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ABSTRACT This paper presents an empirical investigation of eight well-known simplification
methods for decision trees induced from training data. Twelve data sets are considered to compare
both the accuracy and the complexity of simplified trees. The computation of optimally pruned
trees is used in order to give a clear definition of bias of the methods towards overpruning and
underpruning. The results indicate that the simplification strategies which exploit an independent
pruning set do not perform better than the others. Furthermore, some methods show an evident
bias towards either underpruning or overpruning.

35.1 Introduction.

Various heuristic methods have been proposed for the construction of a decision tree,
among which the most widely known is the top-down approach. In top-down induction of
decision trees (TDIDT) it is possible to identify three main issues [BFOS84]:

1. The definition of a decision process associated with the tree.
2. The determination of the tests in the nodes.

3. The determination of the leaves.

This paper is mainly concerned with the third one, which is deemed to be important
because of its influence on the overfitting problem. In general, a tree overfits the training
data when some of its branches degrade the classification performance on unseen cases,
and, as a minor consequence, reduce the comprehensibility of the tree itself. This problem
is particularly felt when several sources of noise and uncertainty affect the training data.
In this case, indeed, the decision of stopping the growth of a tree when all examples in
each leaf belong to the same class is too weak, since it does not prevent the generation
of harmful branches. A typical approach adopted in many TDIDT systems grows a tree,
Trraz, to maximum depth, and then retrospectively removes those branches that seem
superfluous with respect to predictive accuracy [Nib87]. The final effect should be that of
improving the intelligibility of a decision tree without really affecting its predictive accu-
racy. Recently, Fisher [Fis92] and Schaffer [Sch93] have shown that overfitting avoidance
by means of tree pruning is a form of bias (here intended as a set of factors that influence
hypothesis selection) rather than a statistical improvement of the classifier. Nevertheless,
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this conclusion should not imply the abandonment of pruning techniques, rather, it should
stimulate the investigation of the biases of different methods so to apply the appropriate
method, if any, to the problem at hand.

This paper investigates the behaviour of eight well-known simplification methods on twelve
data sets taken from the UCI Machine Learning Repository [MA94]. In particular, we show
how the computation of optimally pruned trees can be used to give a definition of bias of
a method towards either underpruning or overpruning. This experimental approach gen-
eralizes an approach by Holte [Hol93], who found upperbounds on accuracy when decision
tree depth was limited to one. The upperbound was computed by randomly splitting the
dataset into a training and a test set, and then measuring the highest accuracy on the
test set of all 1-level decision trees built on the training set. Holte did not consider the
possibility of simplifying the trees and consequently the complexity of the induced trees.
Conversely, we are interested in finding lower bounds on the complexity of the most ac-
curate simplified trees, as well as upper bounds on the accuracy achievable by simplifying
trees. The experimental design of Section 3 embodies a number of differences from previ-
ous studies on pruning methods; these differences allow us to draw some conclusions on
the performance of the methods that are at variance with those already published in the
literature or expected from the formulation of the methods themselves. A summary of the
empirical results is reported in Section 4.

35.2 A brief survey of simplification methods.

The simplification methods considered in our study are briefly described in Table 1. Some
of them start the simplification process from the root of 7),,, and proceed towards the
leaves (top-down), while others move from the leaves to the root (bottom-up). Moreover,
some methods simplify the tree in two steps: they first generate a set of subtrees of 7},
by taking into account the complexity of the tree, then they select the best one in the set
according to its estimated accuracy. In some cases, the estimate of the accuracy of a tree
is computed on a pruning set which is independent of the set used for building the tree
T'raz- This means that the training set is actually split into two subsets: the growing set
for building the tree 7),,, and the pruning set for simplifying it. Two of the three variants
of the cost-complexity pruning method proposed by Breiman et al. require a pruning set
(OSE and 1SE), while the other one (CV-0SE) uses cross-validation sets to estimate the
predictive accuracy of the subtrees. In this latter case T, is built on the whole training
set and not on the smaller growing set. The version of the minimum error pruning (MEP)
method, that we implemented for our experiments, is based on techniques proposed by
Cestnik and Bratko [CB91], but differs in that we use a pruning set for choosing amongst
trees pruned with different values of the parameter m.? Furthermore, our reduced error
pruning (REP) algorithm is based on Quinlan’s original formulation instead of that given
by Mingers [Min89], so that we are guaranteed that it finds the smallest version of the
most accurate subtree with respect to the pruning set. Details of the methods REP, MEP,
0SE, 1SE, and pessimistic error pruning (PEP) can be found in [EMS93].

2The parameter m determines the impact of the prior probability on the estimation of the error rate.
In our experiments, we selected the following values of m: 0.5, 1, 2, 3, 4, 8, 12, 16, 32, 64, 128, 512 and
1024. For each value, MEP returns a subtree of T},,4,. The pruning set is used to select the best subtree.
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Pruning Traversal
Method Steps  Set Strategy Operators Characteristics
Reduced Error Pruning (REP) 1 yes bottom-up pruning  Findsthe optimally pruned
[Quinlan, 1987] any branch treew.r.t. the pruning set.
Pessimistic Error Pruning (PEP)| 1 no top-down pruning  Uses the continuity
[Quinlan, 1987] any branch correction.
Minimum Error Pruning (MEP) [ 1-2 yes bottom-up pruning  Based onthe m-probability
[Cestnik & Bratko, 1991] last version any branch estimate of the error rate.
Critical Vaue Pruning (CVP) 2 yes bottom-up pruning  Selects the best tree on a
[Mingers, 1989] branches of subset of the space of all
depth one  possible subtrees.
Cost-Complexity Pruning 2 yes al nodes pruning  Can use cross-validation
[Breiman et al., 1984] together
Error-Based Pruning (EBP) 1 no bottom-up pruningand Estimates confidence
[Quinlan, 1993] grafting any intervalsonthetraining set.
branch

TABLE 35.1. Simplification methods considered in the experiments.

Finally, another characteristic of the methods is the type of simplification operators
used to trim the tree, namely

o Pruning branches of depth one. In this case a branch of depth n can be pruned in

n steps.

o Pruning branches of any depth.

o Grafting a sub-branch of a node t onto the place of ¢ itself, thus removing only some

of the nodes of the subtree rooted in t.

Currently, the only simplification method that combines grafting and pruning operators
is the error based pruning (EBP) implemented in C4.5 [Qui93]. All pruning methods have
been implemented as an extension of C4.5, so that we could use a well-tested system to
generate the decision trees T),,,’s.

35.3 Design of the experiment.

Major properties of the data sets considered in our experiments are summarized in Ta-
ble 2. In particular, for each database we report the following information:
e The number of cases available in the data set.

e The number of classes of the training cases.
e The number of attributes used to describe each example.
e The number of attributes that are treated as real-valued.

e The number of non-numerical attributes with more than two values.

e The presence of null values in the description of an example.?

3Null values are treated according to the standard procedure implemented in C4.5.
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database No. No. No. Real-yalued Multi-_valued Null | % Base| Noise Ur?iform

cases | classes |attributes| attributes | attributes | values| error level | distrib.
Iris 150 3 4 4 0 no 66.67 low yes
Glass 214 7 9 9 0 no 64.49 low no
Led 1000 10 7 0 0 no 90 10% yes
Hypo 3772 4 29 7 1 yes 1.7 no no
P.-gene 106 2 57 0 57 no 50 no yes
Hepat. 155 2 19 6 0 yes 20.65 no no
Cleveland 303 2 14 5 5 yes 45.21 low yes
Hungary 294 2 14 5 5 yes 36.05 low no
Switzerland | 123 2 14 5 5 yes 6.5 low no
LongBeach | 200 2 14 5 5 yes 255 low no
Heart 920 2 14 5 5 yes 44.67 low yes
Blocks 5473 5 10 10 0 no 10.2 low no

TABLE 35.2. Major properties of the data sets considered in the experimentation.

data set

test set
pruned | pruning :
trained

tree set o ..
training - X
. ) <t 000, LIEE
grown " dgmm growing
tree i st oo

FIGURE 1. Partitioning of data available in each data set.

e The error rate obtained if the most frequent class is always predicted.

e The expected amount of noise in the database.

o The uniformity of distribution of training examples per class.
The data base Heart-disease is actually the join of four data sets with the same number of
attributes but collected in four distinct places (Hungary, Switzerland, Cleveland and Long
Beach). Of the 76 original attributes, only 14 have been considered, since they are the
only ones deemed useful for the classification. Moreover, examples have been assigned to
two distinct classes: no presence (value 0) and presence of heart diseases (values 1,2,3,4).
For each data set considered, 25 experiments have been made by randomly partitioning
the data set into three subsets: growing set (49%), pruning set (21%) and test set (30%)
(see Figure 1). The union of the growing and pruning sets is called training set, and its
size is just T0% of the whole data set. Therefore, the growing set contains the 70% of the
cases of the training set, while the pruning set the remaining 30%. Both the growing and
the training set are used to learn decision trees, that are called grown tree and trained
tree, respectively. The former is used by those methods that need an independent pruning
set in order to prune a decision tree, namely REP, MEP, CVP, and the cost-complexity
pruning based on an independent test set and adopting the one standard error rule (1SE)
or not (0SE) [BFOS84]. The latter is used by those methods that exploit the training set
only, such as PEP, EBP, and the cost-complexity pruning based on cross-validation sets
and not adopting the one standard error rule (CV-0SE).
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In each experiment two statistics are recorded for pruned, grown and trained trees:
the number of leaves (size) of the resultant tree and the error rate (e.r.) of the tree on
the test set. As proposed by Buntine and Niblett [BN92], a two-tailed paired t-test is
used to compare differences between pairs of either error or size averages. This is a ma-
jor deviation from Mingers experimental design [Min89], where the ANOVA significance
testing is preferred. Another major difference is that PEP, EBP, and CV-0SE have access
to the whole training set rather than to the smaller growing set. Indeed, they simplify
the trained trees and not the grown trees as the other ones. In a certain sense, there is a
trade-off between the possibility of building a better tree 7),,, with all training cases and
the lack of fresh cases for the pruning phase. Thus, all simplification methods can use the
same set of examples, but REP, MEP, CVP, 0SE and 1SE will put aside some cases only
for the pruning process. Finally, it is worthwhile to observe that Mingers investigated the
possibility of interactions between four selection measures and pruning methods, while
our study is limited to only one of those measures, namely the gain-ratio [Qui93].

In order to get an insight of the characteristics of some domains and pruning methods,
we produced two decision trees for each experiment, called optimally pruned grown-tree
(OPGT) and optimally pruned trained-tree (OPTT) respectively. The former is a grown
tree that has been pruned by using the reduced error pruning on the test set. Thus, it is
the best pruned tree we could produce from the grown tree because of the property of the
reduced error pruning we mentioned in Section 2. Similarly, the OPTT is the best tree we
could obtain by pruning some branches of the trained tree. OPGTs and OPTTs define
an upper bound on the improvement in accuracy that pruning techniques can produce.
Obviously, such an estimate is rather optimistic: the error rates of these optimal trees can
even be lower than the corresponding Bayes optimal errors. However, optimally pruned
trees are useful tools for investigating some properties of the data sets. For instance, by
comparing the accuracy of the grown/trained trees with the accuracy of the corresponding
OPGTs/OPTTs, it is possible to evaluate the maximum improvement produced by an
ideal pruning algorithm. Moreover, the magnitude of differences in accuracy of OPGTs
and OPTTs can help to understand if the ideal goal of those simplification methods that
requires a pruning set is far from the ideal goal of the other methods. On the contrary,
a comparison of the accuracy of the corresponding grown and pruned trees provides us
with an indication of the initial advantage that some methods may have over the others.

The size of the optimally pruned trees can be exploited to establish a bias of the sim-
plification methods towards either overpruning or underpruning. In this case, we should
compare the size of an OPGT with that of the corresponding tree produced by those meth-
ods that do use an independent pruning set, while the size of an OPTT should be related
to the result of the other methods. As a matter of fact, tree size is a coarse measure, since
it may happen that a branch with p leaves is erroneously pruned while an equally-sized
harmful branch is not. In this latter case, indeed, the size of the resultant tree is optimal
even though there are both an overpruning and an underpruning problem. However, as
we will show later, this does not prevent us from detecting the most serious of the two
possible faults occurring in a simplification process. The real limitation of our empirical
study concerns the comparison of the average size of OPTTs with that of trees produced
by the EBP. This is due to the fact that REP, the method used to produce OPTTs,
uses only a pruning operator, while EBP also adopts a grafting operator (see Table 1).
Therefore, OPTTs are not optimal with respect to the space explored by EBP. Although
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Iris [Glass| Led | Hypo |P-gene|Hepat.| Clev. |Hung.| Switz.| L.B. | Heart|Block

GROWN 528 54 |12792141.3312024| 19 |[11.24|33.76|32.56| 9.64 | 31.64 | 115.7 | 82.92

er.| 5.866|36.87 2796 | .622 | 27.12| 22.81 | 30.07 | 25,5 | 13.84 | 33.27 | 24.72 | 3.65

Size| 364 | 126 (2144|916 | 784 | 34 | 122 |10.16| 1.32 | 412 | 36.16 | 25.84

OPGT er.| 4.888 | 31.62 | 25.64 | .399 | 18.50 | 15.83 | 22.99 ] 16.91 | 4.622 | 23.6 | 18.77 | 2.609
TRAINED Size| 6.84 | 36.32 | 44.68 (27.24| 256 | 16.76 | 50 |47.88| 11.76 | 43.48 | 164.6 | 111.9
er.| 5598 |3538]|2748| .604 | 235 | 21.87| 29.1 | 255 | 13.3 | 33.73| 23.82 | 3.57

OPTT size| 4 15082204 936 | 10 | 436 | 1636 964 | 1.16 | 492 | 45.96 | 30.44

er.| 4442128312531 | .352 | 165 | 16.34| 20.84 | 17.27 | 5.731 | 23.13 | 17.71 | 2.354

TABLE 35.3. Average size and error rate of the (optimally pruned) grown/trained trees.

we did not observe a frequent application of the grafting operator in our experiments, we
plan to address this limitation in the future work.

35.4 Experimental results.

The average size and error rate of the (optimally pruned) grown/trained trees for each
domain is reported in Table 3.

The ratio (grown tree size/OPGT size) ranges from 1.5 for the Iris data to 7.7 for
the Long Beach data, while the ratio (trained tree size/OPTT size) is even greater than
10 for the Switzerland data. Such strong differences in size between some grown/pruned
trees and their corresponding optimally pruned trees can be explained by looking at the
base error column in Table 2. Indeed, for the ”incriminated” data set, there are only two
classes, one of which contains only 6.5% of cases. Since the learning system fails in finding
an adequate hypothesis for those cases, the pruning method will generally tend to prune
the tree up to the root.

Another point is the greater accuracy of trained trees: this means that those methods
that require a pruning set are under a disadvantage with respect to the others. The only
exception is represented by the database Hungary, in which the greater number of training
instances does not increase the accuracy of the trees but does increase their complexity.

By restricting our attention to only two domains (Iris and Led?*) also used in Mingers’
empirical comparison, we could detect a certain discrepancy between the two figures on
the average size of unpruned trees:® 6.9 compared to 5.4 in Iris, and 56.6 compared to
41.33 in Led. Such a difference may be attributed to the percentages of cases used to build
the trees (60% in Mingers’ study versus 49% in ours). Indeed, by looking at the average
size of trained trees which are built on 70% of cases, this discrepancy is significantly re-
duced, at least for the Iris domain. The discrepancy for the Led data should be mainly
attributed to the tree collapsing process, implemented in C4.5, that stops branching when
the best split does not reduce the apparent error rate. However, such differences do not
compromise the validity of our results, since simplification methods should be able to
operate on any tree built by a TDIDT system.

4The Led domain is named Digit in Mingers’ paper.
5Unfortunately, we do not know if the average size reported in Mingers’ paper refers to trees build
using the gain-ratio measure as in our experiments.
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database REP MEP | CVP 0SE 1SE PEP |CV-0SE| EBP |trained

Iris 5689 | 6.222 | 5866 | 5778 | 7.645 | 5332 56 5.065 | 5.598
Glass 38.5 38.19 | 36.87 38 40.69 | 3531 | 3894 | 3588 | 35.38
Led 2815 | 2824 | 2799 | 2816 | 2952 | 2791 | 27.77 | 27.36 | 27.48
Hypo 515 51 541 .508 576 505 496 447 .604

P. gene 23 24.37 | 25.62 24 25.62 | 23.38 235 21.75 235
Hepatitis | 20.34 | 21.28 20.6 20.17 | 2042 211 2119 | 21.36 | 21.87
Cleveland | 27.65 | 28.88 | 30.07 | 29.10 | 29.89 | 29.01 | 29.58 | 28.88 29.1
Hungary | 2168 | 2214 | 2741 | 21.73 | 21.77 | 21.73 | 21.23 | 22.36 255
Switzerland| 6.272 | 12.65 | 2393 | 6.164 | 5839 | 6.163 | 6.271 | 6.163 133
LongBeach| 26.27 | 2853 | 2693 | 2747 | 2567 | 2747 | 2693 | 29.33 | 33.73
Heart 2354 | 2367 | 2413 | 2381 | 2429 | 2294 | 2335 | 2272 | 23.82
Blocks 3.22 3.34 3.602 3.19 3.35 2.98 3.17 3.05 3.57

TABLE 35.4. Average error rates for different databases.

In Table 4 the average error rates concerning different simplification methods (sophis-
ticated strategies) are reported together with the average error rate of unpruned trained
trees (naive strategy). Both the sophisticated and the naive strategies have access to the
same data, the training set, but the sophisticated one can either use some data for grow-
ing the tree and the rest for pruning it, or exploit all the data at once for building and
pruning the decision tree. From a quick look at the table we can immediately conclude
that the sophisticated strategies do generally worse than the naive one in the first three
databases, namely Iris, Glass and Led. More precisely, sophisticated methods that exploit
an independent pruning set yield trees that are more accurate than corresponding grown
trees, which indicates that pruning is beneficial. Unfortunately, the grown tree is less
accurate than the trained tree, so that the global effect is negative. The only two cases
in which the sophisticated strategy seems to win are those in which the trained tree is
pruned by means of the PEP and EBP methods, which do not use independent pruning
sets. On the contrary, for the Hypo, Switzerland, Hungary, and Long Beach domains, al-
most all pruning methods perform well. In particular, for the Switzerland data, the worst
result obtained with a sophisticated strategy is better than that obtained with the naive
approach. This is not surprising, since we had already observed that the OPGT (OPTT)
is much smaller than the corresponding grown (trained) tree, which means that in this
domain techniques for simplifying decision trees are inherently beneficial. Finally, the 1SE
shows the worst performance in five databases, while the EBP has the lowest error rate
in five domains with a significant improvement in two of them.

In order to study the statistical significance of these results, we compared the error rates
of the pruned trees with those of the corresponding trained trees. Thus, values reported
in bold (italics) denote a significant improvement (worsening) in predictive accuracy at
the confidence level of 0.10. It is easy to see that tree simplification does not generally
decrease the predictive accuracy. The only exception is represented by the application of
the 1SE rule with both an independent pruning set and cross-validation sets. Further-
more, no method is able to significantly reduce the error rate in six domains (Iris, Glass,
Led, P-gene, Hepatitis and Cleveland), while all methods perform well when applied to
the Long Beach database, and all but one improve the accuracy of the final tree in the
Hungary and Switzerland domain. It is interesting to observe that PEP and EBP produce



372 Donato Malerba, Floriana Esposito, and Giovanni Semeraro

database REP | MEP CvP 0SE 1SE | OPGT | PEP |CV-0SE| EBP | OPTT

Iris 34 4 54 344 3 3.64 3.76 4.48 4.88 4
Glass 11.04 | 1852 | 2792 | 14.12 7.04 12.6 2112 | 18.16 | 28.72 | 15.08

Led 20.52 | 25.28 36 2564 | 1232 | 2144 | 1832 | 30.24 30.6 22.04
Hypo 8.2 15.76 14 8.64 7.2 9.16 9.32 9.68 13.68 9.36
P-gene 6.4 10 13.36 7.24 4.36 7.84 8.44 9.52 15.28 10

Hepatitis 264 8.36 3.6 2.56 1.36 34 544 264 9.08 4.36
Cleveland | 10.92 15 30.76 9.88 4.12 12.2 19 10.36 | 29.28 | 16.36
Hungary 7.32 10.44 21 524 2.28 10.16 10.2 9.2 17.12 9.64
Switzerland| 1.4 8.92 1.68 1.56 1 1.32 1.16 1.16 1.08 1.16
Long Beach| 6.16 17.16 7.28 6.92 14 4.12 4.96 38 10.88 4.92
Heart 3352 | 31.92 58.2 27.52 7.2 36.16 | 21.92 | 19.17 | 46.04 | 45.96
Blocks 2468 | 6504 | 7848 | 2812 | 1312 | 2584 | 37.24 | 1756 | 50.92 | 30.44

TABLE 35.5. Average tree size for different databases.

significantly better trees for the same data sets, so that it is possible to postulate, on em-
pirical grounds, the equivalence of the two methods that appear to be different in their
formulation. By summarizing these results, we can conclude that there is no indication
that methods exploiting an independent pruning set perform definitely better than the
others. This claim is at a variance with that reported by Mingers [Min89], and should be
attributed to the different design of the experiments.

The average size (number of leaves) of the simplified trees for different domains is re-
ported in Table 5. As already pointed out, data concerning the REP, MEP, CVP, 0SE and
1SE should be compared to the average size of corresponding OPGTs, while the results of
PEP, CV-0SE, and EBP should be related to those of OPTTs. At a glance we can say that
REP is biased towards overpruning, since in nine domains it produces trees smaller than
the optimal ones on the average. This result has a theoretical justification: REP takes
the decision of removing a branch by considering data in the pruning set alone, without
any care of the evidence provided by the cases used to build the tree. Therefore, when
relatively few cases are reserved for pruning, this simple solution will lead to overpruning.®
Another method clearly biased towards overpruning is 1SE. This is not surprising, since
the one standard error rule was introduced to choose the simplest tree whose estimated
accuracy 1s comparable to that selected by the 0SE. On the contrary, MEP, EBP and
CVP underprune in almost all cases, and even worse, CVP does not prune at all in two
domains, namely Iris and Glass. The reason for this odd result seems to be related to
the use of the gain-ratio as selection measure. Indeed, when all the leaves in a tree are
“pure”, that is their examples belong to the same class, the gain-ratio computed in the
deepest internal nodes is equal to the maximum value 1.0. Thus, the critical value should
be greater than or equal to 1.0 in order to prune the nodes at the bottom of the tree,”
but in this case all internal nodes should be pruned according to the same criterion. This
means that in the first step critical value pruning may find only two trees, T,,, and the

6Actually, in a separate study on this method we have also observed that, in most of the domains
considered in this paper, the optimal size of the pruning set is 70% of the training set.

“Experiments on the CVP are made by setting a maximum critical value equal to 1.0 and a step equal
to 0.01.
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root tree, with the obvious consequence that the former one will be generally chosen in
the second step. Obviously, this happens only in the case of pure leaves, as with the Iris
and Glass domains. In fact, in all the other domains in which there is at least an impure
leaf because of clashes (i.e., examples of distinct classes but with same attribute values)
or because of tree collapse,® this issue is less evident. Also for the Switzerland data there
is no underpruning problem, but in this case the reason is that the best tree is often the
root tree. Results on the CVP reveal another discrepancy with Mingers’ data, at least for
the two common domains, Iris and Led. Unfortunately, in this case we have no explana-
tion, and we can only hypothesize the adoption of different stopping criteria in Mingers’
TDIDT system. The differences for the other two methods, namely REP and MEP, can be
justified by the fact that our algorithms are different from his. Indeed, as already pointed
out, the REP method we implemented is guaranteed to find the optimal tree with respect
to the pruning set, while this seems not to be true for Mingers’ formulation. Moreover, our
MEP version is the latter proposed by Cestnik and Bratko [CB91], and not the original
one proposed by Niblett and Bratko [NB86].

As done for the error rate, even for the tree size we tested the significance of the dif-
ferences by means of two-tailed paired t-tests. This time a number in bold indicates a
significant overpruning at a level of 0.10, while a number in italics represents a significant
underpruning. Recall that the comparison involves OPGTs for those methods that oper-
ate on the pruning set, and OPTTs for the others. The tests confirm that MEP, CVP and
EBP are biased towards underpruning, while 1SE prefer overpruning. It is worthwhile
to note that the predictive accuracy is not necessarily increased when a simplification
method produces trees which do not significantly differ in size from the correspondingly
optimally pruned trees: in fact, pruning may help to simplify trees without improving their
predictive accuracy. Moreover, by measuring the tree size we do not have detailed enough
information to guarantee that only overpruning or underpruning occurred. Thus, we can
observe a significant increase of error rate with respect to the optimal tree even when
the size appears to be optimal (see the results of REP in the Glass domain). Finally, by
ideally superimposing Tables 4 and 5, it is also possible to draw other interesting conclu-
sions. For instance, in some databases, such as Hungary and Heart, overpruning produces
better trees than underpruning. This latter result agrees with Holte’s observation that
even simple rules perform well on most commonly used data sets in the machine learning
community [Hol93]. It is also a confirmation of the overfitting problem that affects TDIDT
systems.

35.5 Conclusions.

In this paper, a new empirical study of eight well-known simplification methods for
decision-tree induction has been presented. The two main differences with previous works
performed by Quinlan [Qui87] and Mingers [Min89] are the diverse design of the exper-
iments and the use of optimally pruned trees as yardsticks for comparing the accuracy
and complexity of simplified and unsimplified trees. The main conclusions drawn in our

8 Another default stopping rule implemented in C4.5 prevents from growing a tree when the number
of cases per outcome is less than two. However, we invoked the system by setting the parameter —m to
1, so forcing the system to consider also the cases of n-ary tests with one example per outcome.
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study are the following:

e Putting aside some data for the pruning process is not generally the best strategy.

e In general, simplification methods do not significantly decrease the predictive accu-
racy of the final trees.

e MEP, CVP and EBP are biased towards underpruning, while 1SE tends to over-

prune.

Further work is needed to confirm and extend these results. In particular, artificial data
sets with either attribute or class noise may provide us with meaningful information on
the performance of different simplification methods.
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