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SUMMARY

Several methods have been proposed in the literature for decision tree (post)-pruning. This article presents
a unifying framework according to which any pruning method can be de"ned as a four-tuple (Space,
Operators, Evaluation function, Search strategy), and the pruning process can be cast as an optimization
problem. Six well-known pruning methods are investigated by means of this framework and their common
aspects, strengths and weaknesses are described. Furthermore, a new empirical analysis of the e!ect of
post-pruning on both the predictive accuracy and the size od induced decision trees is reported. The
experimental comparison of the pruning methods involves 14 datasets and is based on the cross-validation
procedure. The results con"rm most of the conclusions drawn in a previous comparison based on the
holdout procedure. Copyright ( 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Various heuristic methods have been proposed for the construction of a decision tree, among
which the most widely known is the top-down approach [1]. In top-down induction of decision
trees (TDIDT) it is possible to identify three tasks [2]:

(1) the assignment of each leaf with a class,
(2) the selection of the splits according to a selection measure, and
(3) the decision when to declare a node terminal or to continue splitting it.

The third task is deemed critical for the construction of good decision trees. There are two
di!erent ways to cope with it: Either prospectively deciding when to stop the growth of a tree or
retrospectively reducing the size of a fully expanded tree by pruning some branches. Methods that
control the growth of a decision tree during its construction are called pre-pruning methods, while
the others are called post-pruning methods [3].
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Many post-pruning (or simply pruning) methods have been proposed in the literature, some of
which are: reduced error pruning, minimum error pruning, pessimistic error pruning, critical value
pruning, cost-complexity pruning, and error-based pruning. A previous comparative study has
already pointed out both their similarities and their di!erences and investigated the real e!ect of
some of these methods on both the predictive accuracy and the size of the induced tree [4, 5]. In
that study, optimally pruned trees have been used to evaluate the maximum improvement
produced by an ideal pruning algorithm.

The main purpose of this article is that of providing a further comparison of these pruning
methods. Their search spaces and search strategies are investigated, in order to analyse their
computational complexity, as well as to point out the biases that a!ect the search strategies.

In the next section, the search space of pruning methods is introduced. It can be represented as
a directed acyclic graph whose nodes correspond to simpli"ed versions of a tree ¹

.!9
, while its

edges correspond to the application of a pruning/grafting operator. By de"ning an evaluation
function on the set of graph vertices, the problem of tree pruning can be cast as the problem of
searching the vertex with the highest value of f. Section 3 is devoted to the presentation of some
well-known pruning methods in the unifying framework of search in the state space. Finally, the
data sets considered, the experimental procedure based on cross-validation, and the experimental
results are reported in Section 4.

2. A UNIFYING FRAMEWORK FOR DESCRIBING PRUNING METHODS

Before discussing the search space explored by pruning methods, some useful notations are
introduced.

A (rooted) tree can be formally de"ned as a "nite set of nodes, N
T
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0
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n
N, and an
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T
for which the following properties hold:
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(2) ∀t
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0
, there exists only one node t

i
3N

T
such that St

i
, t

j
T3B

T
.

The set N
T

can be partitioned into the set I
T

of internal nodes and the set L
T

of leaves.
A particular subset of I

T
is E

T
, the set of internal nodes whose children are all in L

T
. Following

Breiman et al.'s notation, we will denote with ¹
t

the branch of ¹ containing t and all its
descendants (see Figure 1).

Given a set O of N observations O
i
, each of which is described by an (M#1)-dimensional

feature vector, SX
1
, 2 , X

M
, CT, it is possible to build tree-structured classi"ers, named decision

trees.
De,nition 1 (Decision tree). A decision tree is a particular tree ¹ in which:

f each node t is associated with a subset of O, O (t);
f the root t

0
is associated with O itself;

f every edge St
i
, t

j
T3B

T
is labelled with a test result, ¸

T
(St

i
, t

j
T);

f test results for edges out coming from a node t de"ne a partitioning of the feature space, and
hence of O (t).

If p is a path from the root t
0

of a tree ¹ to a leaf t
i
of ¹,
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2
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i~1
, t
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Figure 1. In this tree ¹, N
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then the label associated to p, ¸
T
(p), can be de"ned as the sequence of labels:

¸
T
(p)"¸

T
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, t
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Let T denote the set of all possible decision trees that can be built from O. It is possible to
de"ne two distinct partial-order relations (unless node renaming) on T, namely )

P
and )

G
, that

satis"es the properties of re#exivity, antisymmetry and transitivity.
De,nition 2 (Pruning ordering). Let ¹ and ¹@ be two decision trees in T. Then ¹@)

P
¹ i! for

each path p@ from the root of ¹@ to a leaf in ¹@ there exists a path p from the root of ¹ to a leaf of
¹ such that ¸

T{
(p) is a pre"x of ¸

T
(p), that is ¸

T{
(p) is obtained from ¸

T
(p) by dropping the last

labels in the sequence.
De,nition 3 (Grafting ordering). Let ¹ and ¹@ be two decision trees in T. Then ¹@)

G
¹ i! for

each path p@ from the root of ¹@ to a leaf in ¹@ there exists a path p from the root of ¹ to a leaf of
¹ such that ¸

T{
(p) is obtained from ¸

T
(p) by dropping some labels in the sequence.

Intuitively, ¹@)
P
¹ since ¹@ is obtained from ¹ by pruning a branch, while ¹A)

G
¹ when ¹A is

obtained from ¹ by pruning and grafting a branch (see Figure 2).

2.1. The search spaces of pruning methods

Given a tree ¹, it is possible to de"ne two sets of trees, namely:

S
P
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S
G
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¹. For some subsets of the two

partially ordered sets (S
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P
) and (S

G
(¹), )

G
), it is possible to prove some interesting

properties. In particular, if t3I
T
, then the set

P
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P
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T
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Tt
)XMtNN
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Figure 2. Let us consider the path p@ from node 0 to node 3 of ¹@, then ¸
T{

(p@)"(X
1
"true), (X

2
"false).

This label is obtained by dropping the last node label in ¸
T
(p)"(X

1
"true), (X

2
"false), (X

3
"false),

where p is the path from node 0 to node 5 in ¹. By repeating the same check for all paths in ¹@ we can
conclude that ¹@)

P
¹. Analogously, we have that the label associated to the path pA from node 0 to node 5 in

¹A is: ¸
T
(pA)"(X

1
"true), (X

3
"false) which is obtained from ¸

T
(p) by dropping the second node label.

Repeated checks on all paths in ¹A will lead to conclude that ¹A)
P
¹.

has a minimum and a maximum element. The former is the root tree, which is made up of the only
root node, while the latter is the tree, denoted by n

T
(t), that have all the nodes of ¹ except the

descendants of t. Therefore, we can now de"ne a function n
T
:

n
T
:I

T
PT

that associates each node t3I
T

with the tree n
T
(t). This function is called any-depth branch

pruning operator, since it returns the subtree of ¹ with a pruned branch of any depth.
The one-depth branch pruning operator, n@

T
, is a restriction of n

T
to E

T
:

n@
T
:E

T
PT

thus, the only di!erence between n@
T

and n
T

consists in the depth of the trees that they are allowed
to prune. With reference to Figure 2, we can say that n

T
(3)"n@

T
(3)"¹@.

The grafting operator can be de"ned in an analogous way. Let t be an internal node of ¹,
t3I

T
, and t@ another internal node of the branch ¹

t
. Then, for the following set:

G
T
(t, t@)"M¹@3S

G
(¹) D N

T{
-(N

T
!N

Tt
)XN

Tt{
N

which is a set of subtrees of ¹ having no node of the branch ¹
t
, possibly except those of ¹

t{
, it can

be proved that there exist both a minimum and a maximum. Once again, the former is the root
tree, while the latter is the tree, denoted as c

T
(t, t@), that has all the nodes of ¹ except those in
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N
Tt
!N

Tt{
. Even in this case, it is sensible to de"ne a function c

T
:

c
T
:I

T
]I

T
PT

that associates each couple of nodes St, t@T, t@3I
Tt

, with the tree c
T
(t, t@). This function is called

any-depth branch grafting operator, since it returns the subtree of ¹ with a branch of any depth
grafted onto the place of node t. For instance, by looking at Figure 2, we can write c

T
(1, 3)"¹A.

It is worthwhile to observe that, according to the de"nitions given above, pruning and grafting
are two complementary operators, since there is no way of obtaining the tree n

T
(t) from grafting

operators and, vice versa, obtaining c
T
(t, t@) from pruning operators.

The pruning and grafting operators can be used to de"ne the search space of the pruning
methods presented in literature [4]. More precisely, given tree ¹3T with n non-terminal nodes
(n"DI

T
D), let n

T
(I

T
) denote the set of the n subtrees of ¹ with a pruned branch. When DI

T
D"0,

we set n
T
(I

T
)"0. The branch pruning operation can be in turn applied to a tree ¹@3n

T
(I

T
),

provided that DI
T
D'0. The set of subtrees of ¹ obtained by i subsequent branch pruning

operations can be recursively de"ned as follows:
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It is worthwhile to note that nn`1
T

(I
T
)"0, since the operation of branch pruning can be

applied at most n times to a tree with n internal nodes. Therefore, the set of all possible pruned
subtrees of ¹ is given by the union of the sets ni

T
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T
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P
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that is

S
P
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Analogously, an operative de"nition of the space S
G
(¹) can be given. Indeed, given a tree

¹ with n internal nodes, let c
T
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T
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T
) denote a set of subtrees of ¹ with a grafted branch. When
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T
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T
)"0. By repeatedly applying the branch grafting and pruning operations,

it is possible to de"ne the set
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which represents the set of subtrees of ¹ obtained by i subsequent branch pruning and grafting
operations. Once again, cn`1

T
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)"0, thus the set S
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(¹) of trees ¹@)
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Figure 3. (a) An example of one-depth branch pruning state space. (b) An example of any-depth branch
pruning state space.

The problem of pruning a decision tree can be cast as a search in a state space, where states are
trees in either S

P
(¹) or S

G
(¹), and branch pruning and grafting are the only operators that can

be applied in several ways to each tree in the set of states [6]. In particular, we are able to de"ne
three distinct state spaces:

f (S
P
(¹), Mn

T
N): any-depth branch pruning state space

f (S
P
(¹), Mn@

T
N): one-depth branch pruning state space

f (S
G
(¹), Mn

T
, c

T
N): any-depth branch grafting state space

All pruning methods considered in this article search in one of these spaces, which can be
represented by means of directed acyclic graphs (dag's). For instance, the any-depth branch
pruning state space can be viewed as a dag whose vertices are just the elements in S

P
(¹) and for

each couple (¹, ¹@)3S
P
(¹)]S

P
(¹) there is an edge from ¹ to ¹@ if and only if ¹@3n

T
(I

T
), that

is ¹@ is obtained by pruning only one branch of ¹ of any depth. Of some interest is also the space
of one-depth branch pruning in which there is an edge between every couple of trees
(¹, ¹@)3S(¹)]S(¹) if and only if ¹@ is obtained from ¹ by pruning a branch having a depth
equal to one. Indeed, by inverting the direction of the edges, we get a space that coincides with the
lattice (S

P
(¹),)

P
). An example of the lattice of the one-depth branch pruning operations is shown

in Figure 3a, while the corresponding state space of the any-depth branch pruning operations is
reported in Figure 3b. In these spaces, each tree ¹i

j
is uniquely identi"ed by a pair of indices, i and

j, where i denotes the number of leaves of the tree while j discriminates among all the trees with
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the same number of leaves. The root tree is denoted by ¹1
1
, while ¹

.!9
is denoted as ¹M

1
, where

M"DL
T.!9

D. In (S
P
(¹), Mn

T
N) an edge exists from any ¹i

j
O¹1

1
to ¹1

1
since ¹1

1
can be obtained

from ¹i
j
by applying the pruning operator to the root of ¹i

j
.

2.2. The evaluation function

In order to give a precise de"nition of a pruning method the goal of the search in the state space
has to be de"ned. For this reason, a function f that estimates the &goodness' of a tree is introduced.
It associates each tree in a generic space S(¹) with a numerical value, namely:

f : S(¹)PR

where R is the set of real values.
The goal of the search is to "nd the state in S(¹) with the highest f value, so that pruning can

be cast as a problem of function optimization. The formulation of f should depend on both the
complexity and the accuracy of a pruned tree.

2.2.1. Evaluating the complexity. In theory, the function f should help to "nd the smallest
decision tree with the highest predictive accuracy. The preference for a small decision tree to
a larger one, when both show the same predictive accuracy, is due to a principle popularly known
as Occam1s razor. Indeed, it can be proved that, under very general assumptions, this principle
produces hypotheses which with high probability will be as predictive of future observations as
predictive of training data [7].

This theoretical conclusion, however, says nothing on how the complexity of a hypothesis
should be de"ned. In the case of hypotheses expressed as decision trees, the complexity is usually
measured as follows:

1. number of leaves, DL
T
D, or, equivalently, number of regions in which the feature space is

partitioned
2. number of internal nodes, DI

T
D,

3. average depth of the tree, that is, average number of tests required before taking a decision,
4. topological relevance [8].

More complex measures are obtained by encoding decision trees and the data not explained by
the decision trees [9, 10]. Unfortunately, no universal code is known, and, as Wallace and Patrick
pointed out, the &adoption of a particular code for encoding the tree induced from the data is
equivalent to accepting a certain prior probability distribution over the set of possible [trees]'.
Obviously, an analogous consideration can be applied to the simpler complexity measures listed
above.

2.2.2. Evaluating the predictive accuracy. The problem of estimating the error rate of a classi"er
has received considerable attention in the pattern recognition "eld [11, 12]. A number of methods
have been proposed, which can be classi"ed according to two factors [13]:

1. the way in which examples are used to train the classi"er and to test its performance,
2. the pattern error function that determines the contribution of an example to the estimate of

the probability of misclassi"cation.
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One of the simplest ways of using data consists in considering all examples available both for
designing the classi"er and for evaluating its performances (resubstitution method). In the case of
tree pruning, this means that the same training set used to build the tree is then exploited to prune
it. One of the error rate estimators based on the resubstitution method is the apparent (or
resubstitution) error rate, computed according to the following pattern error function:

e
A
"

1

N

N
+
i/1

I (d(SX(i)
1
, X(i)

2
, 2 , X(i)

M
T), C(i))

where N is the size of the training set, SX(i)
1
, X(i)

2
, 2 , X(i)

M
T is the ith observation of the training set,

d is a decision rule (in this case a decision tree), I the indicator function:

I(x, y)"G
1 if x"y

0 if xOy

It is well known that e
A

is an optimistically biased estimator of the expected (or true) error rate
of a decision rule d,

e"E (I(d(SX(i)
1
, X(i)

2
, 2 , X(i)

M
T), C))

This means that e
A
(e, but it approximates e from below as the size of the training set grows

[14].
In order to de"ne unbiased estimators, an alternative way of using data is generally followed. In

the hold-out method, the data set of examples is partitioned into two subsets, one used for training
the classi"er and the other one for testing its performance. The pattern error function typically
used with the hold-out approach is still the error counting:

e
C
"

1

N

N
+
i/1

I (d (SX(i)
1
, X(i)

2
, 2 , X(i)

M
T), C(i))

where now SX(i)
1
, X(i)

2
, 2 , X(i)

M
T denotes one of the N test examples. Kittler and Devijver [15]

show that the empirical error count estimator e
C

is unbiased and that its variance is given by the
following formula:

p2 (e
C
)"

1

N
e (1!e)

which is actually the variance of a binomial distribution with parameters N and e. This result is
important since it shows that, when the true error rate e is small ((0.3) a large number of
examples is needed to ensure relatively low variance.

Kittler and Devijver have also studied the properties of the average conditional error estimator,
e
R
. In this case, the data set is partitioned into three independent sets, namely the training set, the

reference data set and the test set. For each observation SX(i)
1
, X(i)

2
, 2 , X(i)

M
T in the test set, the

k nearest neighbours (k-NN) in the reference data set are used to estimate the conditional
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probability of a classi"cation error

PK (d(SX(i)
1
, X(i)

2
, 2 , X(i)

M
T)OC DSX(i)

1
, X(i)

2
, 2 , X(i)

M
T)"

q
k

where now k is a "xed number of nearest neighbours and q is the number of these neighbours
belonging to classes di!erent from d(SX

1
, X

2
, 2 , X

M
T). The average conditional error estimator

is de"ned as

e
R
"

1

N

N
+
i/1

PK (d(SX(i)
1
, X(i)

2
, 2 , X(i)

M
T)OC DSX(i)

1
, X(i)

2
, 2 , X(i)

M
T)

It can be proved that, under the assumption of an in"nite reference set, e
R

is unbiased and has
a lower variance than the empirical error estimator e

C
. Nevertheless, in practical situations the

reference data set is small, in which case e
R
may be subjected to a pessimistic bias. Furthermore, it

should be observed that not all information in the available data set is actually exploited by this
estimator. In particular, information on the class of the testing examples does not a!ect the
computation of e

R
. In order to avoid this ine$ciency, Kittler and Devijver [16] propose a new

estimator, denoted as e
RC

, which is still unbiased under the assumption of an in"nite reference set,
and has an even smaller variance than e

R
. Such an improvement is reached by e!ectively

exploiting all information in the data set, but the application of e
RC

to small samples still remains
risky.

Given a dataset of observations, both the empirical and the average conditional error es-
timators require that part of the data is used for building a tree ¹, while the rest is exploited to
choose the best subtree in a generic space S(¹). In order to avoid the waist of potentially useful
information in the test cases, several approaches have been proposed. They are based on the
notion of parametric family ¹(u) of subtrees of a tree ¹ in a generic state space S(¹). For
instance, the parameter u can be the number of leaves in a subtree of ¹, or the average depth of
a subtree of ¹. The problem is that of estimating the predictive accuracy of each tree in ¹ (u)
corresponding to a distinct value of u.

A "rst approach consists in random resampling without replacement v distinct validation sets of
the same size from the dataset (holdout resampling). Then, from examples not in the ith validation
set a new decision tree ¹

i
is generated by means of the same learning algorithm of ¹. Following

the same approach as before, it is possible to de"ne v distinct parametric families, ¹
1
(u), 2 ,

¹
v
(u), which can help to de"ne the accuracy of the decision trees in ¹ (u). More precisely, if ¹ (-),

¹
1
(- ), 2 , ¹

v
(-), are the decision trees with parameter - in the families ¹(u), ¹

1
(u), 2 , ¹

v
(u),

respectively, then the average of the error rates of the trees ¹
1
(-), 2 , ¹

v
(- ) can be considered an

estimate of the error rate of ¹(-). The strong assumption made in this step is that trees
¹

1
(- ), 2 , ¹

v
(-) have the same error rate as ¹ (-) on the whole feature space. Indeed, while it is

sensible to assume that ¹, ¹
1
, 2 , ¹

v
, have the same error rate when the size of the training sets

are not too di!erent, the generalization to the case of subtrees can be hardly justi"ed.
Another di!erent way of building validation sets originates the v-fold cross-validation methods.

In this case, the observations are randomly divided into v mutually exclusive cross-validation sets
of approximately equal size. Once again, a tree ¹

i
is built from training examples not in the ith

cross-validation set, while its accuracy or, better still, the accuracy of the trees in the parametric
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family ¹
i
(u), is estimated on the ith cross-validation set. In the extreme case in which v is equal to

the number of training examples, the cross-validation estimator is called leave-one-out (or jack-
knife) estimator. Many studies have been performed on cross-validation [17}19] some of which
have shown that the leave-one-out provides a nearly unbiased estimate of the true error rate, but
often with unacceptably high variability, particularly when the sample size is small [20]. In any
case, such results refer to the error estimate of a classi"er ¹ given the classi"ers ¹

1
, 2 , ¹

v
, built

on v cross-validation sets. No study that generalizes such conclusions to parametric families of
classi"ers, as required in pruning problems, is known.

Finally, in the bootstrap method, training examples for trees ¹
i
are sampled with replacement

from the data set, thus each single observation can occur more than once in the training set. In
order to estimate the accuracy of ¹, several pattern error functions have been proposed, one of
which is simply a linear combination of the average apparent error rate of ¹

i
, eL

A
, and the average

empirical error rate of ¹
i
, eL

C
, that is

e
632

"0.368 eL
A
#0.632 eL

C

Properties of bootstrap methods for error estimation were "rst studied by Efron [21], and later
work by Jain et al. [22] con"rmed that they produce more reliable error estimates than the
empirical error counter or the cross-validation, not only for Fisher's linear classi"ers but also for
1-NN and quadratic classi"ers. Similar conclusions were also reached by Crawford [23] for
decision trees.

2.3. ¹he search strategy

The way in which the state space is explored can a!ect both the possibility of "nding the best tree
and the computational complexity of the method. Actually, any pruning method has to explore
a wide space. For a binary balanced tree ¹ of depth d, the number h(d) of trees ¹@)

P
¹ is

h (d)"vbDL
T
Dw"vb2dw

where b+1.5028368 and vxw denotes the ceiling of a real number x [2].
This means that the size of S

P
(¹), when ¹ is a binary balanced tree of depth d, grows double

exponentially with d. The size of the search space is even larger for S
G
(¹). Thus, the choice of an

appropriate search strategy is crucial for the computational complexity of the pruning method.
As a matter of fact, pruning methods presented in this paper adopt only two very simple search

strategies: the ,rst-better search and the hill-climbing search.
In the former strategy, we move from one state ¹ to a state ¹@ just generated if ¹@ is better than

¹ with respect to f. Di!erently from the hill-climbing, there is no generation of all states directly
reachable from ¹ in order to select the best one. Moreover, the "rst-better strategy does not store
all states generated so far as the best-"rst strategy does. On the contrary, states discarded at
a certain moment of the search will no more be considered. Obviously, in this search strategy, the
order in which states are generated is of crucial importance. It depends on:

1. the traversal order: pre-order or post-order,
2. the direction of pruning: bottom-up or top-down.
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In top-down pruning, the root of a branch is considered for pruning before its descendants,
while bottom-up pruning starts from leaves and eventually try to prune the root. The bottom-up
direction is suitable for post-order traversal, while the top-down direction can be combined well
with the pre-order traversal. For instance, with reference to the state space in Figure 3,
a top-down method would "rst explore the state ¹1

1
, then ¹2

1
, then ¹3

1
, and eventually the state ¹5

1
by following a pre-order traversal. Conversely, a bottom-up method would "rst estimate the
goodness of the state ¹5

1
, then of the state ¹4

1
, then of the state ¹4

2
, and eventually of the state ¹1

1
,

by following a post-order traversal.
Finally, in some methods the search in the state space is performed in two distinct steps. In the
"rst phase, a tree ¹

.!9
is pruned up to a "xed degree using an evaluation function f and one of

the search strategies listed above. Then, in the second phase, a subset of states traversed in the
previous phase is reconsidered for an additional selection on the ground of a new evaluation
function f. States not reconsidered are called transient. Typically, in the "rst step of a two-phased
search strategy a set of trees of di!erent complexity is collected, while in the second phase the
predictive accuracy of collected trees is estimated in order to choose the best tree. In this way, all
methods adopting this approach have actually reversed the order in which selection criteria
should normally be considered: "rst predictive accuracy and then, ceteris paribus, complexity. The
e!ect is that these methods cannot guarantee the selection of the best, or at least a good, tree with
respect to predictive accuracy, which is the most important parameter in classi"cation tasks.

To sum up, a pruning method can be formalized as a 4-tuple:

(Space, Operators, Evaluation function, Search strategy)

Such a scheme allows biases in pruning methods to be clearly identi"ed. In the studies on
decision tree induction the following types of biases are identi"ed [24]:

1. Inductive bias: methods that search in S
P
(¹) have a weaker bias than those searching in

S
G
(¹).

2. Preference bias: for instance, predictive accuracy being equal, a simple decision tree is
preferred to a complex one.

3. Search bias: methods that do not explore the whole search space may not "nd the best tree in
the space with respect to a given preference bias.

4. Bias in the estimation of the predictive accuracy: some estimators of the dual concept of error
rate may be biased.

Note that in the "rst three types, the term bias is intended as a set of factors that in#uence the
hypotheses selection, while in the last one it is intended according to the classical statistical
meaning of the term.

The identi"cation of distinct biases of pruning methods provides us with e!ective means for
comparing them analytically. However, the study performed in the paper is not limited to
a theoretical investigation of weaknesses and strengths of the various methods, but it will also try
to draw some conclusions from some experimental results, as clari"ed in Section 4.

3. COMPARATIVE STUDY OF PRUNING METHODS

In this section, a comparative study of some well-known post-pruning methods is presented. Each
method is cast in the framework of the search in the state space.
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3.1. Reduced error pruning (REP)

This method is conceptually the simplest [25] and uses the pruning set in order to evaluate the
goodness of a subtree of ¹

.!9
. Search is accomplished in the any-depth branch pruning state

space, (S
P
(¹), Mn

T
N), according to the "rst-better search strategy and a post-order traversal. The

evaluation function f is de"ned as follows:

f (¹)"! +
t|LT

e (t)

where e(t) is the number of errors made by node t during the classi"cation of the examples in the
pruning set. The search in the space moves from a state ¹ to a state ¹@3n

T
(L

T
) if the inequality

f (¹@)*f (¹) holds or equivalently if

+
t|LT{

e (t)) +
t|LT

e(t)

The states to be explored are generated according to the order de"ned by bottom-up methods,
hence there is no choice of the best state to be reached, starting from another state. This method
"nds the smallest version of the most accurate tree with respect to the pruning set [4].

Some problems related to this pruning method are the following:

(1) the use of a pruning set distinct from the training set is inadequate when a small number of
observations are available, and

(2) the parts of the original tree that correspond to special cases (outliers) not in the pruning set
may be lost. Therefore, trees pruned via REP may fail in correctly classifying outliers.

The computational complexity of the method is linear in the number of internal nodes, since
each node is visited only once to evaluate the opportunity of pruning it.

3.2. Pessimistic error pruning

This pruning method, proposed by Quinlan [25] as well, is characterized by the fact that it avoids
using an independent pruning set. Search is accomplished in the any-depth branch pruning state
space, (S

P
(¹), Mn

T
N), according to the "rst-better search strategy and a pre-order traversal. The

evaluation function f is de"ned as follows:

f (¹)"! +
t|LT

n@(t)

where

n@(t)"[e (t)#1
2
]

and e(t) is the number of errors made by node t during the classi"cation of the examples in the
training set. Indeed, let ¹@ be the arrival state of an edge outcoming from ¹ such that it is
obtained by pruning a node t3¹. Then it can be proved that

f (¹@)!f (¹)"n@(¹
t
)!n@(t)
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where

n@(¹
t
)"! +

s|LT

e(s)#
DL

Tt
D

2

Pruning is accomplished also when the following condition holds:

!SE(n@ (¹
t
)))f (¹@)!f (¹)

where SE is the standard error. This is equivalent to prune when

n@(¹
t
)#SE(n@ (¹

t
))*n@ (t)

as stated in Quinlan's original formulation. Therefore, there is no evaluation of the best
pruning to perform among the possible ones, and the "rst pruning operation that turns out to be
good is performed. It follows that the search strategy adopted is the "rst-better with a pre-order
traversal.

The formulation of the evaluation function can be criticized because of the continuity
correction of e (t) in n@(t). Indeed the continuity correction of an error rate has no theoretical
justi"cation. Its main e!ect is that of introducing a tree complexity factor (the constant 1

2
is the contribute of a leaf to the complexity of the tree), which is improperly compared to an error
rate.

It should also be noted that the top-down approach to tree pruning used in PEP is not
justi"ed when there is no guarantee that all subtrees of a pruned branch ¹

t
have to be

pruned. Indeed, it may happen that by pruning a node t other nodes that should not be pruned
according to the same criterion are actually discarded. However, this top-down approach gives
the pruning method a high run-speed, with a computational complexity being linear in the
number of nodes.

3.3. Minimum error pruning (MEP)

Niblett and Bratko [26] proposed a bottom-up approach for searching a single tree that
minimizes the expected error rate. The proposal has been improved later [27]. For a k-class
problem, the expected probability that an observation reaching a node t belongs to the ith class is
the following:

p
i
(t)"

n
i
(t)#p

ai
m

N(t)#m

where n
i
(t) is the number of training examples in t classi"ed into the ith class, p

ai
is the a priori

probability of the ith class, m is a parameter of the estimate method, N(t) is the number of training
examples reaching t.

When a new observation reaching t is classi"ed, the expected error rate is given by

EER(t)"min
i

M1!p
i
(t)N
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Two error rates are computed for each internal node t3I
T
, namely

1. the static error, STE(t), which is the expected error rate of t when pruned, EER(t);
2. the dynamic (or backed-up) error, DYE(t), which is de"ned as a weighted sum of the expected

error rates of the children, where the weights are the probabilities that an observation will
reach the corresponding child.

Even for this method, the state space is (S
P
(¹), Mn

T
N), while the search strategy is "rst-better

with a post-order traversal of nodes. The evaluation function of a tree ¹ is the dynamic error of
the root of ¹. It can be proved that such an error equals the weighted sum of the static errors of all
the leaves of the tree, where the weights are the proportion of the training examples in the leaves
themselves. Formally, we can write

f (¹)"! +
t|LT

N (t) )EER(t)

N

where N is the total number of training examples.
The search starts with ¹

.!9
and a new state ¹i

j
is reached if the following inequality holds:

f (¹i
j
)*f (¹

.!9
).

If ¹i
j
is obtained by pruning a node t in ¹

.!9
, that is ¹

.!9
3n

T.!9
(t), then the previous inequality

can be equivalently written as

STE(t))DYE(t)

which is the condition for pruning a node according to Niblett and Bratko's formulation of the
method. Currently, it is still unclear if the minimum error pruning method always "nds the
maximum in the state space. This aspect will be investigated in the future.

Generally, the higher the m, the more severe the pruning. In fact, when m is in"nity, it is
p
i
(t)"p

ai
and since p

ai
is estimated as the percentage of examples of the ith class in the training

set, it happens that the tree reduced to a single leaf has the lowest expected error rate. In other
words, when m is in"nity the path leads to ¹1

1
. However, this characteristic does not mean that

a path corresponding to an m@'m is a continuation of the path corresponding to m. This
non-monotonicity property has a severe consequence on the computational complexity: For
every di!erent value of m, the search must always start from ¹

.!9
.

In the MEP method, the choice of m is critical. Cestnik and Bratko suggest the intervention of
a domain expert who can choose the right value of m according to the level of noise in the data.
Alternatively, we have decided to choose the value m using an independent pruning set. More
precisely, given a set of possible values for m, we select that returning the smallest tree with the
lowest empirical error rate on an independent pruning set. Therefore, this is an example of
two-phased pruning method.

3.4. Critical value pruning (CVP)

Mingers [28] has proposed a pruning method that searches in the one-depth branch pruning
state space, (S

P
(¹), Mn@

T
N). The evaluation function associated with this reduced space is given by
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the sum of the values taken by the selection measure in each internal node of the tree ( f (¹1
1
)"0

by de"nition). Therefore, if GR(t) is the gain ratio at node t, the evaluation function can be de"ned
as

f (¹)"! +
t|IT

GR(t)

A tree ¹@ will be generated from a tree ¹ if it happens that

f (¹@)" min
T{{|n@

T
(E

T)

f (¹A)

The search goes on according to a hill-climbing strategy until the minimum tree ¹1
1

is reached.
At the end of the search, the number of the explored states will be DI

T.!9
D#1, denoted as

¹DI
T.!9

D, ¹DI
T.!9

D~1
, 2 , ¹

2
, ¹

1
, ¹

0

This method is two-phased as the previous one. However, in this case not all states traversed
are considered in the second phase. A traversed state ¹

i
, 1(i(DN

T.!9
D, is considered to be

transient if it happens that

f (¹
j
)!f (¹

j~1
)*f (¹

i
)!f (¹

i~1
) ∀j, j(i

For the second phase, Mingers suggests choosing the best tree among the sequence of the
pruned trees by measuring both the signi"cance of the tree as a whole and its predictive ability.

The signi"cance of the tree is estimated by means of the G statistics, which evaluates the degree
of interdependence between the leaves of a tree and the classes of the problem: It will be higher for
fully expanded trees that correctly classify the whole set of examples. The weakness of this
measure is that a test on this statistics is only able to establish whether the predictive ability of
a tree is meaningful, but it cannot be used to choose among trees that pass the test.

For what concerns the predictive accuracy of non-transient states, a solution is that of
computing the error rate by using an independent pruning set.

However, it should be observed that the sequence detected in the "rst step of this method might
not contain the best tree with respect to the test set, therefore, REP is preferable to CVP, since it
guarantees to "nd the smallest subtree having the lowest error rate with respect to the pruning set.

Finally, the method does not seem su$ciently general to be applied to trees built by using any
selection measure. For instance, if the gain-ratio [29] is used as selection measure and the
construction of a tree is stopped when all the observations in the training set are correctly
classi"ed, it turns out that all nodes in E

T
have a gain-ratio value equal to 1.0, while the others

have a lower value. As a consequence, only ¹
.!9

and ¹1
1
will not be considered as transient states,

and the choice in the second step will be too restricted.

3.5. Cost-complexity pruning

This pruning method is characterized by two phases [2]:

(1) selection of a family of subtrees of ¹
.!9

according to some heuristics;
(2) choice of the best tree in the family according to an accurate estimate of the actual error

rate.
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For what concerns the "rst phase, search is performed in the any-depth branch pruning state
space according to a hill-climbing strategy and a post-order traversal. The evaluation function
can be de"ned as follows:

f (¹)"! +
t|LT

e(t)

where e(t) is the number of errors made by node t on the training/growing set. It is possible to
move from ¹ to ¹@"n

T
(t) if it happens that

f (¹)!f (¹@)
DL

T
D!DL

T{
D
" min

T{{|nT
(I

T
)

f (¹)!f (¹A)
DL

T
D!DL

T{{
D

Indeed, the ratio above can be proved to be equal to

f (¹)!f (¹@)
DL

T
D!DL

T{
D
"!

R(t)!R(¹
t
)

DL
Tt

D!1
"a

T{

which is the complexity parameter of the tree ¹@ [2]. For each reached state, the next state that
gives the lowest value of the ratio &apparent error rate increase' on &number of leaves decrease' is
detected. The search goes on until the smallest tree ¹1

1
is reached.

The second phase of the method aims at selecting the best among the trees traversed in the "rst
phase. Once again, not all states are considered, and a transient state can be de"ned as follows: let
¹

.!9
"¹m, ¹m~1,2 , ¹2, ¹1, ¹0"¹1

1
be the states followed by the search process and let ai

T
be

the complexity parameter of a state ¹i, then ¹i is transient if ai
T
"ai~1

T
. In other words, if two

subsequent trees have the same complexity parameter, only the simpler of the two is considered.
The selection of the best tree is guided by either the empirical error count estimator or the

cross-validation error estimator, as described in Section 2.2. In the former case, an independent
pruning set is needed, so the tree ¹

.!9
has to be built on a subset of the training set. In our

experiments both approaches have been tested. The methods have been called 0SE and CV-0SE,
respectively. As in Breiman et al.'s experimental setup, cross-validation is always 10-fold.

For the sake of completeness, another variant proposed by Breiman et al. has also been
implemented. It is based on the 1SE selection rule, according to which the smallest tree whose
error rate estimate e falls within one standard error from the minimum value is chosen. By
introducing this variant, other two methods are obtained. They are denoted as 1SE and CV-1SE,
respectively.

3.6. Error-based pruning (EBP)

This is the method implemented in C4.5 [29], the learning system used in our experiments. It is
considered an improvement of PEP, since it is founded on a far more pessimistic estimate of the
expected error rate. As PEP it exploits information in the training set both for building and
simplifying trees. However, the novelty is that it searches in the any-depth branch grafting state
space (S

G
(¹), Mn

T
, c

T
N). The exploration of this space is basically performed according to

a "rst-better strategy. A tree ¹ is visited bottom-up according to a post-order traversal. For each
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traversed node t, the following two alternatives are considered:

1. pruning ¹ in t, n
T
(t), and

2. grafting the largest branch ¹
t{
of ¹

t
onto the place of t, c

T
(t, t@) (¹

t{
is the subtree immediately

below t that represents most of the examples, not necessarily the largest in size).

If neither of them appears to improve the estimated error rate, than t is left, otherwise the best
alternative is chosen and the tree can be either pruned or grafted. Since there is no choice among
di!erent nodes the search strategy is still a "rst-better as for PEP. It is interesting to note that, in
this way, not all S

G
(¹) is explored, since not all possible grafting operations are considered for

reasons of computational economy. The evaluation function used during the search can be
de"ned as follows:

f (¹)"! +
t|LT

;
CF

(e(t), N(t)) )N (t)

where;
CF

(e (t), N (t)) is the upper limit of a con"dence interval, with con"dence level CF, that e (t)
errors are observed on N(t) training cases, when they are binomially distributed. A new state
¹@"n

T
(t) or ¹@"c

T
(t, t@) is reached from a state ¹ if it happens that f (¹@)*f (¹).

Obviously, the search bias remarked above does not guarantee that the best tree is S
G
(¹), with

respect to f (¹), is found. Furthermore, the two assumptions underlying the preference bias
adopted for the EBP seem quite strong. Indeed, regarding the training examples covered by
a node t3¹

.!9
as a statistical sample is hard to accept, since ¹

.!9
is not a generic tree randomly

selected from a (possibly in"nite) family of decision trees, but it has been built in order to "t the
data as well as possible. Even more so, the assumption of a binomial distribution of errors in the
sample can be criticized.

4. EMPIRICAL COMPARISON

A previous empirical study on the above pruning methods has already investigated the real e!ect
of some of these methods on both the predictive accuracy and the size of the induced tree [4, 5].
The main conclusions drawn from an experimentation on fourteen datasets available in the UCI
Machine Learning Repository (http://www.ics.uci.edu/&mlearn/MLRepository.html) are the
following:

(1) MEP, CVP, and EBP tend to underprune, whereas CV-1SE, 1SE, and REP have a propen-
sity for overpruning.

(2) Setting aside some data for pruning is not generally the best strategy.
(3) Pruning does not generally decrease the predictive accuracy of the "nal trees.
(4) Almost all data sets not prone to pruning have the highest base error, while those data sets

with a relatively low base error bene"t from any pruning strategy.

The experimental procedure adopted in the previous empirical comparison is the holdout
resampling, that is the repeated random partitioning of the data into two mutually exclusive
subsets called a training set and a test set. The training and test sets are 70 and 30% of the whole
data set, respectively. For each of the 25 runs, the error rate of the pruned tree on the test set is
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computed. The estimated error rate of the tree pruned with a speci"c method is computed by
averaging the runs. Then a paired t-test is used in order to compare two methods and detect
possibly signi"cant di!erences in error rate.

The criticism to holdout resampling mainly concerns the assumption of independence of
instances in the test set from those in the training set. Thus, the estimates are "ne if viewed as
comprising a descriptive comparison of performance, but cannot be statistically extrapolated to
a wider population. Since in the literature a di!erent experimental procedure has been recommen-
ded for model selection [30], namely strati"ed k-fold cross-validation with moderate k values
(10}20), we have decided to repeat our experiments in order to verify whether the conclusions
(1)}(4) still hold with cross-validation estimates. In the following we present the new experimental
design based on 10-fold cross-validation, new estimates are found and we discuss the conclusions
above in the light of the new results.

4.1. Design of the experiment

Each data set D is randomly partitioned into ten validation sets (or folds) D
i
of approximately

equal size. Random sampling is strati,ed, so that validation sets contain approximately the same
proportions of cases per class as the original datasets. The TDIDT system used, namely C4.5, is
trained and tested 10 times; each time i3M1, 2, 2 , 10N, it is trained on DCD

i
and tested on D

i
.

Thus each DCD
i

plays the role of training set, while D
i

that of test set. A cross-validation
estimate of error rate (size) is obtained by averaging the test error (number of leaves) over the ten
folds.

At each run, the training set is split further into two subsets, called growing and pruning sets.
The former contains 70% of cases of the training set, while the latter the remaining 30%. Both the
growing and the training set are used to learn decision trees, that are called grown tree and trained
tree, respectively. Grown trees are used by those pruning methods that need an independent
pruning set in order to prune a decision tree ¹

.!9
, namely REP, MEP, CVP, 0SE and 1SE.

Conversely, trained trees are used by those methods that exploit the whole training set for
growing and pruning ¹

.!9
, namely PEP, CV-0SE, CV-1SE and EBP. In other words, all methods

for building (that is, growing and pruning) a decision tree have access to the same cases, but they
can use data in di!erent ways. Some of them prefer setting aside some observations for pruning
only, while others prefer using the whole set for the growing phase. In this latter case, the same
training set is also used for pruning. Obviously, the error rate of the induced trees is always
evaluated on the test sets.

Major properties of the data sets considered in our experiments are summarized in Table I.
For each database the following information is reported: The number of cases available
in the data set, the number of classes of the training cases, the number of attributes used
to describe each example, the number of attributes that are treated as real-valued, the number
of non-numerical attributes with more than two values, the presence of null values in the
description of an example, the error rate obtained if the most frequent class is always predicted,
the expected amount of noise in the database, the uniformity of distribution of training examples
per class.

4.2. Experimental results

The "rst factor to be analysed is the error rate of the pruned trees. In Table II the average error
rates concerning di!erent simpli"cation methods are reported together with the average error
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Table I. Main characteristics of the data sets used for the experimentation.

No. No. No. Null Base Noise Uniform
Data base cases classes attributes Real Multi values error level distrib.

Iris 150 3 4 4 0 no 66.67 low yes
Glass 214 7 9 9 0 no 64.49 low no
Led 1000 10 7 0 0 no 90 10% yes
Hypo 3772 4 29 7 1 yes 7.7 none no
P.-gene 106 2 57 0 57 no 50 none yes
Hepatitis 155 2 19 6 0 yes 20.65 none no
Cleveland 303 2 14 5 5 yes 45.21 low approx.
Hungary 294 2 14 5 5 yes 36.05 low no
Switzerland 123 2 14 5 5 yes 6.5 low no
Long Beach 200 2 14 5 5 yes 25.5 low no
Heart 920 2 14 5 5 yes 44.67 low approx.
Blocks 5473 5 10 10 0 no 10.2 low no
Pima 768 2 8 8 0 no 34.9 ? no
Australian 690 2 14 6 4 yes 44.5 ? approx.

rate of unpruned trained trees. The lowest error rate is reported in bold type, while the highest
values are also underlined. We can immediately see that for each data set there is always at least
a pruning method that improves the predictive accuracy. Furthermore, in several data sets, such
as Hypothyroid, Hungary, Switzerland, Long Beach, Blocks, Pima and Australian, almost all
pruning methods reduce the error rate.

In order to verify whether these di!erences are statistically signi"cant, we used the two-tailed
paired t-tests between the pruned decision trees and the trained trees. Table III reports the
outcomes of the tests for a signi"cance level equal to 0.10. A &#' in the table means that, on
average, the application of the pruning method actually improves the predictive accuracy of the
decision tree, while a &!' indicates a signi"cant decrease in predictive accuracy. When the e!ect of
pruning is neither good nor bad, a 0 is reported. From a quick look at Table III we can con"rm
our previous conclusion that tree pruning does not generally decrease the predictive accuracy.
The data sets that do not bene"t from pruning are those with the highest base error. It is also
con"rmed that setting aside some data for pruning is not generally the best strategy. This latter
conclusion is at variance with that reported by Mingers [31] in a previous empirical comparison.
Finally we observe that the number of statistically signi"cant di!erences (positive or negative) in
this experimentation is lower than that reported in previous work. This is due to the fact that now
90 per cent of data are used for the training set, while in previous experiments the decision tree
inducer had access to only 70 per cent of the data.

The results of the two-tailed paired t-tests between the size of trees produced by a pruning
method with the size of the corresponding optimal trees [4, 5] are reported in Table IV. Once
again, the signi"cance level used in the test is 0.10. Here, &u' stands for signi"cant underpruning, &o'
for signi"cant overpruning, while &!'means no signi"cant di!erence. At a glance we can say that
MEP, CVP, and EBP tend to underprune, whereas CV-1SE and 1SE have a propensity for
overpruning. The tendency of REP to overpruning is less evident because now the growing and
pruning sets are wider than those used in the previous experiment.
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Table III. Results of the tests on error rates.

CV CV Total
Data base REP MEP CVP 0SE 1SE PEP 0SE 1SE EBP #/!

Iris 0 0 0 0 0 0 0 ! 0 0/1
Glass 0 0 0 0 0 0 0 0 0 0/0
Led 0 0 0 0 ! 0 0 0 0 0/1
Hypo # # 0 # 0 0 0 0 0 3/0
P.-gene 0 0 0 0 0 0 0 0 # 1/0
Hepatitis 0 0 0 0 0 0 0 0 0 0/0
Cleveland 0 0 0 0 0 0 0 0 0 0/0
Hungary 0 0 0 0 0 0 0 0 0 0/0
Switzerland # 0 0 # # # # # # 7/0
Long Beach 0 0 ! 0 0 # # # 0 3/1
Heart # 0 0 0 0 0 0 0 0 1/0
Blocks # # # # # # 0 0 # 7/0
Pima # # 0 # # 0 # 0 # 6/0
Australian 0 # 0 # # # # # 0 6/0
Total#/! 5/0 4/0 1/1 5/0 4/1 4/0 4/0 3/1 4/0

Table IV. Results of the tests on tree size.

CV CV
Data base REP MEP CVP 0SE 1SE PEP 0SE 1SE EBP

Iris * * u * * * u * u
Glass u u u u * u u * u
Led o * u * o * u o u
Hypo u u u u * * * * u
P.-gene u u u u * * * o u
Hepatitis * u u * * * * o u
Cleveland * u u * o u * o u
Hungary * * u * o * o o u
Switzerland * u u * * * * * *

Long Beach * u u o o o o o *

Heart u * u * o o * o u
Blocks u u u * o u o o o
Pima * u u * o u o o u
Australian * o u o o u o o u

5. CONCLUSIONS

Determining the leaves of a decision tree is a critical issue in top-down induction of decision trees.
Post-pruning is generally preferred to the pre-pruning approach to the problem. As a matter of
fact, many post-pruning methods have been proposed in the literature, all of which can be easily
investigated by means of a unifying framework presented in the article. This framework has
allowed us to show the simplicity of the adopted search techniques, which, in some cases, might
not even guarantee to "nd the best pruned tree with respect to the evaluation function. Moreover,
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we have also pointed out that each evaluation function has its own implicit bias, which amounts
to a prior probability distribution over the set of pruned trees.

A new comparison of some pruning methods for decision tree induction is also presented in the
article. The new experiment based on cross-validation tries to guarantee the independence
assumption, violated in holdout resampling, which is the procedure adopted in a previous study.
In fact, the current results con"rm the previous conclusions: (1) Pruning methods do not
signi"cantly decrease the predictive accuracy of the "nal trees; (2) those datasets with low base
error bene"t of almost all pruning strategies; (3) CVP, MEP and EBP tend to underprune while
1SE and CV-1SE tend to overprune.
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