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Abstract. Spatial data mining is a process used to discover interesting but not 
explicitly available, highly usable patterns embedded in both spatial and non-
spatial data, which are possibly stored in a spatial database. An important 
application of spatial data mining methods is the extraction of knowledge from 
a Geographic Information System (GIS). INGENS (INductive GEographic 
iNformation System) is a prototype GIS which integrates data mining tools to 
assist users in their task of topographic map interpretation. The spatial data 
mining process is aimed at a user who controls the parameters of the process by 
means of a query written in a mining query language. In this paper, we present 
SDMOQL (Spatial Data Mining Object Query Language), a spatial data mining 
query language used in INGENS, whose design is based on the standard OQL 
(Object Query Language). Currently, SDMOQL supports two data mining 
tasks: inducing classification rules and discovering association rules. For both 
tasks the language permits the specification of the task-relevant data, the kind 
of knowledge to be mined, the background knowledge and the hierarchies, the 
interestingness measures and the visualization for discovered patterns. Some 
constraints on the query language are identified by the particular mining task. 
The syntax of the query language is described and the application to a real 
repository of maps is briefly reported.  

1. Introduction 

Spatial data are important in many applications, such as computer-aided design, 
image processing, VLSI, and GIS. This steady growth of spatial data is outpacing the 
human ability to interpret them. There is a pressing need for new techniques and tools 
to find implicit regularities hidden in the spatial data.  

Advances in spatial data structures [7], spatial reasoning [3], and computational 
geometry [22] have paved the way for the study of knowledge discovery in spatial 
data, and, more specifically, in geo-referenced data.  Spatial data mining methods 
have been proposed for the extraction of implicit knowledge, spatial relations, or 
other patterns not explicitly stored in spatial databases [15]. Generally speaking, a 
spatial pattern is a pattern showing the interaction between two or more spatial 
objects or space-dependent attributes, according to a particular spacing or set of 
arrangements [1]. 



Knowledge discovered from spatial data may include classification rules, which 
describe the partition of the database into a given set of classes [14], clusters of spatial 
objects ([11], [24]), patterns describing spatial trends, that is, regular changes of one 
or more non-spatial attributes when moving away from a given start object [6], and 
subgroup patterns, which identify subgroups of spatial objects with an unusual, an 
unexpected, or a deviating distribution of a target variable [13]. The problem of 
mining spatial association rules has been tackled by [14], who implemented the 
module Geo-associator of the spatial data mining system GeoMiner [9].  

A database perspective on spatial data mining is given in the work by Ester et al. 
[6], who define a small set of database primitives for the manipulation of 
neighbourhood graphs and paths used in some spatial data mining systems. An 
Inductive Logic Programming (ILP) perspective on spatial data mining is reported in 
[21], which proposes a logical framework for spatial association rule mining.  

GIS offers an important application area where spatial data mining techniques can 
be effectively used. In the work by Malerba et al. [20], it can be seen how some 
classification patterns, induced from georeferenced data, can be used in topographic 
map interpretation tasks. A prototype of GIS, named INGENS [19], has been built 
around this application. In INGENS the geographical data collection is organized 
according to an object-oriented data model and is stored in a commercial Object 
Oriented DBMS (ODBMS).  

INGENS data mining facilities support sophisticated end users in their topographic 
map interpretation tasks. In INGENS, each time a user wants to query its database on 
some geographical objects not explicitly modelled, he/she can prospectively train the 
system to recognize such objects and to create a special user view. Training is based 
on a set of examples and counterexamples of geographical concepts of interest to the 
user (e.g., ravine or steep slopes). Such concepts are not explicitly modelled in the 
map legends, so they cannot be retrieved by simple queries. Furthermore, the user has 
serious difficulty formalizing their operational definitions. Therefore, it is necessary 
to rely on the support of a knowledge discovery system that generates some plausible 
“definitions”. The sophisticated user is simply asked to provide a set of (counter-) 
examples (e.g., map cells) and a number of parameters that define the data mining 
task more precisely.   

An INGENS user should not have problems, due to the integration of different 
technologies, such as data mining, OODBMS, and GIS. In general, to solve any such 
problems the use of data mining languages has been proposed, which interface users 
with the whole system and hide the different technologies [10]. However, the problem 
of designing a spatial mining language has received little attention in the literature. To 
our knowledge, the only spatial mining language is GMQL (Geo Mining Query 
Language) [16], which is based on DMQL (Data Mining Query Language) [8]. These 
languages have both been developed for mining knowledge from relational databases, 
so SQL remains the milestone on which their syntax and semantics are built.  

This paper presents SDMOQL (Spatial Data Mining Object Query Language) a 
spatial mining query language for INGENS sophisticated users. Its main 
characteristics are the following:  
�� It is based on OQL, the standard defined by ODMG (Object Database Management 

Group) for designing object oriented models (www.odmg.org). 



�� It interfaces relational data mining systems [2] that work with first-order 
representations of input data and output patterns. 

�� It separates the logical representation of spatial objects from their physical or 
geometrical representation.  

The paper is organized as follows. INGENS architecture and conceptual database 
schema are described in the next section, while in Section 3 the spatial data mining 
process in INGENS is introduced. In Section 4 the syntax of SDMOQL is presented, 
while in Section 5 complete example of SDMOQL’s use in INGENS is described. 
Finally, related works are discussed in Section 6. 

2. INGENS architecture and conceptual database schema 

The three-layered architecture of INGENS is illustrated in Fig. 1. The interface 
layer implements a Graphical User Interface (GUI), a java applet which allows the 
system to be accessed by the following four categories of users:  
�� Administrators, who are responsible for GIS management.  
�� Map maintenance users, whose main task is updating the Map Repository. 
�� Sophisticated end users, who can ask the system to learn operational 

definitions of geographical objects not explicitly modelled in the database.  
�� Casual end users, who occasionally access the database and may need 

different information each time. Casual users cannot train INGENS. 
Only sophisticated end-users are allowed to discover new patterns by using 

SDMOQL. 
The application enablers layer makes several facilities available to the four 

categories of INGENS users. In particular, the Map Descriptor is the application 
enabler responsible for the automated generation of first-order logic descriptions of 
some geographical objects. Descriptors generated by a Map Descriptor are called 
operational. The Data Mining Server provides a suite of data mining systems that can 
be run concurrently by multiple users to discover previously unknown, useful patterns 
in geographical data. In particular, the Data Mining Server provides sophisticated 
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Fig. 1. INGENS three-layered software architecture 



users with an inductive learning system, named ATRE [18], which can generate 
models of geographical objects from a set of training examples and counter-examples. 
The Query Interpreter allows any user to formulate a query in SDMOQL. The query 
can refer to a specific map and can contain both predefined predicates and predicates, 
whose operational definition has already been learned. Therefore, it is the Query 
Interpreter’s responsibility to select the objects involved from the Map Repository, to 
ask the Map Descriptor to generate their logical descriptions and to invoke the 
inference engine of the Deductive Database, in order to check conditions expressed by 
both predefined and learned predicates. The Map Converter is a suite of tools which 
supports the acquisition of maps from external sources. Currently, INGENS can 
export maps in Drawing Interchange Format (DXF) by Autodesk Inc. 
(www.autodesk.com) and can automatically acquire information from vectorized maps 
in the MAP87 format, defined by the Italian Military Geographic Institute (IGMI) 
(www.nettuno.it/fiera/igmi/igmit.htm). Since IGMI’s maps contain static information on 
orographic, hydrographic and administrative boundaries alone, a Map Editor is 
required to integrate and/or modify this information.  

The resource layer controls the access to both the Knowledge Repository and the 
Map Repository. The former contains the operational definitions of geographical 
objects induced by the Data Mining Server. In INGENS, different users can have 
different definitions of the same geographical object. Knowledge is expressed 
according to a relational representation paradigm and managed by an XSB-based 
deductive relational DBMS [23]. The Map Repository is the database instance that 
contains the actual collection of maps stored in the GIS. Geographic data are 
organized according to an object-oriented data model. The object-oriented DBMS 
used to store data is a commercial one (ObjectStore 5.0 by Object Design, Inc.), so 
that full use is made of a well-developed, technologically mature non-spatial DBMS. 
Moreover, an object-oriented technology facilitates the extension of the DBMS to 
accommodate management of geographical objects. The Map Storage Subsystem is 
involved in storing, updating and retrieving items in and from the map collection. As 
a resource manager, it represents the only access path to the data contained in the 
Map Repository and which are accessed by multiple, concurrent clients. 

Each map is stored according to a hybrid tessellation – topological model. The 
tessellation model follows the usual topographic practice of superimposing a regular 
grid on a map, in order to simplify the localization process. Indeed, each map in the 
repository is divided into square cells of the same size.  

In the topological model of each cell it is possible to distinguish two different 
structural hierarchies: physical and logical. The physical hierarchy describes the 
geographical objects by means of the most appropriate physical entity, that is: point, 
line or region. The logical hierarchy expresses the semantics of geographical objects, 
independent of their physical representation. In the Map Repository, the logical 
hierarchy is represented by eight distinct classes of the database schema, each of 
which correspond to a geographic layer in a topographic map, namely hydrography, 
orography, land administration, vegetation, administrative (or political) boundary, 
ground transportation network, construction and built-up area. Objects of a layer are 
instances of more specific classes to which it is possible to associate a unique physical 
representation. For instance, the administrative boundary layer describes objects of 
one of the following subclasses: city, province, county or state.  



Finally, each geographical object in the map has both a physical structure and a 
logical structure. The former is concerned with the representation of the object on 
some media by means of a point, a line or a region. Therefore, the physical structure 
of a cell associates the content of a cell with the physical hierarchy. On the other 
hand, the logical structure of a cell associates the content with the logical hierarchy, 
such as river, city, and so on. The logical structure is related to the map legend. 

3. Spatial Data Mining process in INGENS 

The spatial data mining process in INGENS (see Fig. 2) is aimed at a user who 
controls the parameters of the process. Initially, the query written in SDMOQL is 
syntactically and semantically analyzed. Then the Map Descriptor generates a highly 
conceptual qualitative representation of the raw data stored in the object-oriented 
database (see Fig. 3). This representation is a conjunctive formula in a first-order 
logic language, whose atoms have the following syntax:  f(t1,…,tn) = value, where f is 
a function symbol called descriptor, ti are terms and the value is taken from the range 
of f. A set of descriptors used in INGENS is reported in Table 1. They can be roughly 
classified in spatial and non-spatial.  

According to their nature, it is possible to spatial descriptors as follows:  
�� Geometrical, if they depend on the computation of some metric/distance. Their 

domain is typically numeric. Examples are line_shape and extension. 
�� Topological, if they are relations that are invariant under the topological 

transformations (translation, rotation, and scaling). The type of their domain is 
nominal. Examples are region_to_region and point_to_region. 

�� Directional, if they concern orientation. The type of their domain can be either 
numerical or nominal. An example is geographic_direction. 

�� Locational, if they concern the location of objects. Locations are represented by 
numeric values that express co-ordinates. There are no examples of locational 
descriptors in Table 1. 

Some spatial descriptors are hybrid, in the sense that they merge properties of two 
or more categories above. For instance, the descriptor line_to_line that expresses 
conditions of parallelism and perpendicularity is both topological (it is invariant with 
respect to translation, rotation and scaling) and geometrical (it is based on the angle of 
incidence).  
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Fig. 2.  Spatial data mining process in INGENS. 



In INGENS geo-referenced objects can also be described by three non-spatial 
descriptors are color, type_of and subtype_of. Finally, the descriptor part_of 
associates the physical structure to a logical object. For instance, in the description: 

type_of(s1)=street , part_of(s1,x1)=true, part_of(s1,x2)=true 
the constant s1 denotes a street which is physically represented by two lines, which 
are referred to as constants x1 and x2.  

The operational semantics of the descriptors is based on a set of methods defined in 
the object-oriented model of the map repository. More details on the computational 
methods for their extraction are reported in [17]. 

This qualitative data representation can be easily translated into Datalog with built-
in predicates [18]. Thanks to this transformation, it is possible to use the output of the 
Map Descriptor module in many relational data mining algorithms, which return 
spatial patterns expressed in a first-order language. Finally, the results of the mining 
process are presented to the user. The graphical feedback is very important in the 
analysis of the results.  

contain(c11,pc494_11)=true, ..., contain(c11,ss296_11)=true, contain(c11,qu61_11)=true, 
type_of(pc494_11)=parcel, ..., type_of(ss296_11)=street, type_of(qu61_11)=quote, 
subtype_of(pc494_11)=cultivation, ..., subtype_of(ss296_11)=cart_road, 
subtype_of(ss296_11)=cart_road, 
color(pc494_11)=black, ..., color(ss296_11)=black, color(qu61_11)=black, 
part_of(pc494_11,x1)=true, ..., part_of(ss296_11,x68)=true, part_of(qu61_11,x69)=true, 
altitude(x8)=97.00, ..., altitude(x69)=102.00, 
extension(x3)=101, ..., extension(x68)=45.00, 
geographic_direction(x3)=north, ..., geographic_direction(x68)=east, 
line_shape(x3)=straight, ..., line_shape(x68)=straight, 
area(x1)=99962,..., area(x66)=116662, 
density(x1)=medium, ..., density(x66)=high, 
distance(x3,x68)=80.00, ..., distance(x62,x68)=87.00, 
line_to_line(x3,x68)=almost_parallel, ..., line_to_line(x62,x68)=almost_parallel, 
region_to_region(x1,x9)=disjoint, ..., region_to_region(x45,x66)=disjoint, 
line_to_region(x16,x1)=adjacent, ..., line_to_region(x67,x66)=intersect, 
point_to_region(x2,x1)=outside, ..., point_to_region(x69,x66)=outside 
 

Fig. 3. Raster and vector representation (above) and symbolic description of cell 11 
(below). The cell is an example of a territory where there is a system of farms. The 
cell is extracted from a topographic chart (Canosa di Puglia 176 IV SW - Series 
M891) produced by the Italian Geographic Military Institute (IGMI) at scale 1:25,000 
and stored in INGENS. 



Table 1. Set of descriptors extracted by the Map Descriptor module in INGENS. 

Domain 
Feature Meaning Type 

Type Values 

contain(C,L) Cell C contains a 
logical object L 

Topological 
relation Boolean �true, false� 

part_of(L,F) 
Logical object L is 

composed by 
physical object F 

Topological 
relation Boolean �true, false� 

type_of(L) Type of L Non-spatial 
attribute Nominal 33 nominal values 

subtype_of(L) Specialization of 
the type of L 

Non-spatial 
attribute Nominal 

101 nominal values 
specializing the 
type_of domain 

color(L) Color of L Non-spatial 
attribute Nominal �blue, brown, black� 

area(F) Area of F Geometrical 
attribute Linear [0..MAX_AREA] 

density(F) Density of F Geometrical 
attribute Ordinal Symbolic names 

chosen by an expert 

extension(F) Extension of F Geometrical 
attribute Linear [0..MAX_EXT] 

geographic_direction(F) Geographic 
direction of  F 

Directional 
attribute Nominal 

�north, east, 
north_west, 
north_east� 

line_shape(F) Shape of the linear 
object F 

Geometrical 
attribute Nominal �straight, cuspidal, 

curvilinear � 

altitude(F) Altitude of F Geometrical 
attribute Linear [0.. MAX_ALT] 

line_to_line(F1,F2) 
Spatial relation 

between two lines 
F1 and F2 

Hybrid 
relation Nominal 

�almost parallel, 
almost 

perpendicular� 

distance(F1,F2) 
Distance between 

two lines F1 and F2 
Geometrical 

relation Linear [0..MAX_DIST] 

region_to_region(F1,F2) 
Spatial relation 

between two 
regions F1 and F2 

Topological 
relation Nominal 

�disjoint, meet, 
overlap, covers, 
contains, equal, 

covered_by, inside� 

line_to_region(F1,F2) 
Spatial relation 

between a line F1 
and a region F2 

Hybrid 
relation Nominal �along_edge, 

intersect� 

point_to_region(F1, F2) 
Spatial relation 

between a point F1 
and a region F2 

Topological 
relation Nominal 

�inside, outside, 
on_boundary, 

on_vertex� 
 



4. Design of a data mining language for INGENS 

SDMOQL is designed to support the interactive data mining process in INGENS. 
Designing a comprehensive data mining language is a challenging problem because 
data mining covers a wide spectrum of tasks, from data classification to mining 
association rules. The design of an effective data mining query language requires a 
deep understanding of the power, limitation and underlying mechanisms of the 
various kinds of data mining tasks. A data mining query language must incorporate a 
set of data mining primitives designed to facilitate efficient, fruitful knowledge 
discovery. Seven primitives have been considered as guidelines for the design of 
SDMOQL. They are: 

1. the set of objects relevant to a data mining task,  
2. the kind of knowledge to be mined, 
3. the set of descriptors to be extracted from a digital map 
4. the set of descriptors to be used for pattern description     
5. the background knowledge to be used in the discovery process, 
6. the concept hierarchies,  
7. the interestingness measures and thresholds for pattern evaluation, and  
8. the expected representation for visualizing the discovered patterns. 

 
These primitives correspond directly to as many non-terminal symbols of the 

definition of an SDMOQL statement, according to an extended BNF grammar. 
Indeed, the SDMOQL top-level syntax is the following:  

<SDMOQL> ::= <SDMOQL_Statement>; { <SDMOQL_Statement>;} 
<SDMOQL_Statement> ::=<Spatial_Data_Mining_Statement> 

| <Background_Knowledge> 
| <Hierarchy> 
| <Result_Displaying> 

<Spatial_Data_Mining_Statement> ::= <Object_Specification_Query> 
 mine <Kind_of_Pattern> 
 analyze <Primitive_descriptors> 
 with descriptors <Pattern_descriptors> 
              [<Background_Knowledge>] 

                  {<Hierarchy>} 
              [with <Interestingness_Measures>] 
              [<Result_Displaying>] 

where “[]” represents 0 or one occurrence and “{}” represents 0 or more occurrences, 
and words in bold type represent keywords. In sections 4.2 to 4.8 the detailed syntax 
for each data mining primitive is both formally specified and explained through 
various examples of possible mining problems. 

4.1 Data specification: general principles 

The first step in defining a data mining task is the specification of the data on which 
mining is to be performed. Data mining query languages presented in the literature 



allows the user to specify, through an SQL query, a single data table, where each row 
represents one unit of analysis1 while each column corresponds to a variable (i.e. an 
attribute) of the unit of analysis. Generally, no interaction between units of analysis is 
assumed.  

The situation is more complex in spatial data mining. First, units of analysis are 
spatial objects, which means that they are characterized, among other things, by 
spatial properties.  

Second, attributes of some spatial objects in the neighborhood of, or contained in, a 
unit of analysis may affect the values taken by attributes of the unit of analysis. 
Therefore, we need to distinguish units of analysis, which are the reference objects of 
an analysis, from other task-relevant spatial objects, and we need to represent 
interactions between them. In this context, the single table representation supported 
by traditional data mining query languages is totally inadequate, since different 
geographical objects may have different properties, which can be properly modelled 
by as many data tables as the number of object types.  

Third,  in traditional data mining relatively simple transformations are required to 
obtain units of analysis from the units of observation2 explicitly stored in the database. 
The unit of observation is often the same as the unit of analysis, in which case no 
trasformation at all is required. On the contrary, in GIS research, the wealth of 
secondary data sources creates opportunities to conduct analyses with data from 
multiple units of observation. For instance, a major national study uses a form that 
collects information about each person in a dwelling and information about the 
housing structure, hence it collects data for two units of observation: persons and 
housing structures. From these data, different units of analysis may be constructed: 
household could be examined as a unit of analysis by combining data from people 
living in the same dwelling or family could be treated as the unit of analysis by 
combining data from all members in a dwelling sharing a familial relationship. Units 
of analysis can be constructed from units of observation by making explicit the spatial 
relations such as topological, distance and direction relations, which are implicitly 
defined by the location and the extension of spatial objects. 

Fourth, working at the level of stored data, that is, geometrical representations 
(points, lines and regions) of geographical objects, is often undesirable. The GIS user 
is interested in working at higher conceptual levels, where human-interpretable 
properties and relations between geographical objects are expressed. A typical 
example is represented by the possible relations between two roads, which either 
cross each other, or run parallel, or can be confluent, independently of the fact that 
they are physically represented as “lines” or “regions” in a map.  

To solve these problems, in SDMOQL the specification of the geographical 
objects (both reference and task-relevant) of interest for the data mining task (first 
primitive) is separated from the description of the units of analysis (third and fourth 
primitives). Each unit of analysis is described by means of both (non-)spatial 
properties and spatial relations between selected objects. First-order logic is adopted 

                                                           
1 In statistics, the unit of analysis is the basic entity or object about which generalizations are to 

be made based on an analysis and for which data are collected in the form of variables. 
2 The unit of observation is the entity in primary research that is observed and about which 

information is systematically collected. 



as representation language, since it overcomes the limitations of the single table 
representation. Some basic descriptors (see Table 1) are generated by the Map 
Descriptor, to support complex transformations of the data stored in the database into 
descriptions of units of analysis. Their specification is given in the third primitive. 
However, these descriptors refer to the physical representation of geographical objects 
of interest. To produce high-level conceptual descriptions involving objects of the 
logical hierarchy, the user can specify a set of new descriptors on the basis of those 
extracted by the Map descriptors. New descriptors are specified in the background 
knowledge (fifth primitive) by means of logic programs. Moreover, it is possible to 
specify that final patterns should be described by means of these new descriptors in 
the fourth primitive.  

4.2 Task-relevant object specification 

The selection of geographical objects is performed by means of simplified OQL 
queries with a SELECT-FROM-WHERE structure, namely: 

<Data_Specification_Query> ::= <Query_Statement>  
{ UNION <Query_Statement>} 

<Query_Statement>::= SELECT <Object> {, <Object>} 
  FROM <Class> {, <Class>} 

   [WHERE <Conditions>] 

The SELECT clause should return objects of a class in the database schema 
corresponding to a cell, a layer or a type of logical object. Therefore, the selection of  
object properties such as the attribute river_name of a river, is not permitted. 
Moreover, the selected objects must belong to the same symbolic level (cell, layer or 
logic object). More formally the FROM clause can contain either a group of Cells or a 
set of Layers, or a set of Logic Objects, but never a mixture of them. Whenever the 
generation of the descriptions of objects belonging to different symbolic levels is 
necessary, the user can obtain it by means of the UNION operator. The following are 
examples of valid data queries: 
Example 1:Cell-level query. The user selects cell 26 from the topographic map of 
Canosa (Apulia) and the Map Descriptor generates the description of all the objects in 
this cell. 

SELECT x   
FROM x in Cell  
WHERE x->num_cell = 26 AND x->part_map->map_name = “Canosa”  

Example 2: Layer-level query. The user selects the Orography layer from the 
topographic map of Canosa and the Construction layer from any map. The Map 
Descriptor generates the description of the objects in these layers. 

SELECT x, y  
FROM x in Horography, y in Construction 
WHERE x->part_map->map_name = “Canosa” 



Example 3: Object-level query. The user selects the objects of the logic class River 
and the objects of type motorway (instances of the class Road), from cell 26 of the 
topographic map of Canosa. The Map Descriptor generates the description of these 
objects.  

SELECT x, y   
FROM x in River, y in Road 
WHERE x->part_map->map_name = “Canosa”  
AND   y->part_map->map_name = “Canosa”   
AND   x->log_incell->num_cell = 26 AND  y->log_incell->num_cell = 26 
AND   y->type_road = “motorway” 

The above queries do not present semantic problems. However, the next example is 
an OQL query which is syntactically correct but selects data that cannot be a valid 
input to the Map Descriptor. 

Example 4: Semantically ambiguous query. 

SELECT x, y  
FROM x in Cell, y in River 
WHERE x->num_cell  = 26 AND  y->log_incell->num_cell = 26 

This query selects the object cell 26 and all rivers in it. However, it is unclear 
whether the Map Descriptor should describe the entire cell 26 or only the rivers in it, 
or both. In the first case, a cell-level query must be formulated (see example 1). In the 
second case, an object-level query produces the desired results (see example 3). In the 
(unusual) case that both kinds of descriptions have to be generated, the problem can 
be solved by the UNION operator, applied to the cell-level query and the object-level 
query. Therefore, the following constraint is imposed on SDMOQL: the selected data 
must belong to the same symbolic level (cell, layer or logic object). More formally the 
FROM clause can contain either a group of Cells or a set of Layers, or a set of Logic 
Objects, but never a mixture of them.  

The next example is useful to present the constraints imposed on the SELECT 
clause. 

Example 5:  Attributes in the SELECT clause. 

SELECT x.name_river  
FROM x in River 

The query selects the names of all the rivers stored in the database. The result set 
contains attributes and not geographic objects to be described by a set of attributes 
and relations. In order to select proper input data for the Map Descriptor, the SELECT 
clause should return objects of a class in the database schema corresponding to a cell, 
a layer or a type of logical object. It might be observed that the presence of an 
attribute in the SELECT clause can be justified when its type corresponds to a class. 
For instance, the following query: 

SELECT x->River  
FROM x in Cell 
WHERE x->num_cell = 26 



concerns all rivers in cell 26. Nevertheless, thanks to inverse relations (inverse 
members) characterizing an object model, it is possible to reformulate it as follows:  

SELECT x  
FROM x in River 
WHERE x->log_incell->num_cell = 26 

In this way, all the above constraints should be respected.  

4.3 The kind of knowledge to be mined 

The kind of knowledge to be mined determines the data mining task in hand. For 
instance, classification rules or decision trees are used in classification tasks, while 
association rules or complex correlation coefficients are extracted in association tasks. 
Currently, SDMOQL supports the generation of either classification rules3 or 
association rules, which means that only two different mining problems can be solved 
in INGENS: the former has a predictive nature, while the latter is descriptive. The 
top-level syntax is defined below: 

<Kind_of_Pattern> ::= <Classification_Rules> | <Association_Rules>  

The non-terminal <Classification_Rules> specifies that patterns to be mined 
concern a classification task 

<Classification_Rules> ::=  classification as <Pattern_Name> 
 for <Classification_Concept> {, <Classification_Concept> } 

In a classification task, the user may be interested in inducing a set of classification 
rules for a subset of the classes (or concepts) to which training examples belong. 
Typically, the user specifies both “positive” and “negative” examples, that is, he/she 
specifies examples of two different classes, but he/she is interested in classification 
rules for the “positive” class alone. In this case, the subset of interest for the user is 
specified in the <Classification_Concept> list.  

In SDMOQL, spatial association rule mining tasks are specified as follows: 
<Association_Rules> ::= association as <Pattern_Name> 

key is <Descriptor>  
As pointed out, spatial association rules define spatial patterns involving both 

reference objects and task-relevant objects [ 21]. For instance, a user may be 
interested in describing a given area by finding associations between large towns 
(reference objects) and spatial objects in the road network, hydrography, and 
administrative boundary layers (task-relevant objects). The atom denoting the 
reference objects is called key atom. The predicate name of the key atom is specified 
in the key is clause. 

                                                           
3Here, the term classification rule denotes the result of a supervised discrimination process. On 

the contrary, Han & Kamber [9,10] use the same term to denote the result of an unsupervised 
clustering process. 



4.4 Specification of primitive and pattern descriptors 

The analyze clause specifies what descriptors, among those automatically generated 
by the Map Descriptor, can be used to describe the geographical objects extracted by 
means of the first primitive. The syntax of the analyze clause is the following: 

analyze <Primitive_descriptors> 
where: 

<Primitive_descriptors> ::= <Descriptor> {, <Descriptor>}  
parameters <Parameter_specs>{, <Parameter_specs>} 

<Descriptor> ::= <Predicate>/<Arity> 
<Parameter_specs> ::= <Parameter_name> threshold <Integer> 

The specification of a set of parameters is required by the Map Descriptor to 
automatically generate some primitive descriptors.   

The language used to describe generated patters is specified by means of the 
following clause: 

with descriptors <Pattern_descriptors> 
where: 

<Pattern_descriptors> ::= <Descriptor_specification>  
 {; <Descriptor_specification>} 

<Descriptor_specification> ::= <Descriptor> [cost <Integer>] | 
          <Descriptor> [with <Terms_Spec>]  
<Terms_Spec>::= <Term_Spec>{,<Term_Spec>} 
<Term_Spec> ::= <Constant_Type> |<Variable_Type> 
<Constant_Type> ::= constant [<Value>] 
<Variable_Type> ::= variable mode <Variable_Mode> role < Variable_Role> 
<Variable_Mode> ::= old | new | diff 
<Variable_Role> ::= ro | tro 

The specification of descriptors to be used in the high-level conceptual descriptions 
can be of two types: either the name of the descriptor and its relative cost, or the name 
of the descriptor and the full specification of its arguments. The former is appropriate 
for classification tasks, while the latter is required by association rule mining tasks. 

An example of a classification task activated by an SDMOQL statement is reported 
in Fig. 4. In this case, the Map Descriptor generates a symbolic description of some 
cells by using the predicates listed in the analyze clause. These are four concepts to be 
learned, namely class(_)=system_of_farms, class(_)=fluvial_landscape, 
class(_)=.royal_cattle_track, and class(_)=.system_of_cliffs. Here the function 
symbol class is unary and “_” denotes the anonymous variables à la Prolog.  The user 
can provide examples of these four classes, as well as of other classes. Examples of 
systems of farms are considered to be positive for the first concept in the list and 
negative for the others. The converse is true for examples of fluvial landscapes, royal 
cattle track and system of cliffs. Examples of other classes are considered to be 
counterexamples of all classes for which rules will be generated. The only 
requirement for the INGENS user is the ability to detect and mark some cells that are 
instances of a class. Indeed, INGENS GUI allows the user both to formulate and run 
an SDMOQL query and to associate the description of each cell with a class.  



Rules generated for the four concepts are expressed by means of descriptors 
specified in the with descriptors list. They are specified by Prolog programs on the 
basis of descriptors generated by the Map Descriptor. For instance, the descriptor  

SELECT x FROM x in Cell WHERE x->num_cell = 5 
UNION SELECT x  FROM x in Cell WHERE x->num_cell = 8 
UNION SELECT x FROM x in Cell WHERE x->num_cell = 11 
UNION SELECT x FROM x in Cell WHERE x->num_cell = 15 
UNION SELECT x FROM x in Cell WHERE x->num_cell = 16 
UNION SELECT x FROM x in Cell WHERE x->num_cell = 17 
UNION SELECT x FROM x in Cell WHERE x->num_cell = 27 
UNION SELECT x FROM x in Cell WHERE x->num_cell = 28 
UNION SELECT x FROM x in Cell WHERE x->num_cell = 34 
UNION SELECT x FROM x in Cell WHERE x->num_cell = 83 
UNION SELECT x FROM x in Cell WHERE x->num_cell = 84 
UNION SELECT x FROM x in Cell WHERE x->num_cell = 89 
mine classification as MorphologicalElements  
for class(_)=.system_of_farms, class(_)=.fluvial_landscape, class(_)=.royal_cattle_track, 
class(_)=.system_of_cliffs 
analyze contain/2, part_of/2, type_of/1, subtype_of/1, color/1, … , 

line_to_line/2, distance/2, line_to_region/2, …, point_to_region/2 
parameters 

maxValuePointRegionClose  threshold   300, 
minValueLineLong  threshold   100, 
maxValueLinesClose  threshold   300, 
minValueRegionLarge  threshold   5000, 
maxValueRegionClose  threshold   500 

with  descriptors  contain/2  cost  1; class/1 cost  0; subtype_of/1 cost  0;  
parcel_to_parcel/2  cost  0; slope_to_slope/2 cost 0; … 
canal_to_parcel/2 cost 0; …; font_to_parcel/2 cost 0; … 

define knowledge 
 font_to_parcel(Font,Parcel) = Topographic_Relation :-                              

type_of(Font) = font, part_of(Font,Point) = true, 
type_of(Parcel) = parcel, part_of(Parcel,Region) = true, 
point_to_region(Point,Region) = Topographic_Relation. 

… 
criteria 
intermediate minimize negative_example_covered with tolerance 0.6, 
intermediate maximize positive_example_covered  with tolerance 0.4, 
intermediate maximize selectors_of_clause         with tolerance 0.3, 
intermediate minimize cost                         with tolerance 0.4 
final maximize positive_example_covered    with tolerance 0.0, 
final maximize selectors_of_clause         with tolerance 0.0, 
final minimize cost                         with tolerance 0.0 
maxstar     threshold   25,  
consistent  threshold   500,  
max_ps      threshold   11 
recursion   =   off,  
verbosity   =   { off, off, on, on, on } 

Fig. 4. A complete SDMOQL query for a classification task. In this case, the 
INGENS user marks 5,11,34,42 as instances of the class “system of farms” and the 
cells 1, 2, 3, 4, 15, 16, 17 as instances of the class “other”. 



font_to_parcel/2 has two arguments which denote two logical objects, a font and a 
parcel. The topological relation between the two logical objects is defined by means 
of the clause: 

font_to_parcel(Font,Parcel) = Topographic_Relation   :-                             
type_of(Font) = font, part_of(Font,Point) = true, 
type_of(Parcel) = parcel, part_of(Parcel,Region) = true,  
point_to_region(Point,Region) = Topographic_Relation. 

In association rule mining tasks, the specification of pattern descriptors correspond 
to the specification of a collection of atoms: predicateName(t1,..., tn), where  the name 
of the predicate corresponds to a <Descriptor>,  while <Term_Spec> describes each 
term ti, which can be either a constant or a variable. When the term is a variable the 
mode and role clauses indicate respectively the type of variable to add to the atom and 
its role in a unification process. Three different modes are possible: old when the 
introduced variable can be unified with an existing variable in the pattern, new when 
it is a not just present in the pattern, diff when it is a new variable but its values are 
different from the values of a similar variable in the same pattern. Furthermore, the 
variable can fill the role of reference object (ro) or task-relevant object (tro) in a 
discovered pattern during the unification process. The is key clause specifies the atom 
which has the key role during the discovery process. The first term of the key object 
must be a variable with mode new and role ro. The following is an example of 
specification of pattern descriptors defined by an SDMOQL statement for :  

with descriptors  
contain/2 with  variable mode old role ro,  variable  mode new role tro; 
type_of/2 with  variable mode diff role tro, constant; 

            is key with  variable mode new role ro, constant cultivation;               

This specification helps to select only association rules where the descriptors 
contain/2 and type_of/2 occur. The first argument of a type_of is always a diff variable 
denoting a spatial object, and it can play the roles of both ro and tro, whereas the 
second argument, i.e. the type of object, is the constant ‘cultivation’, if the first 
argument is a reference object, otherwise it is any other constant. The predicate 
contain links the ro of type cultivation with other spatial objects contained in the 
cultivation. The following association rule: 

type_of(X,cultivation), contain(X,Y), type_of(Y,olive_tree), X�Y � contain(X,Z),  
type_of(Z,almond_tree), X�Z, Y�X 

satisfies the constraints of the specification and express the co-presence of both 
almond trees and olive-trees in some extensive cultivations.   

4.5 Syntax for Background Knowledge and Concept Hierarchy Specification 

Many data mining algorithms use background knowledge or concept hierarchies to 
discover interesting patterns. Background knowledge is provided by a domain expert 
on the domain to be mined. It can be useful in the discovery process. The SDMOQL 
syntax for background knowledge specification is the following: 



<Background_Knowledge> ::= [<New_Knowledge>] {<Use_Knowledge>} 
<New_Knowledge> ::= define knowledge <Clause> {, <Clause>} 
<Use_Knowledge> ::= use background knowledge of users <User> {, <User>} 

           on <Descriptor> {, <Descriptor>} 

In INGENS, the user can define a new background knowledge expressed as a set of 
definite clauses; alternatively, he/she can specify a set of rules explicitly stored in a 
deductive database and possibly mined in a previous step. The following is an 
example of a background knowledge specification: 
Example 7: Definition of close_to and import of the definition of ravine. 

close_to(X,Y)=true :- region_to_region(X,Y)=meet. 
close_to(X,Y)=true :- close_to(Y,X)=true.  
use background knowledge of users UserName1 on ravine/1 

Concept hierarchies allow knowledge mining at multiple abstraction levels. In 
order to accommodate the different viewpoints of users regarding the data, there may 
be more than one concept hierarchy per attribute or dimension. For instance, some 
users may prefer to organize census districts by wards and districts, while others may 
prefer to organize them according to their main purpose (industrial area, residential 
area, and so on). There are four major types of concept hierarchies [8]: 
�� Schema hierarchies, which define total or partial orders among attributes in the 

database schema. 
�� Set-grouping hierarchies, which organize values for given attributes or dimensions 

into groups of constants or range values. 
�� Operation-derived hierarchies, which are based on operations specified by experts 

or data mining systems.  
�� Rule-based hierarchies, which occur when either a whole concept or a portion of it 

is defined by a set of rules. 
In SDMOQL a specific syntax is defined for the first two types of hierarchies:   

<Hierarchy> ::= [<New_Hierarchy>] [<Use_Hierarchy>] 
<New_Hierarchy> ::= define hierarchy <Schema_Hierarchy> 

 | define hierarchy for <Set_Grouping_Hierarchy> 
<Use_Hierarchy> ::= use hierarchy <Name_Hierarchy> of user <User> 

 
The following example shows how to define some hierarchies in SDMOQL. 

Example 8:A definition of a schema hierarchy for some activity-related attributes and 
a set-grouping hierarchy for the descriptor distance.  

define hierarchy Activity as 
   level1:{business_activity, other_activity} < level0: Activity; 

        level2:{low_business_activity,high_business_activity}<level1:business_activity; 
define hierarchy Distance for distance/2 as 

 level1:{far, near} < level0: Distance; 
 level2:{0, 1999} < level1: near; 
             level2:{2000, +inf} < level1: far;  
The activity hierarchy can be used to mine multi-level spatial association rules [21]. 



4.4 Syntax for Interestingness Measure Specification 

The user can control the data mining process by specifying interestingness measures 
for data patterns and their corresponding thresholds. The SDMOQL syntax is the 
following: 
<Interestingness_Measures> ::= [<Criteria>] [<Thresholds>] {<Settings>} 

<Criteria> ::= criteria (intermediate | final)   (minimize | maximize)  
<Parameter> with tolerance <Value> {,(intermediate | final)  
(minimize | maximize) <Parameter> with tolerance <Value>} 

<Thresholds> ::=<Parameter> threshold <Threshold_Value>  
{, <Parameter> threshold <Threshold_Value>} 

<Settings> ::= <Parameter> = <String_Value> 

Interestingness measures may include: threshold values, weights, search biases in 
the hypotheses space and algorithm-specific parameters. In particular the user can 
bias the search in the hypotheses space by a number of preference criteria, such as the 
maximization of the number of covered examples or the minimization of the number 
of variables in the body of a learned clause. He/she can also set thresholds such as 
confidence, support or number of learned concepts. Finally, the user can set the value 
of a generic input parameter of a data mining algorithm. 

4.5 Syntax for Visualization 

Data mining results should be displayed using rule visualization tools or some 
different output forms. SDMOQL provides the following primitives for displaying 
results in different forms: 

<Result_Displaying> ::= display as <Form>  
[at level <Int_Value> for <Hierarchy_Name> ], 

where <Form> describes the output form, for example, if-then rules or tree. 
Moreover, if a hierarchy is available, mined results can be represented at different 
concept levels.  This is particularly true in the case of multiple-level association rules.  

5. Mining classification rules for topographic map interpretation 

In the previous section, the syntax of SDMOQL has been defined. Here we present a 
data problem concerning the generation of classification rules for topographic map 
interpretation. Let us suppose that a GIS user needs to locate a “sistema poderale” 
(system of farms) in the large territory of his/her interest. This geographical object is 
not present in the GIS model, thus, only the specification of its operational definition 
will allow the GIS to find cells containing a system of farms in a vectorized map. 
Who can provide it? The user is not able to do so for a number of reasons.  



Firstly, providing the GIS with operational definitions of some environmental 
concepts is not a trivial task. Often only declarative and abstract definitions are 
available, which are difficult to compile into database queries.  

Secondly, the operational definitions of some geographical objects are strongly 
dependent on the data model that is adopted by the GIS. Finding relationships 
between density of vegetation and climate is easier with a raster data model, while 
determining the usual orientation of some morphological elements is simpler in a 
topological data model. 

Thirdly, different applications of a GIS require the recognition of different 
geographical elements in a map. Providing the system in advance with all the 
knowledge required for its various application domains is simply illusory, especially 
in the case of wide-ranging projects such as those set up by governmental agencies.  

A solution to these problems can be found in the application of data mining 
techniques. For instance, an INGENS user can train the system to recognize cells with 
systems of farms, by performing the SDMOQL query in Fig. 4. The interpreter 
analyzes the query and verifies its syntactic and semantic correctness. Then the Map 
Descriptor generates a symbolic description for each specified cell (see  Fig. 3) and 
the expert associates each symbolic description with a concept, in order to define the 
training set. Association is made by binding variable terms of one of the four concepts 
to be learned to the constants terms in the descriptions of map cells. This step is 
necessary to create the training set of positive and negative examples for the learning 
system ATRE [18], which is used in INGENS for classification tasks. The user marks 
5, 11, 34 as instances of the class “system of farms”, the cells 8, 16, 17 as instances of 
the class “fluvial landscape”, the cells 15, 27, 28 as instances of the class “royal cattle 
track” and the cells 83, 84, 89 as instances of the class “system of Cliffs”. This 
binding function is supported by INGENS GUI. The training set obtained is input to 
ATRE, which returns the classification rules. With reference to the above query, 
ATRE generates the following clauses:  

class(X1) = system_of_farms � 
contain(X1,X2)= true, 
area_parcel(X2) in [102.787..249.525], 
density_parcel(X2) = high, 
font_to_parcel(X3,X2) = outside, 

“A cell is an example of a system of farms if it contains a parcel (X2) that has an 
area between 102,787 and 249,525 square meters and a high vegetation density, and a 
font (X3) that is outside the parcel.” 

class(X1) = .fluvial_landscape � 
contain(X1,X2) = true, 
extension_road(X3) in [234.0..440.0], 

canal_to_road(X2,X3) = almost_parallel,  
distance_canal_to_road(X2,X3) in [42.0..300.0]. 

“A cell is an example of a fluvial landscape if it contains a canal (X2) and a street 
(X3). The street has an extension between 234.0 and 440.0 meters and is almost 
parallel to the canal. In particular, the distance between the canal and the street is 
between 42.0 and 300.0 meters.” 



 
class(X1) = royal_cattle_track � 

contain(X1,X2) = true, 
extension_road(X2) in [1002.0..1162.0], 
subtype_of(X2) = main_road. 

“A cell is an example of a royal cattle track  if it contains a street (X2) that is a 
main road and has an extension between 1002.0 and 1162.0 meters.” 

class(X1)= system_of_cliffs � 
contain(X1,X2) = true, 
distance_contour_slope_to_contour_slope(X2,X3)in [2.0..74.0], 
extension_contour_slope(X2) in [79.0..307.0]. 

“A cell is an example of a system of cliffs if it contains two contour slopes (X2, 
X3), such that the distance between them is between 79.0 and 307.0 meters. One 
contour slope (X2) has an extension between 2,0 and 74,0 meters.” 

Whether the induced theory is “correct”, that is, whether it classifies correctly all 
other examples of map cells not in the training set is beyond the scope of this work. 
However, it is noteworthy that these rules are coherent with the definitions given by 
town planners for the four morphological concepts of interest [19].   

Operational definitions like those reported above can be used either to retrieve new 
instances of the learned concepts from the Map Repository or to facilitate the 
formulation of a query involving geographical objects not present in map legends. For 
instance, by submitting the following query: 

SELECT  C 
FROM  M in Map, C in Cell, R in Road 
WHERE M->name = “Canosa” AND  C->map = M AND R->log_incell = C  
 AND R->type_road=“main_road” AND class(C) = fluvial_landscape 

the user asks INGENS to find all cells in the Canosa map that are classified as fluvial 
landscape and contain a main road. To check the condition defined by the predicate 
class(C)=fluvial_landscape, the Query Interpreter generates the symbolic description 
of each cell in the map and asks the Query Engine of the Deductive Database to prove 
the goal �class(C)=fluvial_landscape given the logic program above. 

6. Related work 

Several data mining query languages have been proposed in the literature. MSQL  is a 
rule query language proposed by Imielinski and Virmani  [12] for relational 
databases. It satisfies the closure property, that is, the result of a query is a relation 
that can be queried further. Moreover, a cross-over between data and rules is 
supported, which means that there are primitives in the language that can map 
generated rules back to the source data, and vice versa. The combined result of these 
two properties is that a data mining query can be nested within a regular relational 
query. SDMOQL do not allow users to formulate nested queries, however, as pointed 
out at the end of the previous section, it supports some form of cross-over between 



data and mined rules. This is obtained by integrating deductive inferences for 
extracted rules with data selection queries expressed in OQL. 

Another data mining query language for relational databases is DMQL [8]. Its 
design is based on five primitives, namely the set of data relevant to a data mining 
task, the kind of knowledge to be mined, the background knowledge to be used in the 
discovery process, the concept hierarchies, the interestingness measures and 
thresholds for pattern evaluation. As explained in Section 4.1, the design of 
SDMOQL is based on a different set of principles. In particular, the specification of 
data relevant to a data mining task involves a separate specification for the 
geographical objects of interest for the application, for the set of automatically 
generated (primitive) descriptors and for the set of descriptors used to specify the 
patterns. An additional design principle is that of visualization, since in spatial data 
mining it is important to specify whether results have to be visualized or presented in 
a textual form. 

GMQL is based on DMQL and allows the user to specify the set of relevant data 
for the mining process, the type of knowledge to be discovered, the thresholds to filter 
out interesting rules, and the concept hierarchies as the background knowledge [16]. 
In the process of selecting data relevant to the mining task, the user has to specify (1) 
the relevant tables, (2) the conditions that are satisfied by the relevant objects and (3) 
the properties of the objects which the mining process is based on. Conditions may 
involve spatial predicates on topological relations, distance relations and direction 
relations. Although data can be selected from several tables, mining is performed only 
on a single table which result from an SQL query (single table assumption). GMQL 
queries can generate different types of knowledge, namely characteristic rules, 
comparison rules, clustering rules and classification rules. In Koperski’s thesis, an 
extension to association rules was also proposed but not implemented. Differently 
from GMQL, SDMOQL separate the physical representation of geographical objects 
from their logical meaning. Moreover, all observations reported above for DMQL 
applies to GMQL as well.  

Finally, it is noteworthy that some object-oriented extension of DMQL, named 
ODMQL, has also been proposed [4]. The design of ODMQL is based on the same 
primitives used for DMQL, so the main innovation is that each primitive is in an 
OQL-like syntax. Path expressions are supported in ODMQL, while more advanced 
features of object-oriented query languages, such as the use of collections and 
methods, are not mentioned. An interesting aspect of ODMQL, which will be taken 
into account in further developments of SDMOQL, is that some concept hierarchies 
are automatically defined by the inheritance hierarchy of classes.    

7. Conclusions 

In this paper, a spatial data mining language for a prototypical GIS with knowledge 
discovery facilities has been partially presented. This language is based on a 
simplified OQL syntax and is defined in terms of the eight data mining primitives. For 
a given query, these primitives define the set of objects relevant to a data mining task,  



the kind of knowledge to be mined, the set of descriptors to be extracted from a digital 
map, the set of descriptors to be used for pattern description, the background 
knowledge to be used in the discovery process, the concept hierarchies, the 
interestingness measures and thresholds for pattern evaluation, and the expected 
representation for visualizing the discovered patterns. An interpreter of this language 
has been developed in the system INGENS. It interfaces a Map Descriptor module 
that can generate a first-order logic description of selected geographical objects. A 
full example of the query formulation and its results has been reported for a 
classification task used in the qualitative interpretation of topographic maps. An 
extension of this language to other spatial data mining tasks supporting quantitative 
interpretation of maps is planned for the near future. 
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