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Abstract. In this paper we propose a novel spatial associative classifier method 
based on a multi-relational approach that takes spatial relations into account. 
Classification is driven by spatial association rules discovered at multiple 
granularity levels. Classification is probabilistic and is based on an extension of 
naïve Bayes classifiers to multi-relational data. The method is implemented in a 
Data Mining system tightly integrated with an object relational spatial database. 
It performs the classification at different granularity levels and takes advantage 
from domain specific knowledge in form of rules that support qualitative spatial 
reasoning. An application to real-world spatial data is reported. Results show 
that the use of different levels of granularity is beneficial. 

1   Introduction 

The rapidly expanding amount of spatial data gathered by collection tools, such as 
satellite systems or remote sensing systems have paved the way for advances in spa-
tial data structures [12], spatial reasoning [8] and computational geometry [23] to 
serve multiple tasks including storage and sophisticated treatment of real-world ge-
ometry in a spatial database. A spatial database contains (spatial) objects that are 
characterized by a geometrical representation (e.g. point, line, and region in a 2D 
context) as well as several non-spatial attributes. The widespread use of spatial data-
bases in real-world applications (e.g geo-marketing or environmental analysis) is 
leading to an increasing interest in Spatial Data Mining, i.e. in mining interesting and 
useful but implicit knowledge. Classification of spatial objects is a fundamental task 
in Spatial Data Mining, where training data consists of multiple target spatial objects 
(primary data), possibly spatially-related with other non-target spatial objects (secon-
dary data). The goal is to learn the concept associated with each class on the basis of 
the interaction of two or more spatially-referenced objects or space-dependent 
attributes, according to a particular spacing or set of arrangements [15]. 

While a lot of research has been conducted, both in propositional and multi-
relational setting, on mining classification models from data eventually stored in mul-
tiple tables of a relational database, only a few works deal with classification models 
to be discovered in spatial database. Indeed, mining spatial classification models 
presents two main sources of complexity, that is, the implicit definition of spatial 
relations and the granularity of the spatial objects. The former is due to the fact that 
the geometrical representation (e.g. point, line, and region in a 2D context) and the 
relative positioning of spatial objects with respect to some reference system, define 
implicitly spatial relations of different nature, such as directional and topological. 
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Modeling these spatial relations is a key challenge in classification problems that arise 
in spatial domains [24]. Indeed, both the attribute values of the object to be classified 
and the attribute values of spatially related objects may be relevant for assigning an 
object to a class from a given set of classes. The second source of complexity refers to 
the fact that spatial objects can be described at multiple levels of granularity. For 
instance, UK census data can be geo-referenced with respect to the hierarchy of areal 
objects:  

ED → Ward →  District →  County, 

based on the inside relationship between locations. Therefore, some kind of 
taxonomic knowledge of task-relevant geographic layers may also be taken into 
account to obtain descriptions at different granularity levels (multiple-level 
classification). 

In this paper we propose a novel spatial classification method based on a multi-
relational approach that takes spatial relations into account. Classification is probabil-
istic and is based on the extension of naive Bayes classifiers to multi-relational data. 
Classification rules are automatically generated by means of a spatial association rule 
discovery system characterized by the capability of generating association rules at 
multiple levels of granularity. In this way, the proposed method can deal with both 
sources of complexity presented above. The proposed method has been implemented 
in a Data Mining system tightly integrated with an object-relational spatial database. 
It can perform the classification at different levels of granularity and takes advantage 
from domain specific knowledge expressed in form of rules to support qualitative 
spatial reasoning. Finally, it handles categorical as well as numerical data through a 
contextual discretization method.  

The paper is organized as follows. In the next section we discuss the background of 
this research and some related works. The mining of multi-level spatial association 
rules for classification purpose is presented in Section 3 while the multi-relational 
Naïve Bayes classification is described in Section 4. Section 5 describes the system 
architecture. Finally, an application is presented in Section 6 and some conclusions 
are drawn. 

2   Background and Motivations 

The problem of classifying spatial objects has been investigated by some researchers. 
Ester et al. [10] proposed a neighbourhood graph based extension of decision trees 
that considers both non-spatial attributes of the classified objects and relations with 
neighbouring objects. However, the proposed method does not take into account hier-
archical relations defined on spatial objects as well as non-spatial attributes (e.g. 
number of residents) of neighbouring objects. In contrast, Kopersky [15] described an 
efficient method that classifies spatial objects by considering both spatial and hierar-
chical relations between spatial objects and takes into account non-spatial attributes 
for neighbouring objects. However this method suffers from severe limitations due to 
the restrictive representation formalism known as single-table assumption [26]. More 
specifically, it is assumed that data to be mined are represented in a single table of a 
relational database, such that each row (or tuple) represents an independent unit of the 
sample population and columns correspond to properties of units. This requires that 
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non-spatial properties of neighboring objects be represented in aggregated form caus-
ing a consequent loss of information and a change in the units of analysis. 

In [20], the authors proposed to exploit the expressive power of predicate logic to 
represent both spatial relations and background knowledge, such as spatial hierar-
chies. In addition the logical notions of generality order and of downward refinement 
operator on the space of patterns may be profitably used to define both the search 
space and the search strategy. For this purpose, the ILP system ATRE [21] has been 
integrated in the data mining server of a prototypical Geographical Information Sys-
tem (GIS), named INGENS, which allows, among other things, to mine classification 
rules for geographical objects stored in an object-oriented database. Training is based 
on a set of examples and counterexamples of geographic concepts of interest to the 
user (e.g., ravine or steep slopes). The first-order logic representation of the training 
examples is automatically extracted from maps, although it is still controlled by the 
user who can select a suitable level of abstraction and/or aggregation of data by 
means of a data mining query language [19]. 

Similarly, the discovery of spatial association rules, that is spatial and a-spatial re-
lationships among spatial objects, has been investigated both in propositional and 
multi-relational setting. A spatial association rule is a rule of the form “P→Q (s, c)” 
such that both P (body) and Q (head) are sets of literals, some of which refer to spatial 
properties, and P∩Q = ∅. P∪Q is named pattern. The support s estimates the prob-
ability p(P∪Q), while the confidence c estimates the probability p(Q|P).  

Koperski and Han [14] implemented the module Geo-associator of the spatial data 
mining system GeoMiner that mines rules from data represented in a single relation 
(table) of a relational database. In contrast, in [16], the authors proposed an ILP ap-
proach to spatial association rules discovery. The algorithm SPADA (Spatial Pattern 
Discovery Algorithm), reported in their work, allows the extraction of multi-level 
spatial association rules, that is, association rules involving spatial objects at different 
granularity levels. SPADA has been implemented as a module of the system ARES 
(Association Rules Extractor from Spatial data) [2], which also supports users in the 
complex processes of extracting spatial objects from the spatial database, specifying 
the background knowledge on the application domain and defining a search bias.  

Despite the fact that spatial association rule mining is a descriptive task, while 
classification of spatial objects is a predictive task, recent studies in Data Mining and 
Machine Learning have investigated the opportunity of combining association rules 
discovery and classification, by taking advantage of employing association rules for 
classification purpose [6, 3]. This approach is named associative classification [17] 
and several advantages are reported in the literature for this approach. First, differ-
ently from most of classifiers as decision trees, association rules consider the simulta-
neous correspondence of values of different attributes, hence allowing to achieve 
better accuracy [3]. Second, it makes association rule mining techniques applicable to 
classification tasks. Third, the user can decide to mine both association rules and a 
classification model in the same data mining process [17]. Fourth, the associative 
classification approach helps to solve understandability problems [4, 25] that may 
occur with some classification methods. Indeed, many rules produced by standard 
classification systems are difficult to understand because these systems often use only 
domain independent biases and heuristics, which may not fulfil user’s expectation. 
With the associative classification approach, the problem of finding understandable 
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rules is reduced to a post-processing task [17]; filtering based on user-defined rule 
template may help in extracting understandable rules. 

Although associative classification methods present several interesting aspects, 
they also suffer from some limitations. First, most of methods reported in the litera-
ture work under the single-table assumption, which is a strong limitation in those 
application domains characterized by a spatial dimension. Second, they have a cate-
gorical output which convey no information on the potential uncertainty in classifica-
tion. Small changes in the attribute values of an object being classified may result in 
sudden and inappropriate changes to the assigned class. Missing or imprecise infor-
mation may prevent a new object from being classified at all. In alternative, to over-
come these deficiencies, we propose to use a probabilistic classifier that returns, in 
addition to the result of the classification, the confidence of the classification. This is 
an important aspect because of the increasing attention on the ROC curve analysis 
[11] that defines an evaluation measure to take into account the confidence of the 
classification. Third, reported methods require additional heuristics to identify the 
most effective rule at classifying a new object. Alternatively, in the proposed ap-
proach, the evaluation of the class is based on the computation of probabilities taking 
into account all the rules.  

3   Multi-level Spatial Association Rules 

In [2] the problem of mining spatial association rules has been formalized as follows:  
Given a spatial database (SDB), a set S of reference objects tagged with a class la-

bel cj ∈ {C1,C2,..., CL}, some sets Rk, 1≤k≤m, of task-relevant objects, a background 
knowledge BK including some spatial hierarchies Hk on objects in Rk, M granularity 
levels  in the descriptions (1 is the highest while M is the lowest), a set of granularity 
assignments ψk which associate each object in Hk with a granularity level, a couple of 
thresholds minsup[l] and minconf[l] for each granularity level, a language bias LB that 
constrains the search space;  

Find strong multi-level spatial association rules, that is, association rules involving 
spatial objects at different granularity levels.  

The reference objects are the main subject of the description, that is, the 
observation units, while the task relevant objects are spatial objects that are relevant 
for the task in hand and are spatially related to the former. The sets Rk typically 
correspond to layers of the spatial database, while hierarchies Hk define is-a (i.e., 
taxonomical) relations of spatial objects in the same layer (e.g. river is-a water body). 
Objects of each hierarchy are mapped to one or more of the M user-defined 
description granularity levels in order to deal uniformly with several hierarchies at 
once. Both frequency of patterns and strength of rules depend on the granularity level 
l at which patterns/rules describe data. Therefore, a pattern P (s%) at level l is 
frequent if s≥minsup[l] and all ancestors of P with respect to Hk are frequent at their 

corresponding levels. An association rule Q → R (s%, c%) at level l is strong if the 
pattern Q∪R (s%) is frequent and c≥ minconf[l].  

The problem above is solved by the algorithm SPADA [16] that operates in three 
steps for each granularity level: i) pattern generation; ii) pattern evaluation; iii) rule 
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generation and evaluation. SPADA takes advantage of statistics computed at granular-
ity level l when computing the supports of patterns at granularity level l+1. 

In the system ARES (http://www.di.uniba.it/~malerba/software/ARES/index.htm) 
SPADA has been loosely coupled with a spatial database, since data stored in the 
SDB Oracle Spatial are pre-processed and then represented in a deductive database 
(DDB). For instance, spatial intersection between two objects X and Y is represented 
by the extensional predicate crosses(X,Y). In this way, the expressive power of first-
order logic in databases is exploited to specify both the background knowledge BK, 
such as spatial hierarchies and domain specific knowledge, and the language bias LB. 
Spatial hierarchies allow to face with one of the main issues of spatial data mining, 
that is, the representation and management of spatial objects at different levels of 
granularity, while the domain specific knowledge stored as a set of rules in the inten-
sional part of the DDB supports qualitative spatial reasoning. On the other hand, the 
LB is relevant to allow the user to specify his/her bias for interesting solutions, and 
then to exploit this bias to improve both the efficiency of the mining process and the 
quality of the discovered rules. In SPADA, the language bias is expressed as a set of 
constraint specifications for either patterns or association rules. Pattern constrains 
allow to specify a literal or a set of literals that should occur one or more times in 
discovered patterns. During the rule generation phase, patterns that do not satisfy a 
pattern constraint are filtered out. Similarly, rule constraints are used do specify liter-
als that should occur in the head or body of discovered rules.  

In a more recent release of SPADA (3.1) a new rule constraint has been introduced 
in order to specify the maximum number of literal that should occur in the head of a 
rule. In this way users may define the head structure of a rule requiring the presence 
of exactly a specific literal and nothing more. In the case this literal describes the 
class label, multi-level spatial association rules discovered by ARES may be used for 
classification. 

4   Naïve Bayes Classification 

Once a set of rules has been extracted for each level, it is used in the construction of a 
naïve Bayesian classifier [5], which aims to classify any target object o∈S by maxi-
mizing the posterior probability P(Ci|o) that o is of class Ci,  that is:    

class(o)= arg maxi P(Ci|o) 

By applying the Bayes theorem, P(Ci|o) can be reformulated as follows: 

P(Ci|o) = 
)(oP

))P(o|CP(C ii  (1) 

The term P(o|Ci) is estimated by means of the naïve Bayes assumption:  

P(o|Ci)=P(o1,o2,… ,om|Ci)=P(oi|Ci) ×P(o2|Ci) ×…×P(om|Ci) 

where o1,o2,…,om represent the set of the properties, different from the class, used to 
describe the object. This assumption is clearly false if the predictor variables are sta-
tistically dependent. However, even in this case, the naïve Bayesian classifier can give 
good results [5]. 
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In (1) the value P(Ci) is the prior probability of the class Ci. Since P(o) is inde-
pendent of the class Ci, it does not affect f(o), that is, 

class(o)= arg maxi ))P(o|CP(C ii  (2) 

However, this formulation of the problem holds in the single-table assumption data 
representation formalism, where an object represents an independent unit of the sam-
ple population described by means of a set of properties. In the multi-relational setting 
[7], the target object is related to other non-target objects. In order to take into account 
the relations of the target object, a modification of the problem formulation is neces-
sary. For this purpose, a key role is played by the extracted association rules. In par-
ticular, the idea is to consider the set of rules to guide the computation of P(o|Ci). 

Given the object o∈S, we consider the subset of the extracted rules that can be used 
to classify o. More formally, we consider the subset R of rules whose body is satisfied 
by the object to be classified both in terms of the values of properties of involved 
spatial objects and in terms of the spatial relations between objects. For example, if S 
is the set of wards in a district, a ward w satisfies the rule:  

mortality_rate(A, low) ! wards_relatedTo_waters(A, B), 
waters_typewater(B, river), cars_per_person(A, high) 

when w is spatially related (intersects) to a river and is characterized by a high aver-
age number of cars per person. 

We use R to estimate P(o|Ci). In particular, we estimate P(o|Ci) by means of the 
probabilities associated to both spatial relations (e.g. wards_relatedTo_waters(A,B)) 
and properties (e.g. waters__typewater(B,RIVER), cars_per_person(A,high)) associ-
ated to each rule in R.  

For instance, if R = {R1, R2}, where R1 and R2 are two association rules of class Ci 
extracted by SPADA:        

R1: 2,11,10,1 ,: βββ −          R2: 2,21,20,2 ,: βββ −  

where 
1,1β  and 

2,1β  are spatial relations,
2,1β and

2,2β  are properties and 
0,1β =

0,2β (class) 

then )|CRRP( i},{ 21 = )|( 2,22,11,21,10,1 iCP βββββ ∩∩∩∩ =   

)|()|( 1,21,10,12,22,11,21,10,1 ii CPCP ∩∩∩∩⋅∩∩ ββββββββ  

The first term takes into account the relations of the rules while the second term refers 
to the conditional probability of satisfying the property predicates in the rules given 
the relations. By means of the naïve Bayes assumption, the probabilities can be factor-
ized as follows: 

)|()|()|( 1,21,11,21,10,1 iii CPCPCP βββββ ⋅=∩∩  

)|()|()|( 1,21,12,21,21,12,11,21,10,12,22,1 iii CPCPCP ∩∩⋅∩∩=∩∩∩∩ βββββββββββ  

Since 
2,1β  and 

2,2β do not depend from 
1,2β  and 

1,1β  respectively, then: 

)|()|()|( 1,22,21,12,11,21,10,12,22,1 iii CPCPCP ∩⋅∩=∩∩∩∩ βββββββββ  

By generalizing to a set of rules we have: 

∏ ∏
∈

=
||

, ),)|(()|()(
Rk j

ikjkikiii )C|relationsP(propertyCrelationsP)P(CCoPCP

 
(3) 
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where the term relationsk represents the event that the set of spatial relations ex-
pressed in the k-th rule is satisfied, while the term propertyk,j represents the event that 
the j-th property of the k-th rule is satisfied. 

If relationsk= { relation(Set1,Set2) | Set1,Set2∈ {S}∪{Rk, 1≤k≤m}, Set1≠ Set2 } is a 
set of binary relations between spatial objects (either task relevant or reference) in-
volved in the k-th rule, the probability P(relationsk|Ci) is computed by means of the 
naïve Bayes assumption: 

P(relationsk|Ci) = ∏
∈ ||

)|),((
21

krelationsl
ill CSetSetrelationP  

where:  

|'||'|

|)','(|
))','(()|),((

21

21

2121

ll

ll
llill SetSet

SetSetrelation
SetSetrelationPCSetSetrelationP

⋅
==          (4) 

where Set'l is a subset of objects in Setl that are related, by means of spatial relations, 
with objects in S of class Ci, while |)','(|

21 ll SetSetrelation  is the number of relations 

between objects of 
1

'lSet  and objects of  
2

'lSet . 

To compute the probability )C|relationsP(property ikjk ,,
 in (3), we use the Laplace 

estimation: 

FCrelations

Cpropertyrelations
)C|relationsP(property

ik

ijkk
ikjk +∧

+∧∧
=

||

1||
, ,

,
            (5) 

where F is the number of possible admissible values of the property. Laplace’s esti-
mate is used in order to avoid null probabilities in equation (2). In practice, the value 
at the nominator is the number of target objects of class Ci that are related to other 
spatial objects by means of spatial relations expressed in relationsk and for which 
propertyk,j is satisfied. The value of the denominator is the number of target objects of 
class Ci that are related to other spatial objects by means of spatial relations expressed 
in relationsk plus F. 

In order to avoid the problem that the same relation or the same property is consid-
ered more than once in the computation of probabilities in formula (3), the values 
computed in formula (4) and (5) are effectively determined and included in formula 
(3) only if the values have not been computed before.  

5   A Spatial Associative Classification Framework 

The integration of multi-level spatial association rules discovery with naïve Bayesian 
classification is realized in a spatial associative classification system based on a 
client-server model (see Fig. 1). Both the spatial association rule miner SPADA and 
the multi-relational naïve Bayes classifier are on the server side, so that several data 
mining tasks can be run concurrently by multiple users. SPADA fully exploits the 
flexibility of ILP to specify the background knowledge BK (i.e hierarchies and do-
main specific knowledge) as well as the language bias LB (i.e. search constraints). 
Hierarchies are expressed by a collection of ground atoms and represent spatial ob-
jects at different granularity level while domain specific knowledge is expressed as 
sets of definite clauses and support a spatial qualitative reasoning. Conversely, search 
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constraints are used to bias the search in order to fulfil user expectations. In this 
framework, constraints are also used to partially fix the structure of extracted rules in 
order to discover spatial association rules that contain only the class label in the head. 
For each granularity level, extracted rules concur in building the spatial classification 
model by exploiting a multi-relational naïve Bayesian classifier integrated with the 
SDB.  

On the client side, the framework includes a Graphical User Interface (GUI), which 
provides users with facilities for controlling all parameters of the mining process.  

SPADA, like many other association rule mining algorithms, cannot process nu-
merical data properly, so it is necessary to perform a discretization of numerical fea-
tures with a relatively large domain. For this purpose, the framework includes in the 
client side the module RUDE (relative unsupervised discretization algorithm) which 
discretizes a numerical attribute of a relational database in the context defined by 
other attributes [18].  

The SDB (Oracle Spatial) can run on a third computation unit. Many spatial fea-
tures (relations and attributes) can be extracted from spatial objects stored in the SDB. 
Feature extraction requires complex data transformation processes to make spatial 
relations explicit and representable as ground Prolog atoms. Therefore, a middle layer 
module, named FEATEX (Feature Extractor), is required to make possible a loose 
coupling between SPADA and the SDB by generating features of spatial objects 
(points, lines, or regions). The module is implemented as an Oracle package of proce-
dures and functions, each of which computes a different feature [2]. Transformed data 
are also stored in SDB tables.   

6   The Application: Mining North West England Census Data 

In this section we present a real-world application concerning the mining of both 
spatial association rules and classification models for geo-referenced census data 
interpretation. We consider both census and digital map data provided in the context 
of the European project SPIN! (Spatial Mining for Data of Public Interest) [22]. They 
concern Greater Manchester, one of the five counties of North West England (NWE). 
Greater Manchester is divided into ten metropolitan districts, each of which is decom-
posed into censual sections or wards, for a total of two hundreds and fourteen wards. 
Spatial analysis is enabled by the availability of vectorized boundaries of the 1998 
census wards as well as by other Ordnance Survey digital maps of NWE, where sev-
eral interesting layers are found, namely road net, rail net, water net, urban area and 
green area (see Table 1).  

Fig. 1. Spatial associative classification system. 
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Census data are available at ward level. They provide socio-economic statistics 
(e.g. mortality rate, that is, the percentage of deaths with respect to the number of 
inhabitants) as well as some measures describing the deprivation level. Indeed, the 
material deprivation of an area may be estimated according to information provided 
by Census combined into single index scores [1]. Over the years different indices 
have been developed for different applications: the Jarman Underprivileged Area 
Score was designed to measure the need for primary care, the indices developed by 
Townsend and Carstairs have been used in health-related analyses, while the Depart-
ment of the Environment's Index (DoE) has been used in targeting urban regeneration 
funds. Thereby, we have considered the values of Jarman index, Townsend index, 
Carstairs index and DoE index. The higher the index value the more deprived a ward 
is. Both index values as well as mortality rate are all numeric and have been 
discretized by means of RUDE. More precisely, Jarman index, Townsend index, DoE 
index and Mortality rate have been automatically discretized in (low, high), while 
Carstairs index has been discretized in (low, medium, high). 

For this application, we have considered Greater Manchester wards as reference 
(target) objects. In particular, three different experimental settings have been analysed 
by varying the target property among mortality rate, Jarman index and DoE index. We 
have chosen Jarman and DoE indices because they are defined on the basis of differ-
ent social factors. For each setting, we have focused our attention on investigating 
dependencies between the target property and socio-economic factors represented in 
census data as well as geographical factors represented in linked topographic maps. 
These dependencies are detected in form of spatial association rules having only the 
target property in the head. Rules in this form may be employed for spatial subgroup 
mining, that is, discovery of interesting groups of spatial objects with respect to a 
certain property of interest [13] as well as for classification purpose.  

For this analysis, we have formulated queries involving the FEATEX relate func-
tion to compute topological relationships between reference objects and task relevant 
objects. For instance, a relationship extracted by FEATEX is crosses(ward_135, ur-
bareaL_151), where ward_# denotes a specific Greater Manchester ward, while ur-
banareaL# refers to a large urban area crossing the interested ward. The topological 
relationship crosses is computed according to the 9-intersection model [9]. The num-
ber of computed relationships is 784,107.  

To support a spatial qualitative reasoning, a domain specific knowledge (BK) has 
been expressed in form of a set of rules. Some of these rules are: 

crossed_by_urbanarea(X,Y) :- connects(X,Y), is_a(Y, urban_area).  … 
crossed_by_urbanarea(X,Y) :- inside(X,Y), is_a(Y, urban_area). 

Table 1. Geographic layers. 

Layer name Geometry 
Road net A-road; B-road; Motorway; Primary road Line 
Rail net Railway Line 

Urban area Large urban area; Small urban area Line 
Green area Wood; Park: Line 
Water net Water; River; Canal Line 

Greater Manchester Ward Ward Region 
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Here the use of the predicate is_a hides the fact that a hierarchy has been defined 
for spatial objects which belong to the urban area layer. In detail, five different 
hierarchies have been defined to describe the following layers: road net, rail net, water 
net, urban area and green area (see Fig. 2). The hierarchies have depth three and are 
straightforwardly mapped into three granularity levels. They are also part of the BK. 

 

 

Fig. 2. Spatial hierarchies defined for road net, water net, urban area and green area. 

Finally, we have specified a language bias (LB) both to constrain the search space 
and to filter out uninteresting spatial association rules. In particular, we have ruled out 
all spatial relations (e.g. crosses, inside, and so on) directly extracted by FEATEX and 
asked for rules containing topological predicates defined by means of BK. Moreover, 
by combining the rule filters head_constraint([mortality_rate(_),1,1) and 
rule_head_length(1,1) we have asked for rules containing only mortality rate in the 
head. Similar considerations apply to the classification tasks concerning the Jarman 
and the DoE indices. In addition, we have specified the maximum number K of re-
finement steps (i.e. number of literals in the body of rules). 

For each setting, a ten-fold cross validation has been performed and results are 
evaluated.  For instance, by analyzing spatial association rules extracted with parame-
ters minsup = 0.1, minconf = 0.6 we discover  the following rule: 

mortality_rate(A, high) ← is_a(A, ward), crossed_by_urbanarea(A, B), 
is_a(B, urban_area), townsendidx_rate(A, high)     (40.72%, 72.47%) 

which states that a high mortality rate is observed in a ward A that includes an urban 
area B and has a high value of Townsend index. The support (40.72%) and the high 
confidence (72.47%) confirm a meaningful association between a geographical factor, 
such as living in deprived urban areas, and a social factor, such as the mortality rate. It 
is noteworthy that SPADA generates the following rule: 

mortality_rate(A, high) ← is_a(A,ward), crossed_by_urbanarea(A,B),  
is_a(B, urban_area)      (56.7%, 60.77%) 

which has a greater support and a lower confidence. These two association rules show 
together an unexpected association between Townsend index and urban areas. Appar-
ently, this means that this deprivation index is unsuitable for rural areas. 

At a granularity level 2, SPADA specializes the task relevant object B by generat-
ing the following rule which preserves both support and confidence: 

mortality_rate(A, high) ← is_a(A, ward), crossed_by_urbanarea(A, B), 
 is_a(B, urban_areaL), townsendidx_rate(A,high)  (40.72%, 72.47%) 

This rule clarifies that the urban area B is large. 
The average predictive accuracy of mined multi-level spatial classification model 

is evaluated by varying minsup, minconf  and  K for each setting,. Results are reported 
in Table 2, 3 and 4. In the first setting, results show that, predictive accuracy of the 
Bayesian classifier is slightly better than the accuracy (0.567) of the trivial classifier 
that returns the most probable class. We explain this result with the inherent complex-
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ity of the task. Different conclusions can be drawn from both Jarman and DoE results, 
where the Bayesian classifiers significantly improve the trivial classifiers (acc. 0.542 
and 0.625, respectively). Another consideration is that the average predictive accura-
cies of classification models discovered at higher granularity levels (i.e. level=2) are 
always better or equal to the corresponding accuracies at lowest levels. This means 
that the classification model takes advantage of the use of the hierarchies defined on 
spatial objects. Furthermore, results show that by decreasing the number of extracted 
rules (higher support and confidence) we have lower accuracy. This means that there 
are several rules that strongly influence classification results and often such rules are 
not characterized by high values of support and confidence. Finally, we observe that, 
generally, the higher the number of refinement steps, the better the model. 

7   Conclusions 

In this paper we have presented a spatial associative classifier that combines spatial 
association rule discovery with naïve Bayes classification. Domain specific knowl-
edge may be defined as a set of rules that makes possible the qualitative spatial rea-
soning. In addition, hierarchies on spatial objects are expressed by a collection of 
ground atoms and are exploited to mine classification models at different granularity 
levels. Search constraints are used to bias the spatial association rules discovery in 
order to fulfil user expectations. In particular, constraints are also used to partially fix 
the structure of extracted rules in order to discover spatial association rules that con-
tain only the class label in the head. Finally, for each granularity level, extracted rules 
concur in building the spatial classification model by exploiting a multi-relational 
naïve Bayesian classifier integrated with the SDB.  

Table 2. Mortality Rate average accuracy. 

MORTALITY Avg. Accuracy K=4 K=5 K=6 K=7 
Level=1 0.5932 0.5915 0.5932 0.628 minsup=0.1 

minconf=0.6 Level=2 0.5932 0.596 0.5932 0.628 
Level=1 0.5932 0.602 0.5932 0.623 minsup=0.2 

minconf=0.65Level=2 0.5932 0.602 0.5932 0.623 

Table 3. Jarman average accuracy. 

JARMAN Avg. Accuracy K=4 K=5 K=6 K=7 
Level=1 0.8176 0.8176 0.8176 0.8176 minsup=0.1 

minconf=0.6 Level=2 0.8176 0.8176 0.8176 0.8176 
Level=1 0.528 0.528 0.528 0.528 minsup=0.2 

minconf=0.8 Level=2 0.528 0.528 0.6272 0.6705 

Table 4. DoE average accuracy. 

DoE Avg. Accuracy K=4 K=5 K=6 K=7 
Level=1 0.912 0.912 0.912 0.912 minsup=0.1, 

minconf=0.6 Level=2 0.912 0.912 0.912 0.912 
Level=1 0.875 0.875 0.875 0.821 minsup=0.2, 

minconf=0.8 Level=2 0.875 0.9028 0.883 0.874 
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Experiments on real-world spatial data show that the use of different levels of 
granularity generally increases the accuracy of the mined classification model. As 
future work, we intend to frame the work within the context of hierarchical Bayesian 
classifiers, in order to exploit the multi-level nature of extracted association rules. 
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