=z+1 
MF(Or-atom,, ET). MF(Or-atom,, Ex) 

n-2 n--l n 

+ c  c  c  JfF(Oratom,,E.r). 
I=* J=‘+l kcJ+l 

MF(Or-atom,. ET). ,bfF(Or-atomk, Ex) + ... 

+(-l)“-’ . fi .VF(Or-atom,, Ez). 
1=1 

(4) 

In some situations, when the computation of formula (4) is com- 
putationally expensive, MF(G, Ex) may be approximated by its 
lower limit, that is, the maximum value of MF(Or-atom,, Ez), i E 
{1,2 ,..., n}. 

At this stage, the problem has been reduced to the definition of a 
measure of fitness between conjunctive formulas, Or-atom, and Ex, 
in terms of a matching function. 

IV. A MEASUREOFFITNESS BETWEEN CONJUNCTIVEFORMULAS 

Without loss of generality, let us suppose G  is a conjunctive 
formula (n = 1) composed of k  > 1 selectors G  = Sell A Se/a A 
. . A Selk. Then, according to the definition of matching between 
two formulas, we have 

Match(G, ET) = Match(Selr, Ez) 
A Match(SeZa, Er) A.. . A Match(Selk: Ez). (5) 

It is easy to verify that the events Match(SeZ,, Ex), i = 1,2,. . . , k  
are not independent because of the presence of the variables as argu- 
ments of a descriptor. The measurement of the fitness between two 
descriptions depends on two points: first, on the number of selectors 
that are unifiable and, second, on the possibility of determining a 
consistent binding for other selectors [15], [20]. 

Bearing in mind that G  is decomposable into two parts Gl and G2 
and supposing that the number of selectors in Gl is p, 0 < p < k, 
then the measure of fitness 

MF(G, ET) = P(Match(Selr, Er)A 

Match(Sela, Ez) A . . A Match(Selk, Ez)) 

can be rewritten as 
MF(G. Es) = P(Match(G1, ET)A 

Match(SeZ,+t, ET) A A Match(Selk, Ez)). 
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Let us consider the event Match(G1. E.r). It has been defined using 
the relationship Match, which is a partial order relation on the space 
of ETL21 connected conjunctive descriptions. If we suppose that 
Match(G1, Ex) is the event with probability equal to one, i.e., there 
exists at least one matching substitution (TV between Gl and Es, 
then the result is 

and 

Ex =+ cr,(Gl) 

MF(G. Ex) = P(hlatch (Gl. Ex)A 
hIatrh(Sel,+l. Ex) A . . . A hlatch(Selk. ET)) 

P(hlatch, (Sel,.Es)) 

(6) 

Formula (6) must be interpreted as follows: While varying the 
considered operator cJ, which is responsible for the consistent 
binding of the variables in Gl, the measure of fitness between G  
and Es is computed as the highest value given by the multiplication 
of the measures of fitness between each single selector of G2 and E.r. 

Here, Match, denotes the relation Match when the substitutions 
fixed by the operator gJ have been carried out, whereas JfF, denotes 
the measure of fitness between one selector and one formula when all 
the variables in G  have been replaced according to the operator cJ. 

A proof of (6) through mathematical induction on !Y is given in 
Appendix A. 

Until now, we have considered P(Match(G1. Es)) = 1 as the 
fundamental hypothesis. If Match(G1. Er) is not satisfied, we can 
set IIF(G. Es) = 0 since G  and Ex have no similarities, not even 
at a level of the subcomponents. Thus, (6) becomes 

MF( G. Es) = 

I 

max h JIF, (Sel,. Ex) if there exists at least a substitution 
02 t=p+1 

cJ  such that E.r =s cr,,(Gl) (7) 

0 otherwise. 

The constraint that Gl matches Ex by a canonical matching 
procedure could be interpreted as follows: There must be at least some 
correspondences between G  and Ex, that is, Gl is a conjunction 
of Must-relations [21]. Unfortunately, the elimination of the above 
constraint causes the computational time to soar. 

V. A MEASURE OF FITNESS BETWEEN SELECTORS 

MF, (SeE,. Es) is determined by considering the fitness between 
the selector uJ (Sel,) = GSel, (derived from the substitution of each 
variable in the referee of Sel, with the corresponding variable fixed 
by pI) and only one selector of Ea, EsSel,, which has the same 
referee as GSrl,. Consequently 

,\/IF,(Sel,, Ex) = AbfF(GSel,. ExSel,) 
= 1\1F(reference(GSe1,),reference(EsSel,)). (8) 

Let us suppose that reference(GSeI,) = {gl. 92.. . . gY} and that 
reference(EzSrl,) = {e] . ~2.. . . c,.}. It should be pointed out 
that the reference of GSel, can contain more than one element 
(y 2 1) since G  is the description of a concept, whereas the 
reference of E.cSel, usually contains only one element (fl’ = 1) 
since Ex describes an observation. Indeed, a multiple-value reference 

4 
P(Y) I 

Fig. 1. In a domain whose pdf of its values is represented by P(v), the 
probability P(EQUAL(g,. e)) equals the shaded areas. 

for E.rSel, denotes uncertainty in the measurement process, and it 
should be dealt in a different way. From condition 3) in Section 
II-B and the definition of flexible matching, we can state that 
J1F(GSel,. E.rSel, ) is equal to 1 if and only if the reference 
of EsSrl, is more specific than that of GS4,. The notion of 
specialization is intended as set inclusion if the descriptor is a nominal 
or linear one. This interpretation can be easily extended to tree- 
structured descriptors; each single element in the reference of GSel, 
is replaced by all the values representing the leaves of the subtree 
having just that element as its root. When the set inclusion does not 
hold, the definition of JfF(GSel,, EsSel,) takes into account the 
probability that the value in the reference of ExSel, becomes equal 
to one of the y  values in the reference of GSel,. 

Let EQCT,4L(.r, y) denote the matching predicate defined on any 
two values .r and y  of the same domain. According to our criteria 
of considering the most probable match for the computation of the 
measure of fitness between G  and E.r, we can write the following 
formula: 

JPF(GSel,. EsSel,) = I;;y;, P(EQUAL(g,, e)) (9) 

where e is the only element in the reference of ExSel, when there 
is a reasonable certainty about the value taken by the descriptor in 
E.rSel,. 

To sum up, the definition of a measure of fitness between G  and 
Es has been reduced to the computation of the probability of the 
event EQUAL(g,, e). It represents the probability that an observation 
e may be considered a distortion of gL; thus, we define 

P(EQI-.AL(g,. e)) = P(O(g,. S) 2 6(g,, e)) (10) 

where 
l _Y is a random variable assuming values in the domain Df of 

the descriptor f in Sel, 
l 6 is a distance defined on the domain itself. 
In Fig. 1, a geometrical interpretation of this definition is shown. 
When no information is available on the probability distribution of 

-Y, we can assume that each value from the domain of the descriptor 
in Sel, has the same probability, that is, l/C, where C is the number 
of elements of Df 

The definition of 6 has to be specialized according to the type of 
I -Lzl descriptors. In particular, we propose for nominal descriptors 

S(s, Y) = 
0 if z  = y  

1 otherwise 

and for linear descriptors with a finite domain 

6(x, y) = lord(s) - d(Y)\ 

(11) 

(12) 
where ord(r) 
the domain D 

denotes the ordinal number given the 
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In fact, if the referee of Sel, is a linear descriptor with a MF(G, Ez) = 
totally ordered domain Df = {yn, ~1.. . . , yc’-l}, it is always 
possible that consecutive elements of Df are assigned consecutive 
integers (starting from 0 or from any other); for instance, ord(y, ) = 
O,ord(yl) = 1,. ~ ord(yc-1) = C - 1. 

It should be observed that other reasonable choices of 6 are 
possible; nevertheless, the value of P(EQUAL(g,, e)) does not 
change since we compute the probability over the distance and not 
merely the geometrical distance. This key point also allows us to 
disregard problems with scaling when the similarity is computed 
over the whole set of features. 

The specialization of 6 has repercussions on the definition of 
P(EQUAL(g,, e)), which is adapted to nominal, linear, and tree- 
structured descriptors. 

For nominal descriptors, it is defined by 

P(EQU-Wgi, e)) = 
1 if gi = F 

(c _ l),c otherwise. (13) 

For linear descriptors it becomes as shown in (14) at the bottom of 
the page, where 

0 ifx<O 
step(Z) = { 1 otherwise 

(derivations of (13) and (14) are given in Appendix B). 
For tree-structured descriptors, each element in the reference of 

Sel, is replaced by the values representing the leaves of the subtrees 
that have that element as their root. Then, (13) or (14) are adopted, 
depending on whether the generalization hierarchy for the descriptor 
is unordered or ordered, respectively. The only change to be made 
both in (13) and in (14) consists of replacing C with the cardinality of 
LEAVES(Df), where LEAVES(Df) represents the set composed of 
all the leaves of the tree representing the domain of the tree-structured 
descriptor in Sel,. 

The distance measure may be easily extended taking into account 
other kinds of descriptors or different probability distributions of the 
values. An example might be the descriptor number of calls (whose - - 
domain is the set of nonnegative integers) counting the number of 
calls occurring in a unit time and for which a Poisson distribution 
appears more appropriate. 

Using the definitions (8) (9) (13), and (14), (7) can be rewritten 
as 

dlF(G. Es) = 
k 

max n MF, (Sel,, ET) if there exists at least a substitution gI 
63 z=l 

such that Ex 3 rI (Gl) WI 

(0 otherwise. 

Another possible extension could take into account the weights ZL’, 
associated with all the descriptors. They should range in the interval 
[O,l] and might represent users preferences or descriptor relevances. 
Then, the previous formula becomes 

I max fi 111, MF, (Sel,, Ez) if there exists at least a substitution (7) 
01 t=l 

such that Ex 3 a,(Gl) (17) 

10 otherwise 
which is an extension of the definition of the measure of fitness in 
the case where weights of descriptors are available. 

VI. FURTHER REMARKS ON THE 
APPLICABILITY OFTHE MEASURE OF FITNESS 

In the previous sections, we have defined a measure of fitness based 
essentially on the probability that a single selector of an example Ex 
matches with a selector of a recognition rule G. The measure of fitness 
31F( G. Ex) actually computes the probability that a new event Ex 
may come from the class described by G  : P(ExJG) (within-class 
probability). In fact, the MF(GSel,,EsSel,) defined for single 
selectors may be interpreted as the probability that a random variable 
X defined on the domain of the descriptor in ExSeE, takes a value 
rl farther than the reference of ExSeZ, from the reference of GSel,, 
given that GSel, is the centroid. Therefore, since the definition of 
3fF(G. E.II) is essentially based on the measure of fitness for single 
selectors, we can state that it computes the probability that any 
observation of the concept described by G  would be as far from the 
centroid G  as the case E.r being considered. If this value is small, 
it signifies the possibility that Er does not belong to the concept G, 
even though it is the “closest.” 

As pointed out by Shapiro and Haralick [22], the definition of a 
distance measure between structural descriptions allows exploitation 
of the Bayesian decision framework. Thus, it is possible to compute 

P(G,IE.r) = 
P(ExIG,)P(Gz) = P(EdG,)P(G,) 

I’( Ex) C P(E.@, )P(G, ) 

which is the a posteriori probability used in Bayesian classification. 
When there is little or no knowledge available on the population 
distribution, empirical Bayes methods are applicable, making some 
choices for the a priori probabilities P(Gi) [23]. Another subjective 
choice may be a threshold f for the maximum value of P(E.zIG,) = 
JIF(G,. Ez), i = 1. 2. . . . . li (where 1i is the number of concepts 
recognized), below which, an observation Ex is rejected because its 
similarity with any concept is too low. 

Classification based on a distance measure is more expensive 
than a canonical matchiunmatch procedure; therefore, a multilayered 
framework is preferable. At first, a canonical matching is applied 
in order to classify an observation Es. There are three possible 
outcomes: 

a) Single Match: No further processing is required; the observation 
is assigned to the class represented by the matching recognition 
rule G. 

b) No Match: The definition of measure of fitness is exploited in 
order to have a more flexible matching. 

c) Multiple Match: In this case, the decision is taken in favor 
of the matching rule G, which minimizes the sum of weights 
associated with the descriptors of the selectors belonging to 
Ex - G, where Ex - G  indicates the part of Ex obtained 

[l + ord(e) + (C - 2ord(g,) + ord(e)) step(C - 1 - 2ord(g,) + ord(e))]/C if g, > e 
P(EQUAL(g;, e)) = 1 if gZ = e (14) 

[C - ord(e) + (2ord(g,) - ord(e) + 1). step(2ord(g,) - ord(e))]/C if g2 < e 
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ignoring those selectors that are unifiable with the matching 
rule G. 

Besides classification, the distance measure can also play an im- 
portant role in the selection of hypotheses generated by an inductive 
generalization process. For instance, in those methodologies based on 
event covering, such as STAR [14], it is possible to define for each 
class described by G, a measure of separation from other classes as 
follows: 

nz =1/n, ~MF(G,.E~,,) - l/(Ii - 1) 
JZl 

Ii 
. c  l/m 2 MF(G,. Es,,) (18) 

I=1 ,=1 

where n, is the number of examples for class i, Es,, is the jth 
example from class i, and Ii is the number of classes. 

It is easy to verify that n, ranges in [-l,l]. The value 1 is assumed 
when each example from class i matches with G, and when the 
matching condition on G, 1 for all the counterexamples does not hold. 
At the other extreme, the value - 1 is assumed when all the examples 
from class i have the maximum distance from G, and when all the 
counterexamples match exactly with G,. 

Since aZ takes into account both the completeness and consistency 
conditions and since the measure of fitness computed according to 
(17) includes the weight of the descriptors, it would be interesting 
to introduce a, as a basic criterion in the lexicographic evaluation 
function (LEF). The LEF is used both in the trimming of a partial 
star and in the selection of the best consistent hypothesis generated 
for a class i. It is a global preference criterion of the generalization 
rules, expressed as a list of elementary preference criteria, such as 
consistency, completeness, or cost. 

Moreover, a new definition of consistency can be provided when 
a threshold t for the measure of fitness MF(G. Es) is fixed by 
the user; it is the t-weak consisfency, defined as W&G,. Es) < f 
for all the counterexamples Ex. By analogy, it is possible to define 
a t-weak completeness, defined as MF(G,. Ex) > t for all the 1 
positive examples. Some advantages arising from weaker definitions 
of consistency and completeness are both a higher noise immunity in 
the process of inductive generalization and a reduction of complexity 
of the rule base [5], [6]. An optimal value of f might be one that 
leads to the best tradeoff between the accuracy and the complexity 
of a rule base. 

VII. THE PROBLEM OF COMPLETINGTHE 
ATTRIBUTE AND STRUCTURE SPACES 

Up to now, we dealt with the problem of information containing 
errors due to noise, and we deliberately disregarded an allied prob- 
lem: incomplete information. The description of an object may be 
incomplete owing to a variety of reasons: 

1) The value of a descriptor is unknown because it was not 
possible to “measure” it (unknown value). 

2) It does not make sense to set a value for the descriptor 
(meaningless value). 

3) It does not matter at all (“don’t cure” value). 
Henceforth, we will denote unknown values with “?,” meaningless 
values with “NA” (Not Applicable), and “don’t care” values with “*” 
(i.e., all possible values of the domain). 

Generally speaking, although “*” is allowed to appear in each 
V&t wff, its usage in an example contradicts the concept that such 
an example is an observation of a class. Indeed an “example” with 
a “*” would really be a generalization in itself. On the contrary, 
meaningless values are not desirable for recognition rules because 

a description of a class based on meaningful properties is usually 
sought. The latter reflections can also be applied to the unknown 
values. 

Of course, the measure of fitness is strongly influenced by the 
above taxonomy. For instance, let us suppose the following: 

Domain(color) = {white, grey, blue, black} 
GlSel, = [color(sl)=white] 
E.71 Sel, = [color(.rl)=*] 
E.r2 Sil, = [color(s l)=?] 
E.r:rSrl, = [color(.rl)=NA] 
E.rlSel, = [color(.rl)=grey]. 

Then 
a) JIIF(G, Sell,. E.rl Sel, ) does not make sense 
b) .\IF(EslSel,. G1 Sel,) = 1 because “*” %{white, grey, blue, 

black} >{white} 
c) J,IF(GISel,. Ex3Se1,) = 0 because the attribute color must 

be meaningful for the class 
d) MF(GIS~~,. E.r.sSel,) = 3/3 according to formula (13) 

but what about the value of JIF(GI Se!,. E.rzSel, ) ? 
This is the case in which the attribute color is not specified for xl 

when 0 = {sl + sl} is a matching substitution for G  and Ex. 
In order to answer this question, let us suppose 

D = Domairl(referee(E~S~~~)) = (90.~1. . . ..yc-I} 

then 

P(EQUAL(g. ?)) = I’(?+. X) 2 6(g. 1-) n I’ E D) 
(‘-1 

= c  P(O(g. .I-) > h(g. lT)(E’ = yz)P(l’ = ya) 
*=O 

(‘-1 

= c  P(6(g.S) L 6(Y.Y*)iP(Yz). 
*=o 

(19) 

As P( EQUAL( g. y, ) ) specializes according to the type of descriptor, 
we can conclude that for nominal descriptors 

C-l 

>(EQU.iL(g.?)) = l/C c  PC&g. 4) > a(g. yz)) 
,=o 

= [(C - l)(C - 1)/C + l]/C = (c2 - c  + 1)/P 

(20) 
according to (13). For linear descriptors with a finite domain 

P(EQUdL(g. ?)) = 
c-1 

l/C C {step(y - e) step(e - g) + (1 - step(e - 9)) 
r=O 

[(C - 29 + e) step(C - 1 - 2g + i) + e + l]/C 

+ (1 - step(g - e)) . [(29 - P + 1) 
step(2g - e) + C - e]/C} 

(21) 
where, for simplicity, we have denoted ord(g) and ord(i) with g 
and e, respectively. 

Some interesting properties may be easily derived from this. 
Property 1: For each nominal domain D whose values have the 

same probability, P(EQUAL(g.?)) does not depend on g, and for 
each y  E D - {g}: 

P(EQUAL(g. y)) < P(EQUAL(g.‘.‘)) < P(EQUAL(g.g)). 

Property 2: For each finite linear domain D whose values have 
the same probability, there are two values y, and yt, with s  < f, so 
that for each Y E {Ye. Y,~+I. ~+a.. . . yr}: 

P(EQUAL(g.?)) < P(EQUAL(g.y)). 
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The first property suggests that 

which is intuitively true. In fact, if we observed that color(sl)=grey, 
the fit with color(sl)=white would take into account only the 
uncertainty due to noise, whereas the unknown value would take 
into account both the probability for the value being a distortion of 
white and the probability of observing just white. 

For a linear domain D = {O. 1.2.. . . .9}, we have 

P(EQUAL(T.?)) = O.j’i P(EQUAL(i. 5)) = 0.7 

P(EQUAL(7.9)) = 0.7 P(EQUAL(7.4)) = 0..5 

that is, if the observed value ranges between 5 and 9, its fit to 7 is 
higher than the unknown value. 

Other solutions to the problem of unknown attribute values have 
been proposed by Quinlan [5], Hand [S] and Chan et al. [24]. Nev- 
ertheless, their works cannot be exploited for structural descriptions 
because they are strictly connected to feature vector representation 
for which there is only one possible unification between G  and E.r. 
Going up to a higher level, first-order predicate logic, it is no longer 
possible to estimate the pdf for each descriptor, and it becomes 
necessary for the user to define it. When he cannot provide such 
information, the pdf is assumed to be uniform. 

Previous considerations are valid when an attribute related to 
a subpart of Es is omitted in the description. What happens for 
relations? First of all, we should observe that completing the attribute 
space is generally less expensive than completing the structure space. 
For instance, if 0 is an object made up of n homogeneous primitive 
parts for which rn attributes are definable, then a complete description 
of 0 should contain IL. rn attributional selectors, It is also possible to 
define a set of relations on each n-tuple of subparts, for instance, I 
binary relations that are valid for each couple of primitive parts. Thus, 
the complete description of 0 should include 11 (11 - 1) . T  structural 
selectors or even n2r if we considered relations between a subpart 
and itself as well. Such an example clearly illustrates the complexity 
and undesirability of descriptions with a complete structure space. 

Consequently, one prefers to represent only those relations that 
really hold, for instance, [ontop(rl. x2) = true], rather than 
[ontop(.rl. ~3) = false]. Therefore, if GSel, = [ontop(sl. s2)] and 
cannot be unified with a selector from Es, we would suppose the 
existence of a matching selector E.rSf1, = [ontop(a3. .r3) = false], 
provided that unifying Gl with E.r, the following correspondence 
is fixed: 

c  = {sl + s3. s2 + .rj}. 

Here, the problem of distinguishing an unholding relation from 
an unknown one arises. A solution might be just the opposite of 
that adopted for attributes: unknown relations must be specified (for 
instance, [ontop(s3, ~3) =?I), and the computation of the measure 
of fitness (in this case -\PF([ontop(sl. .s2)]. [ontop(s3. ~5) =‘?I)) 
should be done by using the same formulas defined for the unknown 
attribute values. 

Nevertheless, relations cannot be expressed by predicates only, as 
is shown by the following relation: 

(alignment(block1. blork2) = bothrows] 

and therefore, it should be specified to be a default value in the 
domains (for instance, no-alignment), which should be considered 
every time a relation is not specified. 

Finally, another point might concern the application of inference 
rules to flexible matching. Again, let us consider the following 

descriptions: 

G  : [ontop(.sl, s2)][size(s2) = large] 
E.r : [ontop(,rl..r2)][size(.r2) = small]. 

Then 

.\IF(G. E.r) = .\IF([size(s2) = large]. [size(r2) = ?I). 

However, if we hypothesized the validity of the following inference 
rule 

[ontop(tl. t2)] * [size(tl) 5 size(t2)] 

i.e., the upper part is never greater than the lower part, an important 
question arises: How would this influence the computation of a 
distance measure? Future research may  address this open problem. 

VIII. APPLICATION TO OFFICE AUTOMATION 

The measure of fitness has been implemented and tested on 
digitized office document classification [25]. By a document, we 
mean a related collection of printed objects (characters, columns, 
paragraphs, titles, figures, etc.) on a paper or microform, for example, 
technical journals or reports. Here, only single-page documents will 
be considered. Provided there is a set of documents with common 
page layout features, an optically scanned document can be classified 
in the early phase of its processing flow by using a defined set 
of relevant and invariant layout characteristics: the page layout 
signature. As a human is generally able to classify any document 
in a specific environment by a perceptive point of view, recognizing 
the structure of a form or reading only the content of particular parts 
of the document, it is also possible to classify digitized documents 
without using optical character recognition or syntactic descriptions 
of the document given by the user. In fact, a printed page is treated 
by dealing only with automatically detected and constructed charac- 
teristics of the document, namely, the geometrical characteristics of 
the blocks (height, width, spacing, and alignment), and the document 
structure, whose description is created in a symbolic notation. 

In order to produce the classification rules, some significant ex- 
amples of document classes of interest in a specific environment are 
used as training samples to determine the layout similarities within 
each class. A set of 75 single-page documents has been considered, 
namely, printed letters and magazine indexes, belonging to eight 
different classes (the last one is a reject class, representing “the rest 
of the world”). As training examples, 40 instances were selected (five 
for each class), leaving the remaining 35 documents for the testing 
process. All the sample documents are real letters received or sent 
by some firms or copies of the indexes of international magazines, 
therefore, several forms of noise actually affected them. 

Once a document has been digitized, its page layout is produced 
by segmenting it through a run length smoothing algorithm (RLSA) 
and by grouping together some segments (or blocks), thus satisfying 
some predetermined requirements such as closeness, equal width, 
same type, etc. An example of document page layout is shown in 
Fig. 2. The numerical output of the layout analysis is automatically 
translated into I-La1 descriptions, whose standard descriptors are 
listed in Table I. The third processing step concerns the classification 
of the document by matching its description with the generalizations 
of the document classes produced by the system INDUBI, which 
was inspired by Michalski’s INDUCE [14]. The recognition rules for 
each class are listed in Table II. Of course, as noisy documents are 
handled as well, it is not possible to use a strict matching procedure 
for classifying the test documents; therefore, the proposed distance 
measure defined for I-L2i descriptions was introduced for a flexible 
matching. When a strict matching does not allow for the singling 
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TABLE I 
PAGE LAYOUT DESCRIPTORS 

I-- . out of a membership class, one makes use of the flexible matching L 
in order to compute the measure of fitness for each concept. If all 
the measures of fitness are not greater than a fixed threshold (O&5), 
the document is rejected; otherwise, it is classified into the document 
class with the highest a posteriori probability P( G, 1E.r). 

n:,  

Hl3GKI(xlZ) = medtun-bmnll 
HEIGHT(X13) = smalkx 

TYPE@tz) = text 
TYPE(X3) = rev 
TYPE(X4) = trx, 
TYPE(X(5) = mlx[ure 
TYPE(x6) = mlrlun‘ 
TYF’Efi7) = teu 
TYPED(H) = tcu 
TYPE(X9) = ~e\t 
TYPE(XI”) = mlrlurf 
TYPuXll) = ICY, 
TYPE(X I:) = gidphic 
TYT’YXII) -2 terf 

ALIGN(XZ,X6) = endIn+-co1 
ALlGN(X%XZ = srarnn~~>u 
ALlGNCX3,XZ) = cnda, mu 

Table III shows the correct classification for the testing sample 
together with the results of the application of both the strict matching 
procedure and the multilayered framework. Moreover, the values 
of the highest measures of fitness are reported. From this table, it 
emerges that the canonical matching procedure classifies only 23 
documents correctly, rejects nine documents, and presents a double 
classification in three cases. By adopting the multilayered framework 
for classification, seven no-match cases are recovered through the 
computation of the distance measure. 

- 
ALItiN(Xl.Xn = 5lanm~Mi 
ALIG’J[X~,XXI = cndm~wl 

In Fig. 2, the page layout of a nonstrictly-matching document is 
displayed, as well as its I-&i symbolic description. This document 
is correctly classified when its measure of fitness with each generated 
class description is computed.’ In the following, we report an example 
of computation of the distance measure between the description (Er) 
of such a document and the description (G) of the correct class, i.e., 
SIFI letters. At first, we should observe that the “Gl part” of that 
rule is given by the first three selectors: 

ONTOP@7,X8) = trur 
ONTOP(X7,XO) = uue 
TORIGHT(X3,);_7 = VUL’ 
TORIGHTo(9,XB) : VUL’ 
TORlGHT(X5,X4) i VUE 
TORIGHT(X5,,C) = V,,C 
lOIUGHT~4,X2) = uue 

Fig. 2. Example of document page layout and its \ Lzi description 

Indeed, in this case, we have 

.UFi2(G. Ed.) = J1Fiz([TORIGHT(_Y.j. X4)]. 

[TORIGHT(X~. X4)]). 
Gl = [TORIGHT(Sl. S2)][ONTOP(S3. S4)] 

[.4LIGN(S5, S6) = starting-col.] 

There are 17 possible substitutions oJ such that Es 3 CT] (Gl ). 
Thus, the value of MF(G. Es) is given by the maximum of the MF, 
values computed according to the different substitutions. In Table IV, 
we have reported all of the 17 substitutions and the corresponding 
values of the measure of fitness. The highest of these values is 
obtained in correspondence with the substitution 012 = (5’1 + 
X4.52 + X2.S3 + X.5. S-l + S6. SS + S3. S6 + ST’}. 

t Here, we are assuming the same ccpriori probability in each class. Thus, the 
maximum P(G, 1 ET) corresponds to the maximum value of .\IF( G,, Es). 

.UF,~([TORIGHT(X3. X3)]. 

[TORIGHT(X3, -X-Z)]). 

.\fFi2([TORIGHT(X5. -Y2)], 

[TORIGHT(X~. x2)]). 

.\IFr,([ALIGN(X3. X4) = starting_row]. 

[ALIGN(-Y3. X4) = no-align]). 

.UFin([WIDTH(Sd) = small]. 

[WIDTH(-Y4) = small]) 

= 1. 1. 1.6j’i. 1 = 617 zz  0.857. 

The reason why there is no perfect match is the lack of alignment in 
the top row between blocks X4 and AYs of the document. Therefore, 
in accordance with what was stated about the problem of completing 
the attribute and structure spaces, we have implicitly assumed that 
the following relation holds: [ALIGN(SS. X4) = no-align]. 
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TABLE II 
SYMBOLIC DESCRIPTIONS INDUCED FOR EACH DOCUMENT CLASS 

The lowest MF value in Table IV is obtained with the substitutions 
n’6 - ml1 since only the selectors in Gl match perfectly. For instance, 
the measure of fitness computed according to 06 is given by 

J1Fe (G. E.r) = 11F~, ([TORIGHT(X7. X5) = true]. 

[T0RfG~T(_kl7. x3) = false]). 

31F~ ([TORIGHT(IS. 57) = true]. 

[TORIGHT(XS. .x7) = false]). 

J1F~([TORIGHT(~Y7.9~) = true]. 

[TORIGHT(ST. S-l) = false]). 

.\lf ([ALIGN( X9. .‘iZ) = starting-row], 

[ALIGN(SS. .YJ) = no-align]). 

JfFG([WIDTH(.7ij) = small]. 

[WIDTH(-Yj) = large]) 

= 112 112 112 6/ 7 217 

= 3198 E=z 0.031. 

It should be observed that the constraint on a perfect match for 
the only part Gl allowed us to cope effectively with the problem of 
structural deformations since the elimination of this constraint would 
require the computation of the measure of fitness according to more 
than 8 million possible substitutions.’ 

As has already been pointed out, in our experimentation, the 
adoption of a flexible matching allows recovery of most of the no- 
match cases. Nevertheless, in two cases, the value of the measure of 
fitness is quite low, namely, less than the fixed threshold 0.85. Thus, 
the documents are still rejected. Moreover, in one case, we have 
a misclassification because the distance of the document from the 
description of a wrong class is lower than the distance concerning 
the correct class. This disappointing result may be ascribed to the 
fact that the indexes of both IEEE TRANSACTIONS ON PATTERN 
ANALYSIS AND MACHINE INTELLIGENCE and IEEE TRANSACTIONS 
ON COMPUTERS have a similar layout; thus, a simple symbolic 
approach to inductive generalization and classification does not 
suffice. When more training samples are available, it is possible to 

‘If p and q, p 5 q, are the number of variables in G and E.r, respectively, 
the number of possible substitutions (T, is given by the permutation of p 
elements taken from a set of q elements P( q. p). In this particular example, 
p = 6. q = 13. and P(13.6) = 8648610 

TABLE III 
RESULTS 0F THE CLASSIFICATION OF TESTING DOCUMENTS 

2.7 

5,l 

6 

10 
05 
1.0 
10 
1.0 
0 X5-i 
1.0 
0.857 
1.0 
1.0 
0.857 
10 
1.0 
1.0 
1.0 
1.0 
1.0 
10 
1.0 
1.0 
10 
1 0 
0 909 
10 
0 779 
I 0 
1.0 
10 
1.0 
10 
0 909 
1.0 
0.909 
1.0 
0.909 

integrate parametric (numerical) and conceptual (symbolic) learning 
methods in order to produce better classification rules to improve the 
classification rate [25]. In fact, the parametrical method works on 
the numerical output of the segmentation process rather than on the 
symbolic page layout description. Moreover, its result is mapped into 
a metadescriptor that is subsequently considered by the conceptual 
learning method while generating the document classification rules. 

The very simplicity of the rule generated for the class of IEEE 
TRANSACTIONS ON COMPUTERS is also the main cause of some cases 
of multiple match. Once again, the use of the distance measure 
can help to eliminate ambiguity in these situations; this is done 
by evaluating the differences between the nonmatching parts of the 
document description E.r and class descriptions G,, as explained in 
Section VI. 

Concerning the system performance, we observed the following 
average time: about 6 s for generating the symbolic description of a 
document, about 3 s for matching and classifying a document, and 
less than 1 min for the complete processing of a single document 
(including the scanning process). The time needed for training the 
system was about 15 min, and of course, it is strongly depen- 
dent on the number of training examples and their complexity. At 
present, the learning step in INDUBI is accomplished according to 
the classical STAR algorithm, even though the introduction of the 
distance measure in the selection of hypotheses generated during the 
generalization process is at a project stage. The whole system has 
been implemented in C on a SUN31280 under UNIX, even if the 
final classification expert module runs alone on an OLIVE’ITI PC 
M280 under MS-DOS. 

IX. COMPARISON WITH PREVIOUS WORKS 

A variety of distance measures have been proposed in previous 
works, both from the field of pattern recognition [3], [4] and from 
the area of machine learning [6], [9], [12]. Basically, they can be 
grouped into two categories according to the representation language: 
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TABLE IV 
SUBSTITIJTIONSFORTHE FLEXIBLE MATCHINGBETWEEN 

THE DESCRIPTION OFTHE DOCUMENT IN FIG. 2 AND 
THE DESCRIPTION OF THE CLASS 51~1 letters” 

l Distance measures defined on feature vectors or languages from 
propositional calculus, which deal with only local deformations 

l distance measures defined on graphs or languages from predicate 
calculus, which are concerned both with local and structural 
deformations. 

In this section, we shall discuss some distances from the first 
category, restricting ourselves only to those defined on IX1 (the 
ancestor of the VLgr), and some other distances from the second 
category, which are similar to the problem they are intended to solve. 

A. Distance Measures for the VL1 Language 
The l’L1 language is an extension of the propositional calculus 

proposed by Michalski for representing knowledge in a family of 
inductive inference systems (AQ) based on the STAR methodology 
[26], [27]. The first distance measures for VLi propositions are 
presented in [9] and are concerned both with the problem of training 
example selection (ESEL) and the classification task (AQll). 

The distance measure implemented in ESEL is defined on only 
two levels: 

1) Distance between the values of a descriptor (or feature) spe- 
cialized according to the type of the descriptor 

2) distance between events (feature vectors), which is defined as 
a weighted sum of distances between values of corresponding 
features of two events. 

The most relevant points for this distance measure are as follows: 
1) The distance for tree-structured descriptors is defined in terms 

of the number of branches on the shortest path linking the two 
values in the tree structure divided by the maximum number of 
branches on the shortest path linking any two nodes of the tree. 

2) It is purely geometrical, and no probabilistic interpretation is 
given; indeed, the distance of two events is the sum of distances 
along each direction determined by features and not the product 
as in (16). 

In the same paper, a measure of fitness used by AQll, called 
the degree of consonance, is proposed for classification purposes. 
The degree of match is developed according to a wider evaluation 
scheme: degree of consonance of a selector, product of selectors 
(term), disjunctive VLi formula, and a set of formulas. 

Even if less rigid definitions are sketched, the degree of consonance 
between a selector S and an event e implemented in AQll is 

DC(S, e) = 
1 if the value of the appropriate descriptor in 

e satisfies the selector S 

0 if it does not satisfy S 

* if the value is unknown 

and the degree of consonance of a term is computed as the ratio of 
the number of selectors satisfied in the term to the total number of 
selectors in the term. 

These definitions are inadequate for noise-affected data as they do 
not consider the type of descriptor and their weights in a match. On 
the other hand, the degree of consonance of a term suggests a sort of 
standardization that might prove useful when recognition rules with 
a quite different number of selectors are used for classifying new 
events. Indeed, in such a case, we may multiply the MF values by 
the proportion of matching selectors of the classification rule in order 
to reward the rule with the highest number of matching selectors. 

Furthermore, the idea of extending the definition of the degree of 
consonance to a set of formulas appears to be interesting for those 
inductive systems generating more than one plausible hypothesis for 
each concept; in that case, taking the average of the degrees of 
consonance of the formulas in each set of hypotheses may improve 
the reliability of classification. 

In [6], the distance measure for VLi formulas evolved toward a 
probabilistic approach. In fact, the measure of fitness of a complex 
(product of selectors) and an event e is defined as 

weight(Cpz,) 

k 
#examples 

where the ratio weight( Cps, )/# examples is the estimate of the 
a priori probability of the complex (i.e., the relative frequency of 
positive training examples covered by the complex). Nevertheless, 
the problem has not been dealt with in any depth because the MF of 
a selector is not specialized in the type of domain and is not supported 
by an equally probabilistic approach. For instance, if 

Selk = [color=green] 

while the corresponding selector Se1 of F is 

Se1 = [color=white] 

then, according to their paradigm, the following results: 

3IF( selk, e) = l/DomainSize 

which is a decreasing function of DomainSize. This goes against 
the intuitive notion that in a wider domain, it is easier to observe a 
distortion. For instance, it is easier to assign a wrong value to the 
variable color when one has to choose from a set of 100 different 
equally probable colors instead of a set reduced to only two colors. 
Such a shortcoming has repercussions on possible extensions of the 
measure of fitness when the classifier knows the pdf of the values 
of the domain. 

B. Distance Measures for Structural Representations 
In [12], the authors focus on the principle that a generalization of 

two examples as well as the process of obtaining this generalization 
give indications of the conceptual distance between the examples. 
Indeed, very different examples generalize to an expression that is 
very far from each of them, whereas identical examples generalize 
to themselves. However, a set of examples may be characterized by 
several generalizations, each suggesting a certain conceptual distance; 
in that case, the minimum of these is taken as the estimation of the 
real conceptual distance. 

The estimation of the conceptual distance is obtained by trans- 
forming the examples until they acquire approximately the same 
form, then by generalizing them, and thus retaining only the common 
features. The operations made in order to obtain such generalizations 
are considered as indicators of similarities and dissimilarities between 
those examples. 
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Some substantial differences between our distance measure and 
Kodratoff’s conceptual distance are in the representation language. 
In fact, even though structural descriptions are allowed and a map- 
ping into the VL21 language is possible, there is no tie on the 
connection of formulas, on the distinction of variables, and on the 
kind of quantifiers, and this further complicates the computation of 
distance. Another basic difference with our proposal is the bias of the 
conceptual distance toward the conceptual clustering and its difficult 
application to classification or concept recognition. 

In [3], a distance measure between nonhierarchical attributed 
relational graphs, characterized by a descriptive graph grammar 
(DGG), is presented. A DGG is used in the pattern segmentation 
process for finding the nodes and the structure of the graph but not 
to compute the distance measure. 

Their distance measure is based on the computation of the mini- 
mum number of modifications required to transform an input graph 
(pattern to classify) into a reference graph (concept describing a 
class). The modifications considered are the following: node insertion, 
node deletion, branch insertion, branch deletion, node label substi- 
tution, and branch label substitution. The distance measure, which 
was especially designed for classification purposes, is computed 
according to a combination of costs and weights associated with each 
modification leading to the graph isomorphism. 

Although such a distance measure seems very different from ours, 
and this is especially due to the representation language, it is possible 
to find some analogies. For instance, a node in a relational graph may 
correspond to the set of attribute selectors of a single I-L21 variable, 
and the cost function for that node may be compared with the product 
of the MF values for those selectors. Indeed, the main difference is 
that Sanfeliu and Fu consider a nonnull cost of node deletion since 
the model pattern is described in a complete space. This is due to the 
fact that Fu’s work is in the area of classical pattern recognition, 
where reference patterns are described extensively (for instance, 
they are canonical handwritten characters) versus rule-guided pattern 
recognition [ 141, where reference patterns are generalizations, that 
is to say, incomplete descriptions outlining only discriminant and/or 
characteristic features of a concept. 

In [4], attributed graphs are adopted to represent knowledge. Such 
a representation allows us to describe primitives of an object and the 
binary relations between them. Wong and You also generalize the 
definition of attributed graphs into a random graph by associating a 
pdf with both nodes and arcs. A random graph gives a probabilistic 
description of a concept when uncertainty (due to noise) exists in 
a structural pattern, whereas a simple attributed graph is used for 
(un)classified observations. 

In the same paper, the authors define a distance measure between 
two random graphs, an attributed graph and a random graph, or two 
attributed graphs. The distance measure is based on the computation 
of the minimum increase of Shannon’s entropy before and after the 
synthesis of an ensemble of attributed graphs into the probability 
distribution of a random graph. 

The applications of the proposed distance are as follows: 
1) Unsupervised Learning: The ensemble of attributed graphs 

contains more than one class of patterns, and the synthesis 
process produces probability distributions corresponding to 
these various classes. 

2) Supervised Learning: The graphs to be synthesized are desig- 
nated as belonging to the same pattern class. 

3) Classification: The attributed graph of the unclassified pattern 
is synthesized with each random graph representing a class, 
and then, it is assigned to the class with the minimum distance. 

The matching process used by our distance measure corresponds to 
the search of a monomorphism T labeling the vertices of a graph in 

Wong’s distance. Therefore, the number of nodes in a random graph 
representing a concept may be greater than the number of vertices in 
the graph representing an observation, or equivalently and according 
to our terminology, the number of variables in G  (or Gl) is greater 
than the number of variables in Es. 

Unlike Fu’s distance measure, the cost of node and branch insertion 
is null, and thus, the distance between a graph of order 71 and its 771 

extension (m > n) is null. Consequently, if a part of the object cannot 
be completely defined, it can only be totally nonexistent and not 
partially unknown. Once again, this comes from the type of problem 
solved by random graphs: the problem of handwritten English letter 
recognition. 

X. CONCLUSIONS 

In this paper, we endeavored to provide a paradigm for classifying 
structured patterns when various sources of noise affect them or 
there exists a substantial amount of variability among the patterns 
themselves. The key idea consisted of the computation of a distance 
measure or, conversely, a measure of fitness, between symbolic 
descriptions expressed in the I _ L 21 language, which is an extension 
of the first-order predicate calculus. When an observation is matched 
against the prototypical description of a concept, a flexible matching 
instead of a strict matching is applied. The result is a real number 
in [O,l] representing the probability that the observation matches 
against the description of the concept and not a simple true/false value 
assumed by the canonical matching predicate. The computation of 
the distance measure was defined according to a top-down evaluation 
scheme (formula in disjunctive normal form, conjunction of selectors, 
selector) and is essentially based on the concept that if there is a low 
probability of observing a greater distortion from the ideal pattern, 
there is a correspondingly low distance between the observation and 
the concept. 

The classification process is conducted according to a multilayered 
framework: 

1) Sing/e Match: No further processing is required. 
2) No Match: The distance measure is used. 
3) Multiple Match: Ambiguity is solved by minimizing the sum 

of weights of the selectors belonging to Es - G. 
The multilayered approach comprises a two-tiered concept rep- 

resentation [28] in which the meaning of an approximate (impre- 
cise) concept is distributed between its base representation and its 
inferential interpretation. The former describes the typical context- 
independent properties of the concept, whereas the latter determines 
whether a given instance satisfies some inferential extensions of the 
base representation. The process of interpretation involves proba- 
bilistic inference based on a distance measure (flexible matching), 
contextual information, background knowledge, and analogical rea- 
soning. 

An open question we raised in this paper concerns the exploitation 
of background knowledge, which is expressed in the form of inference 
rules, in the computation of the distance measure. 

When dealing with real-world data, the problem of missing values 
is particularly felt. We proposed a general scheme distinguishing 
various kinds of missing values, different patterns (concepts or 
observations), and different descriptors (attributes or relations). Some 
formulas, which are coherent with the probabilistic approach followed 
in the definition of the distance measure, have been suggested. 

Finally, we illustrated the application of the distance measure in an 
experimental system for office document automatic classification. It 
proved effective in reducing the negative effects of noise without 
overly increasing the recognition time too much. In addition, we 
believe that further studies on the matching problem may overcome 
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some limitations of the 
computational efficiency. 

current implementation and improve the 

APPENDIX A 

In the proof, we shall omit the use of the maximum func- 
tion since it is possible to consider the substitution oJ as pro- 
viding the highest value of fitness between G  and Ex. As a 
consequence, we will use the relation Match and not Match,: If 
Ic = p + 1, where p is the number of selectors in Gl, we have 
MF(G, Ez) = P(Match(G1, Ez) A Match(SeZ,+l, Ez)) = and, 
according to the multiplication theorem of probability, it results in 
= P(Match(G1, Ez)) . P(Match(Sel,+l, Ez)JMatch(Gl, ET)) = 
which, if the hypothesis P(Match(G1, Ez)) = 1 is satisfied, be- 
comes = P(Match(Sel,+l, Ex)) = MF(SeZ,+l, Ez). 

Let us suppose (6) is true for k  - 1, and now, let us prove it for Ic: 

MF(G, Ex) = 

= P(Match(G1, Ez) A Match(SeZ,+l, Ex)A 

A Match(SeEk-1, Ez) A Match(SeZk, Es)) = 

= P(Match(G1, Ez) A Match(SeZ,+l, Ez)A 

. A Match(Selkel, Ez)). 

. P(Match(Selh! Ez)lMatch(Gl. Es) 

A Match(SeZ,+l. Ez) A 

A Match(Selk-l, Ex)) = . 

Since (6) is considered true for k  - 1 and first keeping account of 
the fact that 

Match(G1, ET) A Match(Sel,+l, ET)/\ 
A Match(SeZk-l, Ez) = Match(Sel,+l, E.z)A 

A Match(Selk-l, Ex) 

(because Match(G1, Ez) is the event with probability equal to one), 
and second, that Match(Selk, Ex) is independent from 

Match(SeZ,+l, Ex) A . . . A Match(Selk-1, Ex). 

We finally have 
k-1 

= c  MF(SeZ,. El) P(Match(Selk, Ez)) 
*=*+1 

= c  MF(SeZ,:Er). 
t=p+1 

q.e.d. 

APPENDIX B 
Let us recall the definition (10) given above 

P(EQUAL(g,. e)) = P(&g,. X1 2 6(gz, e)). 

Henceforth, in order to simplify our notation, we will use g instead 
of gz. As has already been stated, (1B) specializes according to both 
the type of domain to which g and e belong and the probability 
distribution of the domain values. 

By assuming that the probability distribution is uniform and 
remembering the definition of 6 for nominal domains, we have 

P(EQUAL(g, e)) = 
P(G, X) 2 G7, e)) = 

P(a7. Xl 2 0) ife=g 
P(b(g,X) 2 1) = (C - 1)/C if e # g 

GW 

where C is the number of elements of the domain. 
For ordinal domains, (1B) becomes 

P(EQUAL(g, e)) = 

P( lord(g) - ord(X)I 2 lord(g) - ord(e)l) = 

which can be rewritten in a simpler form by denoting ord(g), ord(e), 
and ord(X) with g, e, and X, respectively: 

= POg - Xl Z I9 - 4). (3B) 

First Case: g = e 

P(EQUAL(g, e)) = P(lg - X1 2 0) = 1. (49 

Second Case: g > e 

P(lg - XI 2 I9 - el) 
=P(g-X<e-gVg-X=g-eV 

g-X>g-eVg-X=e-g)= 

= P(g - X < e - g) + P(g - X = g - e) 
+ P(g - X = e - g) + P(g - X > g - e) = 
= P(X > 2g - e) + P(X = e) 
+ P(X = 2g - e) + P(X < e) = 
= P(X > 2g - e) + P(X 5 e) = 

= [(C - 2g + e) step(C - 1 - 2g + e) + e + l]/C. ( B) 

Third Case: g < e 

PCIS-XI 2 lg-el)V=P(g-X <g-eVg-X 

=e-gVg-X>C-gVg-Xzg-ee)z 

= p(g - X < g - e) + P(g - X = e - g) 
+ P(g - X > e - g) + P(g - X = g - e) = 
= p(X > e) + P(X = 2g - e) 
+ P(X < 2g - e) + P(X = e) = 
= P(X 5 2g - e) + P(X 2 e) = 

= [(2g - e + 1) . step(2g - e) + C - e]/C w3) 

where step(z) is the following function: 

0 ifz<O 
step(r) = { 1 otherwise. 

Finally, resubstistuting ord(g) and ord(e) to g and e, respectively, 
we have 

P(EQUWg,, e)) = 

I 

[I + ad(e) + (C - 2ord(g,) + ord(e)) 
+tep(C - 1 - 2ord(g,) + ord(e))]/C if g1 > e 

LC’ - ord(e) + (2ord(g,) - ord(e) + 1) 
if g1 = e (7B) 

.step(2ord(g,) - ord(e))]/C if gz < e. 

A geometrical interpretation of (7B) may clarify the formula itself. 
P(EQUAL(g, e)) is the sum of probabilities of domain values not 
falling into a neighborhood of g with radius equal to 6(e, g) (Fig. 1). If 
g is the lowest (highest) value of the domain, then P(EQUAL(g, e)) 
constantly decreases along only one direction, whereas if g is the 
middle value, then P(EQUAL(g, e)) decreases along two directions 
as 6(g, e) increases. This explains why the event e represented in 
Fig. 3 is more probable as a distortion of g1 rather than 92, even if 
it is at the same distance from the two centroids. 
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Fig. 3. Even if e is at the same geometrical distance from ~1 and 42, a WI 
distortion of 91 is more likely than a distortion of 92: 
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