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Riassunto: L’analisi di dati simbolici generalizza alcuni metodi statistici standard al 
caso di oggetti simbolici (SO). Questi oggetti, informalmente definiti “dati aggregati”, 
poiché sintetizzano le informazioni relative ad un gruppo di individui, possono essere 
confrontati al fine di individuare dei cluster, di classificarli o ordinarli in base al loro 
grado di generalizzazione.  
L’articolo propone un’estensione dell’algoritmo classico di classificazione K-Nearest 
Neighbor a tali oggetti. Il risultato di questo algoritmo è ancora un insieme di oggetti 
simbolici che possono essere studiati mediante altre tecniche di analisi di dati simbolici. 
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1. Introduction 
 
The research activities in the field of data mining aim to study and develop techniques, 
methods and tools to extract useful information from large data sets. Statistical data 
analysis techniques have certainly influenced the growth of those tools that support 
intelligently and automatically the user during data treatment, but most of these 
techniques are designed for a relatively simple situation, where the observation unit is 
an individual (person, object) described by a well-defined set of random variables 
(qualitative or quantitative) each of which result in just one single value. However, in 
many situations, such as privacy, identity or data confidentiality protection, data analysts 
cannot access the single individuals (first-order objects).  
A solution to this problem comes from Symbolic Data Analysis (SDA), which 
generalizes some standard statistical data mining methods, such as those developed for 
classification and clustering tasks, to a form of “aggregated data” named symbolic 
objects (SOs) (Bock and Diday, 2000). In SDA the observation unit is no more an 
individual but a class (second-order object), that is, a group of individuals described by 
a set-valued (interval or multi-valued) or modal variables also termed symbolic or 
descriptive variables. SOs can be divided in two main categories: boolean symbolic 
objects2 (BSO) described only by set-valued variables, and probabilistic symbolic 
objects3 (PSO), described also by modal variables. A set of SOs, which involves the 
same variables to describe different (possibly overlapping) classes of individuals, can be 

                                                           
2 An example of BSO is:  [hair color={white,black}] � [age� [20,29]] � [sex={M,F}] 
3 An example of PSO  is:  [hair color={white(0.6),black(0.4)}] � [age� [20,29]] � [sex={M(1)}] 



described by a single table, called symbolic data table, where rows correspond to 
distinct symbolic data while columns correspond to descriptive variables. 
In this context, there is a rapidly increasing need to extend standard data analysis 
methods (exploratory, graphical representations, clustering, classification) to these 
symbolic data.  
This paper presents the extension of the distance weighted K-Nearest Neighbour (KNN) 
classification algorithm to SOs. The main novelties of the proposed extension are the 
use of a dissimilarity measure between SOs, the automated selection of K on the basis of 
cross-validation, and the output of a symbolic modal variable instead of a single class-
value.   
 
 
2. KNN for Symbolic Objects 
 
The problem to be solved is the following: given a training set of SOs described by p 
modal or Boolean symbolic variables V1, V2, …, Vp and by a single-valued variable C, 
named target or class variable, with domain C, we want to determine the value of a 
modal variable C' with domain C  for a new SO (test case) described by the same set of 
symbolic variables used for the training set, namely V1, V2, …, Vp. The modality of the 
C' is probabilistic, meaning that we associate the new SO with a class probability vector 
whose dimension corresponds to the number of distinct values or classes in C.  
According to the KNN algorithm, the assignment of a value to C' can be based on the 
values taken by C for the K-nearest neighbors of the test case. However, the standard 
KNN algorithm assumes all training cases correspond to points in the p-dimensional 
space �p, and the nearest neighbours of a new case are defined in terms of the standard 
Euclidean distance. Therefore, the extension of KNN to SOs requires the use of a 
dissimilarity measure d for SOs, which cannot be represented as points in �p.  
Many proposals of dissimilarity measures for BSOs have been reported in literature; an 
extensive review of their definitions is reported in  (Esposito et al., 2000), while a 
preliminary comparative study on their suitability to real-world problems is reported in 
(Malerba et al., 2001). Recently, a set of dissimilarity measures has also been proposed 
for the case of PSOs defined by multi-valued variables (Malerba et al., 2002). Their 
definitions are based on different measures of divergence between two discrete 
probability distributions, which are associated to each SO for some multi-valued 
variable Vi. They all fulfil the classical conditions 0=d(a,a)�d(a,b)=d(b,a)<�  for any 
pair of SOs a,b, while the triangle property holds only for some of them. Moreover, 
some dissimilarity measures are also defined for constrained SOs, that is, SOs where 
logical or taxonomical relations exist among variables. This means that our extended 
version of KNN can also properly work on data sets where some form of domain 
knowledge, expressed in the form of simple IF-THEN rules, is available.  
In the classical KNN algorithm, all neighbours equally contribute to the determination 
of the value of the class variable. The proposed extension upgrades the distance-
weighted KNN algorithm, which weights the contribution of each of the K neighbours 
according to their distance to the new case, giving greater weight to closer neighbours.  
The algorithm can be formally described as follows: 



- Given a test object xq to classify and a dissimilarity measure d, let x1, x2,…, xk the 
k training objects most similar to the test object, that is,  the k training objects so 
that d( qx , ix ) is minimal; 

- Let n be the number of all the possible classes. It is possible to distinguish 
among tree different cases:  

1. For all nearest neighbours xi such that d(xq, xi) = 0 (i.e., identical to the 
test case) each C(xi) is equal to the same class c. Then the output class 
probabilities are:  
P( C'(xq)=c )=1 and P( C'(xq)=�j )=0  �j=1,…,n such that �j�c. 

2. Classes C(xi) for all nearest neighbours xi such that d(xq, xi) = 0 can differ 
between them. Then the output class probabilities are estimated on the 
basis of the class values taken by nearest neighbour identical to the test 
case: 

P( C'(xq)=�j ) = 
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3. For all nearest neighbours xi, d(xq, xi) � 0 for i=1..k. Let i�  = 1/d(xq, xi) 
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(�j, C(xi))=1 if C(xi)=�j; 


(�j, C(xi))=0 otherwise.  Then the output class probabilities are 
estimated as follows: 
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In the third case, the class probability is weighted by the sum of weights associated to all 
neighbours of that class. The weight of a neighbour is computed as the inverse of its 
distance from xq. Normalization by the summation of all weighted class probabilities is 
required to guarantee that the above measure satisfies properties of a probability 
measure.  
By weighting distances in KNN, there is no harm in allowing all training examples to 
have an influence on the classification of the xq, because very distant examples will have 
very little effect on the class probability estimates. When all training examples are 
considered when classifying a new test case, the algorithm works as a global method, 
while when the nearest training examples are considered, the algorithm works as a local 
method, since only data local to the area around xq contribute to the class probabilities. 
Local methods have significant advantages when the probability measure defined on the 
space of symbolic objects for each class is very complex, but can still be described by a 
collection of less complex local approximations. 
Therefore, it is clear that the choice of K is critical, since it represents a trade-off 
between local and global approximations of the probability measures. In order to 
support the user in the selection of the optimal K, a cross-validation approach is 



adopted, where different values of K are considered.  As proposed by Gora and Wojna 
(2002), the search for the optimal K can be reduced from the range [1,|TrainingSet|] to 
the range [1, || tTrainingSe ], without loosing too much accuracy in the approximation. 
For this reason, the proposed algorithm is called Optimal Local Distance-Weighted 
Symbolic K-NN   (OLD-SKNN). 
Another typical problem of K-NN algorithms is that the distance between cases is 
calculated on all p variables. When most of variables are irrelevant for the task at hand, 
the distance between neighbours turns out to be dominated by them. One approach to 
overcoming this problem is to weight each variable differently when calculating the 
distance between two cases. Some dissimilarity measures between SOs that take into 
account the weights associated to symbolic variables have already been defined, 
therefore, they offer a natural solution to this problem, known as the curse of 
dimensionality.    
Finally, it is noteworthy that during the testing phase the extended KNN takes several 
SOs described by p variables as input and returns as many SOs described by p+1 
symbolic variables. This means that the output of the proposed algorithm can be subject 
to further analysis procedures developed in SDA. In particular, it is possible to apply an 
extension of Sammon’s algorithm (1969) to SOs in order to plot in a bidimensional 
plane the testing cases for each class.  
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